HEEA HRLEES HRERS
IPSJ SIG Technical Report

2006—AL—106 (4)
200675718

DFERRBREROHBDTST24) 7 VT XL
PR B— PRORGEE s EE

PR R R T 2ERAEN O € o — 2 R2EER
T 113-0033 FREE LXK AHE 7-3-1
E-mail: pascal@is.s.u-tokyo.ac.jp
PERERZERZENER b LRt 2 —
T 108-8639 AKX HEE 4-6-1
E-mail: maraki@hgec.jp
c HWEAREREMERFR L T/ Aﬁ@ﬁt/a—
T 108-8639 REMEX HEH 4-6-1
E-mail: tshibuya@hgc.jp
BWE: B, NEASTFRTOBEOEFTZEMOBRIC &> TRASE, RBICAEEDTE
BBRLTWL TLICE > TRHDDFEERT BT LR ENT VS, TOBEASTFDT S
TREESZONEDTFDITST7RBEZRAVCTHREZZEDS T LHRELEZEN, TOMEZ—RK
CIEEICB LS BALEEHEIX DB T AL TV S, RO TFOREERNET IV
dY XLEZERL. BEHBDOLNANROTTFOETEE N, HXEDIBRLEBZLETONF
CEENBEFEE M & Ui L 22 O(NM3) OFEEITS T Lic k> TRIERREED S %
— D51 D BRRETEHRICTIETEE LR, ¥FhREELTCO7 NI XLOE
AR REET 3. &5icZDk%, FUAMLEN ONM) CETAETSHSEC LERT.

Graph tiling algorithm for molecular synthesis analysis
tKoichi Suematsu *Michihiro Arz;.ki °Tetsuo Shibuya

tDepartment of Computer Science, Graduate School of Information Science and Technology,
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
E-mail: pascal@is.s.u-tokyo.ac.jp
tHuman Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
E-mail: maraki@hgc.jp
°Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
E-mail: tshibuya@hgc.jp
Abstract: An enzyme works between specific molecules to compound a larger molecule and
lots of such reaction is already known, thus to discover a new synthetic pathway by using
such reactions is being researched. In the method, it is necessary to tile the target’s molecular
structure by using the graph structures of given molecules. The problem is shown to be very
difficult and usually takes very long time. We here show an algorithm which considers the
molecular graph structure and shows that every possible tiling results can be got in constant
time after short time pre-calculation. We also impleménted the algorithm and confirmed that
it works at very high speed.

1 Introduction

In biology, compounding a molecule such as
medicine with the given molecular structure is
attracting a big interest. However, there is no
general method to achieve this now, because the

synthetic pathway used to compound a molecule
is given only by the past experiences of analyz-
ing pathways. There are also some molecules
whose pathway is known but which cannot be
synthesized because of technical problems. Be-

€60059

Figure 1: Example of tree tiling problem

cause of such reasons, there are many molecules
that are medically of great interests or impor-
tance but cannot be synthesized. This results in
a problem that such molecule cannot be mass-
produced.

The method used now costs high because
it is not completely automated. An efficient
and easy synthetic pathway to make a molecule
with the given structure is expected to enable
mass production of cheaper medical molecules.
Moreover, discovering the best synthetic path-
way with fewer procedures, better reaction ef-
ficiency, less technical limitations, etc. of the
molecule is also important when the molecule
has multiple synthetic pathways. These features
enable synthesizing a lot of molecule at low cost.

Thus we focused on designing an algorithm
to suggest a new synthetic pathway. Finding a
new pathway through combining the individual
reaction is a possible way to help this. '

An enzyme works between specific molecules
to compound a larger molecule, and lots of such
reactions are already known. These reaction
data of biological pathway is open to public by
KEGGI6], and we can get biological pathways
on the internet. Now, some molecular blocks
which consist molecules appear in these path-
ways are being listed. Molecular block is a group
of atoms, and the uniting of atoms in a block
does not change before and after the reaction.
A sample of molecular block is shown in Figure
1. There are four blocks in the figure and their
change of uniting means chemical reaction.

To find a new pathway, the next step is to
find the best combination of these molecular
blocks to compose a target molecule like Figure
2.

In this paper, we aim to propose an efficient
graph tiling algorithm. The graphs we consider
are molecular structures, thus the maximum de-
gree is limited to 4 and the graph is not so com-
plicated as to be represented as some combina-

Cooo21

Figure 2: Example of tree tiling problem

tion of trees.

To suggest an efficient algorithm for the
problem, we first give a polynomial time al-
gorithm to tile a tree of bounded degree with
some smaller unordered unrooted labeled trees.
The algorithm aims to reduce redundant cal-
culation in every step through detecting many
kinds of symmetry and identifying the isomor-
phic graphs. It works at O(NM?) time, where
N is the size of target tree and M is the number
of all vertices in pattern trees. ’

The algorithm gives a combination of pat-
terns that are used in tiling results. By using
the result, each ‘tiling results can be obtained
in constant time. It also enables to obtain the
number of tiling results in the time proportional
to the size of the target tree.

We also implemented the algorithm and
showed the order is just a redundant upper
bound of the algorithm. The algorithm works
almost linear to N and M with practical data
we tested.

Then we improved the algorithm and show
that the calculation time can be reduced to
O(MN).

~ We also show a plan for tiling a graph, which
may be efficient in solving the problem.

2 Preliminaries

Graph tiling problem Graph tiling problem
is defined as follows. Tiling a given graph
G with a given set of graph g is to divide
G into S = {g1, 92, - : - gn} Which satisfies the
following conditions. :

1. g; is isomorphic to one of the elements
in g.
2. U V(g) =V(G)

3. V(g)NV(gj) =¢ (forevery 1 < i <
j<m)

Notice that a graph in the given set of graphs
g can be used more than once, or can be left
without being used.

Tree tiling problem The tree tiling problem
is a kind of graph tiling problem, with a
restriction that every graph appears in the
problem is a tree. The problem argued in
this thesis is related to labeled or unlabeled
unordered unrooted trees.

Other definitions We use the word ’target
tree’ for the meaning of the tree to be tiled,
and ’pattern trees’ for the meaning of the
trees to tile a target tree with.

3 Related works

Graph tiling problem Given a graph H, the
H-decomposition problem is stated as follow:
Can the edge set of an input graph G be par-
titioned into subgraphs, isomorphic to H?
The problem is shown to be NP-complete[3].
The problem of graph tiling just exchanged
the vertices and edges of this problem, which

shows that the problem of graph tiling is-

essentially NP-complete. Qur problem is
stated as a restricted problem of this prob-
lem on the point that the graphs in our prob-
lem have bounded degree 4, for they are
molecules.

Tree tiling algorithm The problem of tiling

a tree or tiling a graph has been hardly done
up to now, but a kind of tree tiling problem
similar to our problem exists in compiler the-
ory, which is used to convert the tree data
structure into sequential instructions by us-
ing a tiling result[4]. In the problem, some
existing methods use dynamic programming
and solve the problem in linear time [1]. The
limitation is that, those methods only con-
siders labeled ordered trees.
The problem with unordered tree has not
been considered in the existing algorithms,
and they cannot be simply applied to our
problem. But the method in compiler shows
that bottom-up tiling method with dynamic
programming is suitable for obtaining tiling
results effectively. ‘

General method used in tree problem
Top-down and bottom-up tiling strategies
were made up in order to find a pattern
from trees effectively[5]. Many effective al-
gorithms were constructed by using these

methods.

Tree normalizing algorithm An algorithm
of transforming a labeled or unlabeled
unordered tree into an ordered tree is
designed[7]. This algorithm seems to trans-

~ form the tiling problem with unordered tree
into the problem with ordered tree that
makes it possible to apply the compiler tiling
algorithm to this problem, but the problem
is that this algorithm is a kind of normaliz-
ing an unordered tree, so this algorithm can
be used. only when the remaining trees after
tiling some of the target tree are guaranteed
to be normalized.

Numbering tree structures
An algorithm to represent a tree structure
as a number exists [7]. The number cannot
reconstruct the original tree but the point is
that the trees with the same structure have
the same number. In the thesis, the num-
ber is generated dynamically at every depth
of a tree to reduce the computational com-
plexity, but the idea of representing a tree in
a number can be used in other ways. This
thesis shows a linear time algorithm for enu-
merating the trees who are isomorphic to the
bottom-up subtree.

Feature of biological molecules In general,
problems of comparing two graphs are in-
tractable. For example, subgraph isomor-
phism problem is NP-hard. Many of bio-
logical structure are represented using graph
structure, but for the reason, methods using
graph theory was not a main stream of an-
alyzing biological pathway. However, their
width of the graph was shown to be very
small[9], which means that the structure is
not very far from trees. In other words, a
biochemical compound becomes tree when
some of their atoms are removed.

4 Approach to the
Tiling Problem

Later, we show an efficient algorithm for tree
tiling, which takes time proportional to the size
of target tree. The efficiency depends on three
features.

Graph

1. A bottom-up tiling approach can be taken
which enables efficient branch hunting.

2. Identifying a larger structure from their chil-

dren and its label is easy.

3. The number of bottom-up subtrees got in the
initialization process is linear to the number
of vertices in pattern tree. This works in
two ways, less processing time and less use
of memory.

On the other hand, graph tiling problem can-
not be simply solved by using bottom-up ap-
proach because there is generally no leaf in a
graph. This makes it difficult to apply the se-
quence : find a match, remove the matched
tree which is isomorphic to a pattern tree, and
makes the problem smaller. Moreover, when we
try to use the similar approach, it is necessary
to enumerate the subgraph of all patterns in
the preprocessing, because the bottom-up ap-
proach cannot be taken. The number of sub-
trees is enormous, then the processing time and
the memory used by the algorithm becomes so
large, which is not practical.

Thus we decided to devise another method.
In general, molecular structures do not unit too
closely. Moreover, they are often consisted of
a structure near to tree and some small com-
plex part. From these features, we can treat
molecular graphs as some trees when some ver-
tices of a graph and edges which contains re-
moved vertices as their edge point are removed.
Most molecules appear in pathways become
some trees when at most 3 vertices are removed.
Thus we may solve the graph tiling problem ef-
ficiently.

5 Approach to the Tree Tiling
Problem

5.1 Overview

In solving the tree tiling problem, we aimed to
enumerate each tiling result in constant time be-
cause there was a possibility that the number of
results becomes O(e™) where n is the size of the
target tree.

The problem causing the enormous number
of results is that the tiling results of the parts
nearer to a leaf than a certain point are indepen-
dent of the tiling results of the parts nearer to
the root than a certain point. Therefore, we de-
cided to express all the solutions in the shape of
the pattern of combining. Thus the number of
matched patterns we should get becomes poly-
nomial number, and it can be easily confirmed
to be able to enumerate each of the solutions

in constant time by combining them. Moreover,
after getting the combination, we can count up
the number of all tiling results in O(n) time,
where n is the size of the target tree.

We here explain a fast algorithm to calculate
such combination.

5.2 Main Idea of the Algorithm
We organized an algorithm by using a dynamic
programming method with bottom-up searching
method, which makes it possible to find subtrees
which are isomorphic to a pattern tree in short
time. Moreover, we reduced the time in check-
ing isomorphism of trees from O(n) to O(1) by
using the strategy of tree-index described below,
where n is the size of trees. We pre-calculate lay-
ered structure of trees to make the comparison
and to combines trees faster. The main prob-
lem in tree tiling is to find the isomorphic tree
that can appear in the tiling result fast, so the
pre-calculation method of this kind is efficient.
In addition, to avoid testing the same tree
more than once, we identified the same structure
in different trees. This also enables to detect
symmetry in a tree, so this method works in two
ways, and greatly reduces the computing time.

5.2.1 Bottom-up tiling approach

Definition When a rooted tree T is given, S
is a bottom-up subtree of T if for any ver-
tex v € V that is not a leaf of T we have
children(v) C V, where V is vertices of S.

The problem in top-down tiling approach is

that the order of the children is not fixed. The
key factor is to diverge from one point to one or
more points.
By using bottom-up method, we should just
combine some points into one, thus the combi-
nation can be brought together in one with the
time proportional to the number of the children
by using function F' described in section 5.2.2.

The method integrates some points into one
at each step, and the explosion of the com-
putational complexity caused by the permuta-
tion of the children can be suppressed. Thus
the bottom-up approach enables fast compari-
son between pattern trees and bottom-up sub-
tree of the target tree. By using this method,
the number of vertices in the subtree we should
check becomes smaller linearly. To apply the
bottom-up technique to this problem, we adopt

the method to cut out the matched pattern from
the leaf. If two or more matches exist in the pro-
cedure, it is necessary to think ahead all of that
after cutting out those patterns.

5.2.2 Tree Normalization by Indexing
Trees

It is necessary to regularize the tree to solve
this problem by using a similar technique to the
tiling of the ordered tree. It is possible to treat
by sorting the identifier as well as the ordered
tree can give identifier to the unordered tree.
We decided to allot the integer as identifier of
the tree by using the fact that the number of all
trees that appeared in the algorithm is little. It
works efficiently compared with the retrieval of
the pattern etc. because this can show the rela-
tion between the tree and the tree by integers.

In our algorithm, comparison and uniting of
trees often appears. Uniting of trees means mak-
ing a new tree from the children and the label of
itself. The root of the new tree has label L and
every root of its children {¢1,ts,--,t,} will be
jointed to the new root. In other words, those
roots become children of the root vertex.

To decrease the computational complexity of
those basic procedures, we indexed every rooted
trees appears in our tiling algorithm. We call the
number tree-index, which is an integer which is
unique to the structure of an unordered rooted
tree. In our algorithm described below, the
number of unordered rooted tree is bounded by
the size of pattern trees, which means the num-
ber does not become so large in practical prob-
lem.

. Tree-index enables us to check whether given
two trees are isomorphic or npt in constant time,
on condition that the tree-index of each tree is
already calculated.

Theorem Let sum of number of vertices con-
tained in the tree of all patterns be M. The
number of trees got by this technique is less
than 3M.

Proof The number of trees that are isomorphic
to a pattern tree is obviously M or less. The
tree with m vertices are consists of m — 1
edges, and the suin of the degree of every
point is 2m — 2. When we remove a point
from a tree, the number of newly created
graphs is the degree of the removed point,
thus the upper bound of the subtrees in the

algorithm is at most 2m — 2, which is less
than twice the size of the tree. For the rea-
son, the newly created trees appear in the al-
gorithm is less than 2M. Thus, the number
of trees appear in the algorithm is M + 2M
at most above.

From the theorem, the indexing is shown to
be practical because the maximum number ap-
pears in the indexing process is at most 3M,
which is small enough to be compared in con-
stant time.

5.3 Tree Tiling Algorithm

5.3.1 Data Structure in Tiling a Given
Tree

e In the target tree, each vertex v; holds a
set s(v;), which contains set of pairs P; =
(I;,M;). I, stands for the tree-index of a
subtree which is isomorphic to the subtree
and the root of the subtree is v; in the target
tree. M; stands for the matching of the chil-
dren of v;, showing which child correspond
to which tree-index. Mj is used to show the
result of matching.

e Each vertex v; holds a set S(v;), which is
almost the same as s(v;). The only difference
is that the pair whose flag corresponding to
the tree-indexes is not checked is not in the
set.

5.3.2 Main Algorithm

Algorithm 1 First, we initialize tree-index ta-
ble T, which includes unions each of which con-
sist of tree structure, its tree-index, and a flag.
The flag means whether there is such pattern
tree that is isomorphic to the structure or not.

1. Initialize T as {(¢,0, false)}, which stands
for a virtual tree with no vertez.

2. List up and indez all bottom-up tree struc-
tures.

(a) Let N be an integer 1.

(b) For each pattern tree p, and for each
vertez v in p, apply the following.

(¢) Think as if v is a root vertez of p, and
call the rooted tree p'.- Try to find if p’
is already in T. Ifp' is already included
in T, change the flag in the union to
true. Else, put the pair (s, N, true) into
T and increment N.

(d) Think as if v is removed from p, then
pattern tree p will be divided into some
subtrees whose root vertez is a children
of v. For each subtree s, try to find if
s is already in T. If 8 is already in-
cluded in T, do nothing. Else, put the
pair (s, N, false) into T and increment
N.

3. Construct a synthesis table. For each pattern
tree p, apply the following.

(a) For each vertez v in p, think a tree p
whose root vertex is v. We call the
rooted tree p'.

(b) Think as if v is removed from p, then
pattern tree p will be divided into some
subtrees. For each subtree, regard the
child of v as a root of the tree and call
it v,

(c) Put tree-index of p', tree-indexzes of v,
and label of v into synthesis table so
that we can get the tree-index of p’ from
the combination of other data.

Algorithm 2 Here is the main part of the al-
gorithm. The following are applied to vertices
by post-order. Let v be the vertex we are looking
at, and vy,v9,- -+, v, be the children of v.

1. When v has no child, regard the vertex as
it has a child and the child have returned a
set {0}. Then continue the following. 0 is a
tree-number of null tree.

2. When there is a child with condition s(v;) =
¢, no valid tiling exists.

8. Otherwise, choose a tree-index from each

" 8(v;). For every combination of the elements
in s(v;), check whether the combination of
the tree-indezes consists a indezed tree or not
from synthesis table. The check can be done

in constant time and the number of possible -

combination is at most (3M)3, so the order
of the time if O(M3). For each tree-indez,
do the following.
If the flag corresponding to the tree-number
is checked, the pattern is isomorphic to one
of the pattern trees. If the condition is sat-
" isfied, add the tree-indez into S(v;) and add
0 to s(v;) which represents an empty tree.
Otherwise, add the tree-indez to s(v;).

5.3.3 Computing Time

Initializing part Let m; be the number of ver-
tices in sth pattern tree. 4, which is the max-
imum degree of the graph, mutiplied by m;
bottom-up subtrees are created at each tile
and the time of creation is m; when we used -
post-order array in the process. Thus the .
time with the ith pattern tree is O(m?). The
total time in initialization becomes }>;(m?).

Main part Let N be the number of vertices in
the target tree, M be the sum of the number
of vertices in all pattern trees. The number
of elements in s(v) that each point possesses
is at most 3M because the size of table T is
at most 3M. 4 pieces of such parts of pat-
terns are combined in one larger piece, then
the number of combination is at most (3M)%.
This order can be improved easily, because
most vertex does not have 4 children. The
only vertex which has possibility of having 4
children is the root vertex, and we can choose
root vertex with condition that it has only
one child. If the root vertex has 4 children,
choose a leaf of the tree. The leaf has only
one neighbours as definition, so choose the
leaf as a root of the tree. Thus the max-
imum children number becomes 3, and the
order of combination becomes O(M?). This
type of combination is executed at every ver-
tex, so the computational time by applying
this method is O(INM3).

6 Experimental Results

In the experiments, we chose such target tree
that can be tiled with the given patterns because
the tiling time becomes very short in the case the
target tree cannot be tiled with the patterns.
We used a machine with Pentium 4 2.80GHz
processor and 512MB memory to measure the
calculation time.

Figure 3 represents the relation between the
size of target tree and the computing time with
the condition that the target trees and the pat-
tern trees are labeled like biological molecules.
To measure the time in the same condition, we
used the same pattern trees in experiments of
the graph. The sizes of the target trees shown
in the graph are 1599 and 817, one is about twice
as large as the other in the size.

Figure 4 shows the relation between sum of
’square of the number of vertices in a pattern

7
003 T J T ot batomar 20 X
siza of :8-30/size of target : 817 + : x *
sizo of pattems : 5-30 / size of target : 1589 ,("“,(x!x}‘x*xx"""" . size of pattems : 30 .
xXx H
x xxxxx xxxxxxx"x : x lx b
0.025 | Xk ¥
XXX Xy XX x
XXX e X
x 5 x
xX
T o : K x
B oo
4 x
E H ;
g x
& b
x
g oo s s . o™
€ . JUURETURE YRR L M Aiat X%
Y dpgertpert T Foxx
R pa pbbetrast 4T + e
001 stk 2 .
M"
) .
0.005 P
0
olx 0 200000 400000 800000 800000 10406
o 500 1000 1500 2000 2500 3000 Sum of !l 'square of the number of vartices in 8 pattern treo’

Number of pattem trees
Figure 4: Calculation time of initializing part :

Figure 3: Calculation time of the main part : the the relation between the number of vertices in the

influence of the size of target tree

tree’ and its initialization time, which are ex-
pected to be proportional.

7 Discussion

7.1 Environment

Some notches found in the graphs are thought
to be caused by the garbage collection system
of Java for the reason that the dot on the right
side of the graph should have longer calculation
time than the dot on the left side of the graph
because they have more pattern trees to match
which makes the problem complicated.

7.2 About figures

In Figure 3, tiling a target tree with 1599 ver-
tices takes about twice as long time as the tiling
of a target tree with 817 vertices at each size
of pattern tree. This result follows the order of
algorithm that the time in tiling a tree is linear
to the size of a target tree.

Figure 3 does not agree with the time order
O(NM3) we presented. This result can be ex-
plained as follows: the number of patterns with
n vertices increases rapidly because the used
trees were labeled, so the increase of patterns
was not effective in increasing the matched pat-
terns.

Figure 4 shows the relation between the sum
of all ’square of the number of vertices in a pat-
tern’ and the time in initialization. This fig-
ure shows that these two data are proportional,
which matches the expectation in the method
section.

pattern trees and the time in initializing

The pre-calculation time is not short and
maybe we should use faster algorithm. However,
the pre-calculated trees can be used in any tiling
problem when the pattern trees are the same, so
the pre-calculation should be done only once in
most problems even if the target tree changes.
This means the more the number of target trees
are, the less the ratio of pre-calculation time oc-
cupying in the total time becomes.

7.3 More Efficient Order

From Figure 3, the order we proposed seems to
be too redundant, and we tried to reduce the or-
der. The order was owe to the time of combining
children, so we tried to improve the time.

The improved algorithm is here. The num-
ber of possible combined new tree-index is at
most 3M, so we test whether each of the tree
represented by the tree-index can be made of
not. Each check time is constant so the time of
is O(M). We combine children at each vertex, so
the order of the tree tiling problem is bounded
by O(MN).

8 Conclusion

In the paper, we showed an algorithm for
tiling a tree whose computational complexity is
O(NM?) and the implementation showed that
the algorithm works at very hi-speed, almost lin-
ear to M with practical data which simulates the
structure of molecules.

The point limiting the order of the tree tiling
algorithm is combination of children. There
is probably a method to reduce the computa-

tional complexity by restricting the combination
of children. In the approach, the synthesis ta-
ble we described in our method may be of some
help, because the table is deeply related to lay-
ered structure of a tree.

We showed that the algorithm can be used to
tile the tree, and that it can be used to starting
works with the problem of graph tiling problem.
By using the method and the possibility of each
reaction, we can probably show the best path-
way to synthesize a given molecule.

The algorithm for tiling a graph was also
shown, which may not be very efficient with our
very simple approach, but each calculation time
in the problem of tiling a labeled tree was done
about 1/100 seconds even if the size of target
tree is about 1000. With smaller target trees, we
can calculate the tiling results more effectively
because the calculation time is proportional to
the size of a target tree. By using the point, the
graph tiling problem can probably be solved in
acceptable time.

The approach with tree-width is also seems
to be a promising method in the graph tiling
problem, by using the feature that the graph
structure of biological molecules are similar to
tree. The algorithm described in this paper also
uses the feature that the graphs are similar to
tree, but the approaches are quite different from
each other. By using the feature, there may be
more efficient algorithm in tiling a graph.

Tree-width is also a feature of pathway and
it is known that only some special enzyme can
change the tree-width of a molecule. We can
get possible pathways by using the method de-
scribed in the thesis, but we can choose path-
ways with higher possibility by using the tree-
width data. For example, when tree-width
changes but there are no enzyme to bring such
change, the possibility of the pathway reduces.
Such feature of biological pathway helps to esti-
mate the best pathway, and the feature may be
of some help in reducing the computing time, for
the reason that the pathway with less possibility
is not worth calculating.

In the next stage of our research, we plan
to create an algorithm to list up some pathways
with high possibility from the target molecular
structure, and implement the algorithm to ex-
amine the efficiency.

Acknowledgement

We appreciate Tetsuji Kuboyama for giving us
informative algorithms in trees.

References

[1] Alfred V. Aho, Mahadevan Ganapathi, and
Steven W. K. Tjiang. Code generation us-
ing tree matching and dynamic program-
ming. ACM Trans. on Programming Lan-
guages and Systems, Vol. 11, No. 4, pp. 491-
516, 1989.

[2] Robin Cohen. Investigation of processing
strategies for the structual analysis of argu-
ments. In Proceedings of the 19th annual

. meeting on Association for Computational
Linguistics, pp. 376-377, 1981.

[3] Dorit Dor and Michael Tarsi. Graph de-
composition is NPC — a complete proof of
Holyer’s conjecture. pp. 252-263, 1992.

[4] Philip J. Hatcher and Thomas W. Christo-

pher. High-quality code generation via

bottom-up tree pattern matching. In

Proceedings of the 13th ACM SIGACT-

SIGPLAN symposium on Principles of pro-

gramming languages, pp. 119-130, 1986.

Christoph M. Hoffman and Michael J.

O’Donnell. Pattern matching in trees.

Vol. 29, No. 1, pp. 68-95, 1982.

Minoru Kanehisa, Susumu goto, Masahiro

Hattori, Kiyoko F. Aoki-Kinoshita, Ma-

sumi Itoh, Shuichi Kawashima, Toshiaki

Katayama, Michihiro Araki, and Mika Hi-

rakawa. From genomics to chemical ge-

nomics: new developments in kegg. Nucleic

Acids Research, Vol. 34, pp. 3564-357, 2006.

[7] Fabrizio Luccio, Antonio Mesa Enriquez,
Pablo Olivares Rieumont, and Linda Pagli.
Bottom-up subtree isomorphism for un-
ordered labeled trees. Technical report, Uni-
versita Di Pisa, 2004.

[8] Ron Shamir and Dekel Tsur. Faster sub-
tree isomorphism. In Israel Symposium on
Theory of Computing Systems, pp. 126-131,
1997.

[9] Atsuko Yamaguchi, Kiyoko F. Aoki, and
Hiroshi Mamitsuka. Graph complexity of
chemical compounds in biological pathways.
Genome Informatics, Vol. 14, pp. 376-377,
2003.

[5

[-ay

[6

—_—

