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Recently, the boundaries of the approximation ratios of such problems as Clique, MAX-3SAT and
Set Cover have been shown, whereas the boundaries of many other problems still remain open.

Unique Game, which is a graph optimization problem, has been studied as one unified approach
to solve them. There is a conjecture as to the hardness of Unique Game, which is called “Unique
Games Conjecture.,” If this conjecture is true, the analysis of the reductions from Unique Game is a
useful method to show the boundaries of the approximation ratios of the graph problems.

In this study, we empirically found that existence of some parallel edge makes Unique Game hard
by implementing the approximation algorithm for Unique Game and using instances restricted to
various factors which determine the instances.

1 Introduction

In recent years, approximation algorithms for many NP-hard optimization problems have been studied
and their approximation ratios have been improved. In particular, it is large contributions to develop
the method which can make approximation ratios of various problems improved. LP-relaxation is one
example.

In contrast, it has been difficult to show the hardness of approximation the problems, in other words,
few methods to show the boundaries of the approximation ratios of the problems have been found. When
we show that a yes-no problem is NP-hard, we construct a reduction to it from another NP-complete
problem. We give consideration to only “yes” or “no”. In the case of approximation, we have to give
consideration to a value of objective function. Therefore, constrction of reductions cannot easily show
the hardness of approximation.

PCP theorem is one of methods to show hardness of approximation [2, 9]. It means that there exists
a constant within which MAX-3SAT is NP-hard to approximate. The construction of reductions from
MAX-3SAT leads many results about the hardness of NP-hard problems. As another method, 2-Prover
1-Round Game is propesed. It is simple to construct reductions from 2-Prover 1-Round Game to graph
optimization problems, and the construction has the same capability as the construction from MAX-3SAT



about showing hardness of NP-hard problems. As a result of them, the hardness of many problems have
been shown. For example, CLIQUE is NP-hard to approximate within n!~* for every ¢ [8], Set Cover is
NP-hard to approximate within (1 —&)Inn for every £ [3). These results are correspond with the results
of achievement of approximation ratios. Therefore, it can be said that the studies of approximation for
the problems have the large conclusion.

However, there are many open problems about hardness of NP-hard problems. Consequently, new
problems have been studied. One of them is Unique Game. Unique Game is the special version of 2-
Prover 1-Round Game. It is more simple to construct reductions from Unique game than from 2-Prover
1-Round Game, and it has been said that the construction might be more capability than the construction
from MAX-3SAT, But it is still prediction, because little has been shown about the hardness of it.

Unique Games Conjecture, a conjecture about hardness of Unique Game, has been proposed by
Khot [10]. By sssuming it, many results have been shown, For example, Vertex Cover might be NP-
hard to approximate within 2 — ¢ for every ¢ [12], MAX-CUT might be NP-hard to approximate within
1/0.878...—¢ for every & [11], and Sparsest Cut is NP-hard to appraximate within any constant factor [13].
Furthermore, these results correspond with the results of achievement of approximation ratios. If the
conjecture is proved, many new large conclusions might be shown. Some results about it have been
shown [13, 5], but none of them proves the conjecture. And good approximation algorithms for Unique
Game also have been proposed {4, 10, 16}, but none of them disproves the conjecture.

In this study, we implemented Khot’s approximation algorithm for Unique Game [10], and experi-
mented with the algorithm. We implemented the algorithm based on semidefinite programming (SDP)
relaxation. SDP-relaxation is a nseful method to approximate NP-hard programs. For example, the best
approximation algorithm of MAX-CUT is based on it {7]. In the experiment, we used random instances
restricted to some factors such as size of a set of vertices, size of a set of labels, degrees of a graph and
the value of optimal solution. By changing the restriction, we empirically researched which factors make
Unique Game difficult, and how difficult Unique Game is. It is shown that if there are parallel edges
under some conditions, we can realize Unique Games Conjecture.

2 Preliminaries

2.1 2-Prover 1-Round Game

tl‘)eﬁnition 1 A 2-Prover 1-Round Game (2P1R Game) instance U(G(V, E), [k], {7e}ecE) i defined as
ollows.

[k] is'a set {1,...,k}. G = (V, E) is a graph with a set of vertices V' and a set of edges E, with possibly
parallel edges. An edge e whose endpoints are v and w is written as e(v, w). For every e(v,w) € E, there
is a relation m, : [k] x [k]. 7. is a set of pairs of labels that takes a label of vertex v and a label of vertex
U, Te(w,v) 18 trivially defined to be “inversion” of 7e(v,w). We can describe the relation as k x 2 vertices
bipartite graph. The goal is to assign one label to every vertex of the graph from the set [k]. The labeling
is supposed to satisfy the constraints given by sets m.. A labeling A : V' — [k] satisfies an edge e(v,w), if
there is a pair of labels (A(v), A(w)) in 7. Define the indicator function I*(e), which is 1 if e is satisfied
by A and 0 otherwise. The optimum OPT(U) of the 2-Prover 1-Round Game instance is define to be
max;\]-};-[ > ecg I*(€). In other words, the objective function is the fraction of satisfied edges in all edges.

Theorem 1 For every constant « > 0, there exists a sufficiently large constant k := k(v), such that it is
NP-hard to decide whether a 2-Prover 1-Round Game instance U(G(V, E), [k], {%c}ccE), has OPT(U) >
1, or OPT(U) <L 7.

2.2 Unique Game

Definition 2 A 2P1R Game is called Unique Game if every relation .(,,.s) can be denoted by a bijection,
‘i.e., every T, has exactly k pairs and there is a bijection f : [k] — [k] such that every pair in 7. is denoted
by (n, f(n)). In other words, every bipartite graph describing the relation is perfect matching.

2.3 Unique Games Conjecture

Conjecture 1 For every pair of constants €,y > 0, there exists a sufficiently large constant k :=
k(e,v), such that it is NP-hard to decide whether a Unique Game instance U(G(V, E), [k], {#c}eeE):
has OPT(U) 21 —¢, or OPT(U) < 7.
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Figure 1: Image of Unique Game.

It is easy to decide whether a Unique Game instance has OPT(U) = 1 or not.

Assuming Unique Games Conjecture, Unique Game is hard to approximate within any constant factor.
If there exists an approximation algorithm for Unique Game which approximate within a constant factor
¢ 20, it is possible to decide whether the instance has OPT(U) > 1 — 5, or OPT(U) < 1 — % for every
constant k. To the instance which has OPT(U) > 1 — &, such an algorithm can find a solution whose
value of the objective function is greater than or equal to 2 — 31y > 1 — 5.

By constructing a reduction from Unique Game, hardness o?appr(»dmation for various problems can

be shown similarly.

3 Methods

3.1 Used Algorithm

There are many algorithms based on SDP-relaxation [4, 10, 16]. We used Khot’s one [10]. This is a
natural algorithm and analogous to the best algorithm for MAX-CUT. :

3.1.1 SDP-relaxation

We consider the following 0-1 integer programming formulation. For every vertex v of the instance, we
have k boolean variables v, ..., vk, with the intended meaning that if a label of v is ¢ then v; = 1 and
v; = 0 for j # i. =, () means a label of w which satisfy e with a label ¢ of v. Each constraint

To(vaw) CONtributes Zie[k] Wee(;)¥i to the objective function. Therefore, the 0-1 integer programming is

as follows.
max Z Z w,,g(o ‘Y
e(v,w)EEi€[k]

Subject to
v;i-v; =0 (VUEV,VZ,]IG[,C],‘&#J)
E =1 (V'U € V)
i€lk)

v €{0,1} (WweV,Vielk])

In the vector program relaxation, each variable v; is replaced by a vector v; whose size is k[V/|.
Next, we add some constraints to make the role of vector variables closer to 0-1 variables. In this



part, the methods are various. But it is not clear whether they are equivalent or not.

max z Z Wey(4) * Vi
e(v,w)eE ic(k]

Subject to
v;-v,:O (VUG‘,,Vi,je[klai#j)
MlwlF=1 (weV)
1€{k]
viow; 20 (Y,we V,Vi,j € [k])

z”‘.w‘,,:l (VU,WEV)

.J€[K]

Then, we translate the problem of the vector program into problem of the semidefinite programming.

3.1.2 Semidefinite Programming

The semidefinite programing was solved in polynomial time by the interior method [1, 14, 15]. We
obtain the solution of the vector program from the solution of the semidefinite programming by Cholesky
Decompoasition.

3.1.3 Rounding Procedure

Finally, it is necessary to calculate the solution of Unique Game from the solution of the vector program.
In this part, the methods are various, too. This part set the performance of the algorithm.

o Choose a vector r from the normal distribution, i.e. choose every coordinate of r from the distri-
bution N(0, 1) independently.

k

¢ By replacing r by —r if needed, assume that 7+ 3., v; > 0. Foreveryv € V, Z'-;l v; is same by

the constraints of the semidefinite programming,
o Construct the following assignment A : for every vertex v, let

A(‘U) =1p where 1 Vip = MaX;e(k)T ' V5

3.2 Existence Analysis
Khot proved the following theorem [10].

Theorem 2 If there exists an assignment that satisfies constraints with total weight 1—¢, then the above
algorithm produces an assignment that satisfies constraints with expected weight 1 — O(k?!/%,/log %)

This means that the algorithm can decide whether a Unique Game instance U has OPT(U) > 1 —¢
or OPT(U) < 1 - O(k%'/%,/log ). However, it does not disprove Unique Games Conjecture, because

for every &, 7, there exists sufficiently large k such that 1 — O(k%¢'/%,/log 1) < 7. Even if we can decide
whether U has OPT(U) > 1 — € or OPT(U) < 1— O(k?/%,/log1), we cannot decide whether U has
OPT(U) > 1 — € or OPT(U) < v > 1 — O(k%'/%, flog 1),

3.3 Implementation

We implement the algorithm by C++. Semidefinite programming problems are solved by SDPA [6].
This can solve semidefinite programming problems whose all constraints are equality constraints. Thus,
we have to translate the problem by SDP-relaxation into the problem whose all constraints are equality
constraints. As a result, the size of the matrix variable is (k|[V|+ O((k]V])?)) x (k|V|+ O((k|V])?). Since
the rounding procedure is randomized algorithm, we calculate more than once, in our implementation
10000 times, and calculate the average to obtain expectation.



3.4 Used Data

We generated random instances restricted to some factors. We can restrict to following.

4

“Size of a vertices set”
“Size of a labels set”

“The number of parallel edges” We can specify the number of parallel edges between every pair
of two vertices which have edge.

“Density of edges” In this regard, parallel edges between same two vertices are counted as 1 edge.

“Assured value” When we generate random instances, we can give the specified value to one
assignment. If the specified value is sufficiently large, we can regard the value as the optimal value.

“QOthers” We can restrict to other factors according to need.

Results

4.1 Approximation Ratio and Size of a Labels Set

We changed the size of a labels set and measured approximation ratio. Every graph G of instances is a
complete graph whose size of a vertices set is 4. We experiment 100 times without changing restriction.
We consider the sum of values of implemented program divided by the sum of optimal values as “the
average of approximation ratio.”

Figure 2 shows that the size of a labels set do not make instances hard to approximate. It seems that
the size of a labels set is not only factors of hardness of Unique Game.

4.2 Factors with Little Influence

We found that some factors have little influence on hardness of Unique Game by experiments. In the
experiments, the way to calculate the average of approximation ratios is same as 4.1.

“Parallel edges and density of edges” Table 1 shows that increase of edges does not make in-
stance hard to approximate.

“Assured large value” Table 2 shows that an instance whose optimal solution have a large value
is easy to approximate.

An instance whose optimal solution have a small value could be hard. However, the way to make
it is not clear.

Figure 2: Graph with approximation ratio on the y-axis and size of a labels set on x.



Table 1: Optimal value and approximation ra- Table 2: Optimal value and approximation ra-

tio for instances (|V|,k) = (5,b) with various tio for instances (|V],k) = (5,5) with various
graphs. optimal values.
Optimal valuc 0.55 | 0.70 | 0.92 ]
Parallel cdges 1 2 4 1 2 4 = =
Donsity of odges T T 1 17z 1z 177 Approximation ratio | 1.037 | 1.002 | 1.000 ]
Approximation ratio [1.043 [1.037 | 1.028 | 1.046 | 1.048 | 1.020

4.3 Regular 2-Prover 1-Round Game
4.3.1 Definition

Definition 3 Let “r-regular 2-Prover 1-Round Game” denote a 2-Prover 1-Ronund Game (Definition 1)
such that every relation mre(y,) have rk pairs and there are exactly r labels of v which satisfy e for every
label of w. Naturally, there are exactly r labels of w which satisfy e for every label of v. In other words,
every bipartite graph describing the relation is r-regular bipartite graph.

Unique Game is also “l-regular 2-Prover 1-Round Game.” In addition, every r-regular 2-Prover 1-
Round Game can be translated into Unique Game by decomposing every edge to r parallel edges. In this
regard, the value of every solution of original regular 2-Prover 1-Round Game is 7 times as much as such
Unique Game's.

4.3.2 Result

We generated instances of Unique Game from r-regular 2P1R Game and measured approximation ratios.
The number of parallel edges between every two vertices is r. The way to calculate the average of
approximation ratios is same as 4.1.

Figure 3 shows that in this case, the size of a labels set may make instances hard to approximate
endlessly. Furthermore, it also shows that the number of edges decrease more, the instance become
harder.

Figure 4 shows that there may be a “borderline”. If r is greater than or equals to 3, the size of a
labels set may make instances hard to approximate endlessly. Otherwise it may not do. We can find
such borderlines in Figure 5 and Figure 6. In fact, these borderlines were determined by optimal values
of original regular 2P1R Game. In the case of Figure 4, if r was greater than or equals to 3, the optimal
value of original regular 2P1R Game was 1 and otherwise less than 1.

The numbar of tabels. The rusmiber of paralsl odges.

Figure 3: Graph with maximal approximation ra- Figure 4: Graph with approximation ratio on the
tio on the y-axis and size of a labels set on x (in- y-axis and r on x. (instances from r-regular 2P1R
stances from various regular 2P1R Game). Game, |V| = 3, complete graph)
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Figure 5: Graph with approximation ratio on the Figure 6: Graph with approximation ratio on the
y-axis and r on x. (instances from r-regular 2PIR y-axis and r on x. (instances from r-regular 2P1R
Game, |V| = 4, complete graph) Game, |V| = 4, sparse graph)

The results show that the large optimal value of original regular 2P1R Game make instances of Unique
Game hard to approximate. We could make such instances hard endlessly by increasing the number of
labels. It means that we can realize Unique Games Conjecture.

However, r must be sufficiently large to make the optimal value large and large  makes the value of
Unique Game small. We can not conclude that the results are evidence for Unique Games Conjecture.
In addition, large & makes the value of Unique Game small and approximation ratio may be very small
(Figure 5, r = 3). If it arises at every r and |V, it does not suggest that Unique Games Conjecture is
true. ‘

There are too few results to understand the factors which make Unique Game hard. Nevertheless,
there may be some difference between small » and large 7.

5 Conclusions and Future Works

We have described the hardness of general instances of Unique Game. It shows that the size of the labels
set is cansing the hardness when there are parallel edges which come as decomposition of edges of regular
2P1R Game. Large size of a labels set and existence of such parallel edges might make instances hard to
approximate endlessly, whereas in the case of instances which have large value such that parallel edges
can not exist, we do not find the way to make it hard.

However, the results of this study cannot be taken as neither evidence nor contrary evidence for
Unique Games Conjecture, because our sample was very small. The run-time of the program is too long
to experiment with the large instances. The size of a instance’s input is caused by the size of not only
the vertices set but also the labels set. Additionally, the semidefinite programming is difficult to solve
practically in large scale. Even if it can be solved in polynomial time, the order and the coefficient are too
large. Therefore, the available graph of Unique Game is smaller than other graph optimization problems.

Our next step will be to experiment. with improved program to solve semidefinite programming prob-
lems. Almost all well-known algorithms for Unique Game are based on SDP-relaxation. Therefore,
improvement of the algorithm for semidefinite programming is important. By them, we can obtained
results in large scale and analyze the hardness of Unique Game.

Another future research will be on proving Unique Gemes Conjecture by theoretical analysis or in-
vention of new approximation method which disprove Unique Games Conjecture. It might be applied to
the research that existence of parallel edges make Unique Game hard to approximate.
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