FLEEA WHLEES DiReHE
IPSJ SIG Technical Report

2006—AL—107 (3)
2006.77,/3

R/NIARA b RRBERED 257 IVT Y X L
RE @Eh

URERNERE BHITER HIBANME
T 441-8580 BHRBEHTREITREE Y £ 1-1

R AARMRLDERET 57 Gl BT, TOTERMED G OTHAMEE A% RIKEH. 70
&SRO PN SR RO S O%E MY B MEE ARKEBEL VWS, NPEETH 3 ARSI
U, WaX bW —gDRE, TR 2 SEAT VT VX LN RN S SN TWES, £EaX b0
B SEEUP VTV XLNRZA LT, L dZh bl (BERFEMEIZWR) IENBHNTH S, &
TR, BNV VT ROBERNB T LT, &l 2 HER7 AT Y X LD BENBT LERT.

How to trim an MST: A 2-approximation algorithm
for minimum cost tree cover

Toshihiro Fyjito
Department of Information & Computer Sciences, Toyohashi University of Technology
Tempaku, Toychashi 441-8580 Japan

Abstract : The minimum cost tree cover problem is to compute a minimum cost tree T in a given
connected graph G with costs on the edges, such that the vertices of T' form a vertex cover for
G. The problem is supposed to arise in applications of vertex cover and edge dominating set when
connectivity is additionally required in solutions. Whereas a linear-time 2-approximation algorithm
for the unweighted case has been known for quite a while, the best approximation ratio known for the
weighted case is 3. Moreover, the known 3-approximation algorithm for such case is far from practical
in its efficiency.

In this paper we present a fast, purely combinatorial 2-approximation algorithm for the minimum
cost tree cover problem. It constructs a good approximate solution by trimming some leaves within a
minimum spanning tree (MST), and to determine which leaves to trim, it uses both of the primal-dual

schema and the local ratio technique in an interlaced fashion.

1 Introduction

In an undirected graph G = (V, E) a set C of ver-
tices is a vertez cover if every edge in G has at least
one of its end-vertices in C, whereas an edge set D
is an edge dominating set if every edge not in D is
adjacent to some edge in D. A tree T C E in a con-
nected graph G is called a tree cover if it is an edge
dominating set for G. Or equivalently, it is a tree
such that the set of vertices induced by T is a vertex
cover for G. The minimum cost tree cover problem
is to compute a tree cover of minimum total cost in
a given connected graph G = (V, E) with a nonneg-
ative cost {, on each edge e € E. The problem is
clearly NP-hard even in the unweighted case since
it then becomes equivalent to the connected verter
cover problem, which in fact is known to be as hard
(to approximate) as the vertex cover problem [11].
In fact, while it is possible to approximate minimum
vertex cover to within a factor slightly better than

2 (13, 3, 16, 12}, doing so within any factor smaller
than 10v/5 — 21 ~ 1.36067 is NP-hard [6}.

The tree cover problem was introduced by
Arkin, Halldérsson, and Hassin [1], and they were
partially motivated by closely related problems of
locating tree-shaped facilities on a graph such that
all the vertices are dominated by chosen facilities.
They presented a 2-approximation algorithm for the
unweighted version, as well as a 3.55-approximation
algorithm for the case of general costs. In fact a sim-
pler 2-approximation algorithm appeared earlier for
the unweighted case, due to Savage [18}, although
it was designed for vertex cover and not intended
for connected vertex cover. A better approximation
algorithm was later developed for minimum weight
tree cover by Konemann et al. [15] and indepen-
dently by Fujito(8], lowering the approximation ra-
tio down to 3, and it is currently the best bound
for the problem. Thus, whereas vertex cover, edge
dominating set [9, 17], and many problems closely

related to them are known to be approximable to
within a factor of 2, regardless of associated costs, it
is not the case for tree cover. Even worse, the algo-
rithms of [15] and [8] are far from practical in their
efficiency; either one requires to solve optimally an
LP of huge size (see (P) in Sect. 1.1), and to do so,
it inevitably resorts to calling the ellipsoid method
as their subroutine.

In this paper we present a fast, purely combina-
torial 2-approximation algorithm for the minimum
cost tree cover problem. All the previous algorithms
for general costs [1, 15, 8] are in the similar style of
computing a vertex-cover C first, and then connect-
ing all the vertices in C by a Steiner tree. Our algo-
rithm in contrast is designed based on a hunch that
a good approximate solution can be always found
in the vicinity of a minimum spanning tree (MST).!

1.1. Bidirected Formulation

An instance of the minimum cost tree cover prob-
lem consists of an undirected graph G = (V,E)
and nonnegative costs I, for all edges e € E. Let
G = (V, E) denote the directed graph obtained by
replacing every edge e = {u,v} of G by two anti-
parallel arcs, (u,v) and (v, u), each having the same

cost c({u, v}) as the original edge e. Pick one vertex.

in V as the root, and suppose T' C E is a branch-
ing (or a directed tree) rooted at r. It is assumed
throughout that the arcs in a branching are always
directed away from the root to a leaf. (Note: we
will often use T and T interchangeably, to denote a
branching and an undirected tree, respectively, with
aroot in common). In the bidirected formulation of
the tree cover problem, one sceks for a minimum
cost branching T rooted at r in G such that 7" is a
tree cover rooted at r in G, We call either of such a
b_!‘anching or an undirected tree an r-tree cover for
G (or G). ‘

A set S CV —{r} is called dependent if S in-
duces at least one edge in G, and let D denote the
family of such dependent sets. Let 6~(S) denote
the set of arcs with heads in S and tails out of S
(when needed, we use dy() to specify that only the
arcs of graph H are considered). We call the arc set
5-(S) in G an r-edge cut if S C V —{r} is a depen-
dent set. By using a max-flow/min-cut argument,
onc can see that the bidirected formulation of the
minimum cost tree cover problem can be modeled
by the integer program:

min{{Tz | z € {0,1}2,2(67(5)) > 1,VS € D},

where z(F-") = Zaeﬁ T, for F C E, as an r-tree
cover must pick at least one arc from every r-edge

cut. Replacing the integrality constraints by & > 0,
we have the LP relaxation of form:

min Z laza

ack
(P) subjectto: (0~ (S))>1 VSeD
r, 20 Vac E

Unlike the algorithms of [8, 15], our algorithm
also makes good use of the LP dual of (P):

max Y s

- SeD
(D) subject to: ys<l, VecE
S€D:acs~(S)
ys =20 VSeD

At this point one may notice that the bidirected
minimum cost tree cover problem has some simi-
larity with another well-known combinatorial op-
timization problem, no matter how superficial it
might be. In a directed graph D = (V, A) with
r € V an r-arborescence A’ C A is a spanning tree
of the underlying undirected graph of D such that
each vertex of D other than r is entered by ex-
actly one arc of A’ (and no arc enters r). An arc
set C C A is called an r-cut if C = §~(U) for some
nonempty U C V—{r}. The shortest r-arborescence
problem is to, given D,r, and nonnegative costs I,
for all the arcs a € A, compute an r-arborescence
of minimum cost.

Suppose now that the set of constraints in (P)
concerning all the r-edge cuts is enlarged such
that it consists of z(6~(S)) > 1 for all nonempty
S C V — {r); that is, replace D by D' = {S C
V — {r}| S # B}, and denote it (P’). It was shown
by Edmonds that the shortest r-arborescence prob-
lem can be formulated ezactly by (P') [7]. Likewise,
replace D by D' in (D), and call it (D). Then, (D’),
which is the LP dual of (P), formulates the problem
of maximum (fractional) r-cut packing, and it was
shown by Fulkerson that (D’) has integer optimum
solutions if ! is integral [10] (thus, there exist an
r-arborescence and an integral r-cut packing of the
same cost). Recall now that original (P) and (D)
are actually based on graphs in bidirected forms of
undirected graphs, and not on arbitrary digraphs,
and if graphs in (P’) arc also restricted as such, the
problem formulated by (P’) reduces to the one on
undirected graphs, namely, the minimum spanning
tree problem. It is this observation that has moti-
vated us to investigate the possibility of whether an
MST, as an integer optimal solutions in (P’), could
give us a lead when they are cast in (P) (or an r-cut
packing when cast in (D)).

Tinterestingly, it was already tried by Arkin et al. [1] to use (a modification of) the Prim's or Kruskal’s algorithm for
MST problem, and either of them was found not to perform well.

1.2 Primal-Dual Schema vs. Local

Ratio Technique

Among various methods for design and analysis of
approximation algorithms, the primal-dual schema
and the local ratio technigue have been papular and
applied to a wide range of problems. While it is
often passible to interpret algorithms in one frame-
work within the other [3, 5, 2}, and morcover, these
two methods have been shown essentially equiva-
lent [4], yet it could be of great use to have both of
them at our disposal, as they can provide different
lines of approaches to a problem of concern.

Certainly, the primal-dual method could be
helpful in approximating the tree cover prob-
lem. Consider, for instance, the Savage's 2-
approximation algorithm for unweighted tree cover,
which simply returns the tree Ti. remaining after
all the leaves are trimmed from a depth-first-search
(DFS) spanning tree T [18]. The directed version
Tic of Ty, rooted at r is clearly feasible to (P). To es-
timate its cost |7c|, let M be a matching on T such
that all the internal nodes of T' but r are matched by
M (Note: it is easy to find such a matching). Since
M is a matching, r-edge cuts, 6~ (e) and §~(¢’), are
disjoint for any two different edges e and €' of M.
Hence, y with y, = 1 foreache € M and yp =0
for all the other dependent sets D, is feasible to
(D). To show that |Tic| is a factor of at most 2
away from the optimum, we need only to verify that
|Tic| < 2|M], by simple combinatorial arguments,
for then, |f‘t¢| <23 yp < 2(optimal value of (P)).

It does not look so easy, however, to find a way
to go from here to the case of arbitrary costs, un-
der guidance of the known primal-dual schema only,
and it was not until introducing the local ratio tech-
nique on top of it that we could find one. One basic
scenario in the paradigm of local ratio technique
is to “decompose” a cost function w defined on a
problem instance I into many “slices” of cost func-
tions wo, w1, ..., w1, such that w = 3, w; and
w; 2 0,Vi. Tt is expected that an easily computable
solution such as a minimally feasible solution, is a
good cnough approximation to the optimal one un-
der each of w;’s, and if so, putting all such solutions
together would yield a good approximation in the
original instance.

A brief overview of our algorithm can
be stated now as follows. It first decom-
poses (G,¢) into uniformly costed instances of
(Go,), (G1,1),- .., (Gi—1,c-1), and it does so
according to the costs of edges in an MST 7. The
algorithm next employs the primal-dual schema on
each slice of (G;,¢;)’s, and sets up a dual solution
y* for each of them. Finally, it determines which
leaves of T to be removed using these yi’s. So in

our algorithm, both of the primal-dual schema and
the local ratio technique are used in an interlaced
fashion. As mentioned earlier, quite a number of
approximation algorithms have been developed so
far using either of these two methods, yet to the
best of our knowledge, no algorithm has been de-
signed based on both.

2 Algorithm

Let S C V be the set of “special” nodes, and M be
a matching on a spanning tree T rooted at r. We
say M is dense if

o r and all the special nodes are left unmatched
by M, and

e every internal node (# r) of T' with none of
its children special is matched by M.

(Note: it does not matter for M to be dense whether
any internal node having a special child or any leaf
is matched by M or not). A dense matching M CT
can be efficiently computed by a DFS-like procedure
(see Fig. 1).

Let T denote any MST in G. Suppose
that T consists of edges with & different costs,
Wo, Wi, ..., We—1, (k < n — 1) such that we < w; <
coo K wWp—1- Let Ap = wp and A; = w; — wi_;
for 1 <i< k-1 (30, A; >0,Vi). In the follow-
ing algorithm a sequence of trees, Ty, Ts,...,Tk-1,
and a sequence of graphs, G, = (V1,E,),G, =
(V"h EZ)) [er—l = (Vk—-ls Ek—l)’ will be gener-
ated from Tp = T and the original graph Gy = G,
respectively, in such a way that Tiy; (Gi4y) is the
one obtained from T; (G;, resp.) by contracting all
the edges of cost w; in T;. Such contractions might
introduce parallel edges and/or self-loops in G;’s
(but not in T;’s), and we may keep all the parallel
edges but none of the self-loops.

When tree edges are contracted, the set of ver-
tices connected together by these edges is replaced
by a single new vertex (and it becomes a new root
labeled r if r is among those merged into one), and
such vertices in G;’s are called s-nodes (for special
nodes). Clearly, any s-node « in any G} corresponds
naturally to some set S of vertices, all of them con-
nected together by contracted edges, in original G.
Let D(u) C V denote the set of vertices merged
into an s-node u. Then, dg, (¢) = ég(D(u)) for any
s-node u € V;, and hence, Jéi (u) coincides with the
r-edge cut Jci(D(u)) (for dependent D(u)) if u # r.

Given G = (V, E) and r € V, the algorithm TC
computes a tree cover rooted at r (see Fig,. 2). Start-
ing with Gp = G and Ty = any MST T in G, it
computes a sequence of graphs, G1,...,Gx_1, and

Initialize M = @, and mark root r and all the special nodes “matched”.
Call DFS-MATCH(r).

DFS-MATCH(u)

If u is a leaf then return

If % is unmatched and has an unmatched child v then
Pick e = {u,v} and add it to M by setting M « M U {e}.
Mark both # and v “matched”.

For each child v of u do
Call DFS-MATCH(v).

Figure 1: A DFS-like procedure for computing a dense matching M on tree T

. Set Go + G, T + any MST in G, and Tg + T. /* initialization */
.Fori=0tok—1do /* M;’s and S;'s are constructed in this phase */

2-1. Let S; be the set of s-nodes in G;. /* set yi, = A;,¥D € D(S;) */
2-2. Compute a dense matching M; on T;. /* set yi = A;,Ve € M; */
2-3. Let Tiy1(Giy1) be the tree (graph) obtained by contracting all the edges of cost w; within

. For each lcaf edge e of T do
31 Setle=le~ Typenr, Dic [* =l = Toep, v */
. While there exists an edge f between two leaves of T, v and v, with min{l,(u), ()} > 0 do

4-1. Set yr = min{l'e(u),l-,(o)}.
4-2. Subtract y; from each of I,y and ly).

. Let Tt « (T with any of its leaf edges e removed if I, > 0), and output T..

Figure 2: Algorithm TC for computing a tree cover T in G

a sequence of trees, T},...,T_), foreach 0 < i <
k—2, by contracting all the edges of cost w; on 7 (in
Step 2). At the same time a set S; C V; of s-nodes
and a dense matching M; C T; are constructed for
each0 < i < k—1. Call an edge of a tree T leaf edge
if it is incident to a leaf u of T, and denote it e()
(or call an arc of T leaf arc, and denote it é(u)).
In Step 3 the “residual” cost I, on each leaf edge e
of T is set to initial cost I, less 3°, cps. Ai. Using
these residual costs, duals on those edges connect-
ing leaves of T are maximally increased in Step 4;
for any f between leaves v and v, y; is set to a
maximal value such that y; does not exceed either
of Iu) and I,(,), yy is next subtracted from each of
le(u) and l(,), and repeated by going to any other
edge connecting leaves of T', until no longer possible
to raise duals on such edges. So after this step, no
residual cost remains positive on at least one of leaf
edges e(u) and e(v) for any pair of leaves u and v
of T connected by an edge. The algorithm outputs
an r-tree cover Tic by trimming any leaf edge of T
with a positive residual cost still remaining on it.

It is rather easy to see that Ti, thus computed is
indeed an r-tree cover since 1) the internal structure
of T (i.e., the subtree of T obtained by removing all
the leaves from T') is completely maintained in Ty,
and 2) for any edge connecting two leaves of T, at
least one of them is kept in T} as well.

Now the whole algorithm is to pick any edge
e = {u,v} in given G, compute both of u- and v-tree
covers by calling TC twice, and choose the lighter
of them as a tree cover for G.

3 Dual Solution and its Feasi-
bility

In this section we show how a dual feasible solu-
tion y is computed smplicitly within the algorithm,
along with an r-tree cover T, and that it is feasi-
ble to (D). Let us begin with an easy but very basic
observation:

Lemma 1. Foranyec E, e ¢ E; ifl, < w;.

Proof. For the sake of contradiction, suppose there
exists e € E; with /, < w;. Since T} is the tree re-
sulting from contracting all the edges of cost < w;
within T', e cannot occur within T;.

So, e € E; — T;. Since we always shrink edges of
spanning T, every T; is a spanning tree in G;. If e
not in T; is lighter than any edge of T}, a spanning
tree T, strictly lighter than T; would arise in G;, by
adding e to T; and removing some edge from T, say
e’ (recall that e cannot be a self-loop). But then,
(T — {e}) U {e'}, which is strictly lighter than T,

would be a spanning tree in G, and this contradicts
the fact that T is an MST in G. O

During the first phase (i.e., within the for-loop
of Step 2) of algorithm TC, a dense matching M;
and a set S; of s-nodes are computed for each i. Re-
call that D{u) C V denotes the set of those vertices
merged into an s-node u by edge contraction, and
let Dy = {D(w) | u € S;}. A dual solution y is set
up by letting each of y. (e € M;) and yp (D € D;)
be given a fixed nonnegative value uniformly for
each i as follows; i will then be determined by the
component-wise accumulation of them:

1. For each ¢

i _) A
Ye = {0

2 ieem; Qi for each edge

ifee M;
otherwise

and y, =Ziy: =
e€eT;

2. For each ¢

i _) A
yo—o

and yp = ¥, 9h = 3 pep(s,) Qi for any de-
pendent set D C V — {r}.

ifDe€ Dy
otherwise

(Note: Quite possibly, an edge e € M; could hap-
pen to be identical to D(u) € Dy for some s-node
u € Sy if i # 4'. If s0, ye and yp(y) actually cor-
respond to the same component of y. For a clearer
presentation, however, they will be distinguished
from each other in the sequel.)

Any edge in any M; is certainly an edge of an
MST T, and any D in any D(S;) is the vertex set of
some subtree of T as all the vertices in D are merged
into an s-node by contracting edges of T. We will
also need to use an r-edge cut of form 6~ (D) such
that D is not a part of T, and its value yp is to be
explicitly determined by the algorithm:

3. yo = as assigned at step 4 in algorithm TC,
for any e joining leaves of T.

From the way the algorithm assigns values to these
ye's (at step 4) and that any leaf edge f is removed
at step 5 if [; > 0, it is clear that, for any leaf
edge f = e(u), Iy = T Ai+ Xy : e €
E connects u with another leaf of T') if f remains
in T¢,.

By setting all the other dual variables to zero,
the r-edge cut packing is completed, and this is the
dual solution y € RP which in what follows will be
paired with the integral primal solution T}, C E,
the directed counterpart of the r-tree cover com-
puted.

Lemma 2. For all € = (u,v) € E, Yz = where I} = I — Y(A: : f €
Y pepecs-(py U S le- a dense matching M;). Therefore,

Proof. Let T be an MST used in algorithm TC. Ye < Z(A; : f € a dense matching M;)+
Case v is an internal node of T'. Notice first] -

that the edges € M; and the vertex sets Z Ai+ly

€ D; = {D(u) | u € S;} are mutually vertex =

disjoint in G for each ¢ since so are the edges J

€ M; and the nodes € S; in G;. Therefore, =l + Z A; = wj.

at most one among the edges € M; and the =j'+1

vertex sets € D; contains v in it and hence, 0

the contribution to Yz from y}'s (f € M;)

and y},’s (D € D;) together is at most A;, for It follows from this lemma that the dual solution
each 0 < i < k — 1. All the other dependent y € RP set up as above is feasible to (D).

sets with positive duals are such edges that
are incident to leaves only, and they do not
show up within 3 pep.zes-(p) ¥0-

By Lemma 1, if w; < l. < wj41, e does not | approximation algorithms based on the primal-
appear in G; for i = j +1,...,k — 1. There- gya} schema, the approximation ratios are obtained

4 Approximation Ratio

fore, by relating the value of a computed integral (pri-
mal) solution with that of a simultaneously com-

E A; + Z A, puted dual solution, and these values are usually
"GCEMi veDeD related by means of complementary slackness con-

ditions, in somehow relaxed forms. In case of (P)

= Z[(A; v€e€ M)+ (A;:v€DED) and (D), these conditions can be stated as follows,

i=0 where o and 8 (with each > 1) denote relaxation
Ap+Ar+--+4; factors of the respective conditions:

= w + (wy —wo) + -+ + (wj — wj—1) = W pcsC (Primal Complementary Slackness Condi-
tions): For each € € E, z; > 0 implies that

Case v is a leaf of T. Let f denote e(v), the leaf /o< o <.
‘edge of T incident to v. Suppose w; < I, < /& < Lpepes-(oy ¥v < e

wjs1 and Iy = wj. Because T is an MST DCSC (Dual Complementary Slackness Condi-

in G it must be the case that iy <1, and tions): For each D € D, yp > 0 implies that
thus j' < j. Since ly = Z‘* Al >w; = 1<2(57(D)) < 8.
T odi=1! ;+Z,_J e A It can be shown that, if an algorithm produces

Since v is a leaf of T, among the duals as- T and y satisfying the conditions above, its approx-
signed on the edges of dense matchings, only imation ratio is at most af.
those placed on f can contribute to Yz. In case of algorithm TC, however, the primal
Certainly. v d b de bef solution Tt and the dual solution y are not related
e_r a.m)y, vt 0es ?0 te;m:]? in .'f-mlj ehe 9 in such a simple manner (even in the unweighted
£ gi:g;pfzr: (:)"n im‘—: ej i 11" a‘:‘ d+ t};:e:fr:eis case of I = I), and the way they satisfy PCSC and
o D b t :
Therefore, if € € §~ (D(w)) for some s-node w, CSC can be scen to be as follows

w can occur only in Gy’sfori=j' +1,...,7, o for each € € E with zz > 0 (i.e., € € Tic),
oo) !

and the total c ontribution jOf Yp(w)'s for s — PCSC may not hold for any « if € is not

nodes w to Yz is at most }°]_j. ., A a leaf arc of T

What remains to be accounted for are the du- — PCSC is satisfied at @ = 1 if € is a leaf

als on those edges joining v with other leaves arc of T, and

of T. Whereas actual values placed on those
edges are determined within the algorithm, it o for each D € D with yp >0,

can be observed, from the way it works, that —~ DCSC is satisfied at 8 = 1if D is an edge

. - . in a dense matching M; or D = D(u) for
Z_(yy 9 € E joins v with another leaf of T) some s-node u (Note: in either case D
<l corresponds to a subtree of T'),

— DCSC is satisfied at 8 = 2 if D is an
edge connecting two leaves of T

We will use more direct arguments in what follows
to show that an r-tree cover Tic computed by the al-
gorithm is of cost no more than twice the cost of the
dual feasible solution y computed simultaneously.
The first idea is to “decompose” T into the uni-
formly weighted trees, Ty, T1, . . ., Tx—1, where every
edge of T; is of cost A;, and then to pay for at least
helf the costs of all the internal (i.e., non-leaf) arcs
of T; (and possibly more) by the duals associated
with the edges in M; and the nodes in §;, for each
i. The dual value placed on each e € M; and each
u € S; is Ay, and so we may use it to pay for half
the costs of two arcs in T;. Suppose we use 7 to
pay for the costs of € itself and the arc preceding
€in T}, A;/2 to each, for each e € M;. Likewise,
yb(“) is used to pay for the costs of the arc of Zﬁ

entering to an s-node u and its predecessor in f‘,-,
again A;/2 to each.

Lemma 3. Every non-leaf arc of T gets at least
half paid by the duals on M; and S;.

Proof. Let &= (u,v) be a non-leaf arc of T}. If v is
an s-node, & gets half paid by yp(,). Since v is not
a leaf, it has at least one child, and if any of them
is an s-node, say w, then, as € is a predecessor of
(v,w), € gets half paid by yp(w)- So, assume that
neither of v nor any of its children is an s-node.
Then, a matching M; on T; must match v if it is
dense. If so, e € M;, or otherwise, {v,w} € M; for
some child w of v, and in either case, & gets half
paid by either e or {v,w}. a

Let us now say that an arc &in T is half paid if
at least half of its cost, [,/2, is paid in total to e by
the duals on M;'s and D(S;)’s.

Lemma 4. Every non-leaf arc of T gets half paid.

Proof. By Lemma 3, every non-leaf arc of T gets
paid for at least A;/2 everytime it occurs in T..
Suppose l, = w;. Then, e appears in Gp,Gy,...,
up to G; (but no further). The total amount paid
to €'is hence at least Ag/2+ A1/2+ -+ A;/2=
(Ao+ A1+ +4A5)/2=w;/2=1./2. O

To account next for the cost of any leal arc
€(u) of T remaining in Tgc, let us recall that
I. = le — Yiccp, Ai and that &(u) remains in
T only if the dual values on the edges joining u
with other leaves total to I.; that is, X{ys : f €
E joins u with another leaf of T) = I,. Thus, if we
spend y;, for any f joining two leaves w and z of T,
to pay for the costs of the leaf arcs of T, A;/2 each
to €(w) and &(z), a leaf arc & avoids being got rid of

only if it gets half paid. To be precise, one half of
Yicecn, At and one half of I, get pmd to &, total-

ing to (ti re€M; A)/2+(l€ Z. teE My)/2 - le/Z
Therefore,

Lemma 5. Every leaf edge of T remaining in T,
also gets helf paid.

It follows immediately from Lemmas 4 and 5
that algorithm TC computes an r-tree cover ﬁc -
T and a dual feasible y € R? such that the cost
l(ff;(.) of Ti. is no larger than twice the value
Y pep Up of y. Therefore,

Theorem 6. The algorithm TC approzimates the
minimum cost r-tree cover to within a factor of 2;
consequently, the approzimation ratio of the whole
algorithm for approzimating the minimum cost tree
cover is bounded by 2.

The integrality gap of (P) is known to be no
smaller than 2 [15].

Corollary 7. The integrality gap of (P) is 2 when
the graph is in the bidirected form of an undirected

. graph.

1t is also clear, from the way the dual solution
y € RP is determined as above, that y can be en-
sured to be integral if I is integral:

Corollary 8. Whenl is integral and the graph is in
the bidirected form of an undirected graph in (D),
there ezists an integral r-edge cut packing the cost
of which is at least 1/2 of the cost of an optimal
fractional r-edge cut packing. Moreover, such an
integral r-edge cut packing is efficiently computable.

5 Final Remarks

The paper has shown that the minimum cost tree
cover can be efficiently approximated to within a
factor of 2 of the optimum. As the minimum tree
cover problem is as hard to approximate as the min-
imum vertex cover problem [11], a further improve-
ment on this factor would imply that the minimum
vertex cover problem is approximable within a fac-
tor better than 2, which has been conjectured by
some to be highly unlikely [14].

A natural and equally interesting direction of
further research would be in the directed version
of the tree cover (DTC) problem; given here is a
directed graph G, and it is required to compute a
directed tree (a branching) T of minimum cost in
G such that either head or tail (or both of them)
of every arc in G is touched by T. As mentioned
in [15], the problem has remained wide open. If G
is unweighted, however, it is not hard to find a 2-
approximation for it, by extending the approach of

the current paper a bit further. Letting V' be the
set of vertices reachable from the root vertex r, com-
pute an arborescence T spanning V' entirely (and
V' must be a vertex cover for G if it is a feasible
instance of DTC). Compute next a dense matching
M on T (with no s-nodes), and while there exists
an arc connecting two unmatched leaves, add it to
M. Finally trim any leaf from 7' if » is unmatched
and there is no arc entering to u from V - V',

Such an approach appears to fall short, how-
ever, once arbitrary arc costs are allowed on G. In
fact one can come up with an instance in which any
feasible solution contained in any spanning arbores-
cence incurs such a cost larger than the optimum by
an unbounded factor. Thus, the approximability of
minimum cost DTC problem, as well as a related
issue of the integrality gap of (P) on arbitrary di-
rected graphs, still remain wide open.

References

(1] EM. Arkin, M.M. Halldérsson and R. Has-
sin. Approximating the tree and tour covers
of a graph. Inform. Process. Lett., 47:275-282,
1993.

(2] R. Bar-Yehuda. One for the price of two: A
unified approach for approximating covering
problems. Algorithmica, 27(2):131-144, 2000.

[3] R. Bar-Yehuda and S. Even. A local-ratio the-
orem for approximating the weighted vertex
cover problem. Annais of Discrete Mathemat-
ics, 25:27-46, 1985.

(4] R. Bar-Yehuda and D. Rawitz. On the equiva-
lence between the primal-dual schema and the
local ratio technique. STAM J. Discrete Math.,
19(3):762-797, 2005.

(5] F.A. Chudak, M.X. Goemans, D.S. Hochbaum,
and D.P. Williamson. A primal-dual interpre-
tation of recent 2-approximation algorithms for
the feedback vertex set problem in undirected
graphs. Oper. Res. Lett., 22:111-118, 1998.

[6] I. Dinur and S. Safra. The importance of being
biased. In Proc. 34th ACM Symp. Theory of
Computing, pages 33-42, 2002.

{7] J. Edmonds. Optimum branchings. J. Res.
Nat. Bur. Standards B, 71:233-240, 1967.

[8] T. Fujito. On approximability of the indepen-
dent/connected edge dominating set problems.
Inform. Process. Lett., 79(6):261-266, 2001.

[9] T. Fujito and H. Nagamochi. A 2-
approximation algorithm for the minimum
weight edge dominating set problem. Discrete
Appl. Math., 118:199-207, 2002.

D.R. Fulkerson. Packing rooted directed cuts
in a weighted directed graph. Math. Program-
ming, 6:1-13, 1974.

[10]

[11] M.R. Garey and D.S. Johnson. The rectilinear
Steiner-tree problem is NP-complete. STAM J.

Appl. Math., 32(4):826-834, 1977.

[12] E. Halperin. Improved approximation algo-
rithms for the vertex cover problem in graphs
and hypergraphs. SIAM J. Comput., 31(5):

1608-1623, 2002.

[13] G. Karakostas. A better approximation ratio
for the vertex cover problem. In Proc. $2nd
ICALP, pages 1043-1050, 2005.

(14] S. Khot and O. Regev. Vertex cover might be
hard to approximate to within 2 — . In Proc.
18th IEEE Conf. Computational Complerity,
pages 379-386, 2003.

[15] J. Kénemann, G. Konjevod, O. Parekh and
A. Sinha. Improved approximations for tour
and tree covers. Algorithmica, 38(3): 441-449,
2003.

[16] B. Monien and E. Speckenmeyer. Ramsey
numbers and an approximation algorithm for
the vertex cover problem. Acta Informat.,
22:115-123, 1985.

[17) O. Parekh. Edge dominating and hypomatch-
able sets. In Proc. 13th ACM-SIAM Symp.
Discrete Algorithms, pages 287-291, 2002.

[18] C. Savage. Depth-first search and the ver-
tex cover problem. Inform. Process. Lett.,
14(5):233-235, 1982.

