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Abstract Given an edge-weighted graph G = (V,E), a subset SCV, an integer £k 2 1 and a
real b 2 0, the minimum subpartition problem asks to find a family of & nonempty disjoint subsets
X1, X2,... , X CS with d(X;) £ b, 1 £1 £ k 50 as to minimize 3 1<ick 4(X:), where d(X) denotes the
total weight of edges between X and V — X. In this paper, we show that the minimum subpartition
problem can be solved in O(mn + n%logn) time. The result is then applied to the minimum k-way cut
problem and the graph strength problem to improve the previously best time bounds of 2-approximation
algorithms for these problems to O(mn + n?logn). '

We may denote d(X,V — X) by d(X).
A k-subpartition of a subset X of V is a set of k dis-

1. Imntroduction

Let G = (V, E) be a simple undirected graph witha  joint nonempty subsets of X, and is called a k-partition

vertex set V' and an edge set E such that each edge e
is weighted by a nonnegative real w(e). The vertex set
and the edge set of G may be denoted by V(G) and
E(G), respectively. Let n = |V(G)| and m = |E(G)].
For a subset FCE(G), we denote ) _. . w(e) by w(F).
For nonempty sets X,YCV, E(X,Y) denotes the set
of edges in G such that one end vertex is in X — Y and
the other is in Y~ X, and d(X, Y') denotes w(E(X, Y)).

of X if the union of all its subsets is X. Forarealb = 0,
a k-subpartition (resp., k-partition) of a subset X is
called a (k, b)-subpartition (resp., (k,b)-partition) S if
d(X) £ b for all X € S. We consider the following
problem.

Minimum Subpartition Problem

Input: An instance / = (G,S,k,b) which consists
of an edge-weighted graph G, a nonempty subset
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SCV(G), an integer k € [1,|S]}, and a real b2 0.
Feasible solution: A (k, b)-subpartition S of S.
Goal: Minimize cost(S) := 3 ;. s d(X).

In this paper, we prove the next results.
{Theorem 1] Given an edge-weighted graph G, a
subset SCV and a real ¥ 2 0, a minimum (k,b)-
subpartition of S (if any) for each k € [1,|S]] can be
obtained in O(mn + n?logn) time. 9]

2. Preliminaries

A set consisting of a single vertex is called trivial.
Two subsets X, Y CV intersect each other if XNY 30,
X-Y +0andY — X 4 0 hold. A family Yg2" of
subsets of V is called laminar if no two subsets in Y
intersect each other. Let ygzs be a laminar family
of subsets of a subset SCV'. We can represent J with
S € Y by a rooted tree T as [ollows, where we use
term “nodes” for the vertices in tree representations.

(i) The node set V(T) of 7 consists of nodes
each of which corresponds to a subset X € ), ie.,
V(T) = ), where the root-corresponds to S.

(ii) For two nodes X,Y € V(7T), X is a child of
Y in T if and only if X C Y holds and Y contains no
set X' with X c X' CY.

From this, we observe that |Y| £ 2{S] — 1 holds.

Let xgzs be a laminar family of subsets of a subset
SCV, where |X| £ 2|S| ~ 1 holds. We easily see that
2|S| = 1 — |X| new subsets of S can be added to X
so that the resulting family X U X’ remains laminar,
where X' denotes the set of added subsets. We first
add all trivial sets {v} ¢ X, and then consider the
tree representation 7’ of the resulting laminar family
XU{{v} € X}. We transform 7" into a binary rooted
tree by inserting 2|S|—1-|X¥U{{v} € A}| new nodes,
where each new node corresponds to a new subsel in
X'. A family X U X’ can be represented by a rooted
binary tree 7, as observed in the above. We call such

a binary tree T consistent with S and X.
a) Extreme vertex sets

Extreme vertex sets are first introduced by Watan-
abe and Nakamura[11] to solve the edge-connectivity
augmentation problem. A nonempty proper subset X

of V is called an extreme vertez set of G if

d(Y) > d(X) for all nonempty proper subsets ¥ of X.

We denote by X(G) the family of all extreme vertex

sets of G. Any trivial set {v}, v € V is an extreme ver-

tex set. It is known that the family X(G) is laminar
(see [7) for example).
[Lemma 2]
(V. E), the family X'(G) of extreme vertex sets and
{d(X) | X € X(G)} can be found in O(mn +n?logn)
time. g
For a subset SCV and a real b 2 0, we denote by
Xs5(G) (resp., Xs,5(G)) the family of all extreme vertex
sets X € X(G) with XCS (resp., XCS and d(X) £ b).
[Lemma 3] Let I = (G,S,k,b) be an instance of

the minimum subpartition problem. Then

[7] Given an edge-weighted graph G =

(i) There is a (k, b)-subpartition of S if and only
if Xs,(G) contains a family of k disjoint subsets.

(ii) There is a minimum (k, b)-subpartition of S
which consists of extreme vertex subsets in Xs3(G).

Proof. (i) The sufficiency is trivial. We show the
necessity, assuming that [ has a minimum (k,b)-
subpartition S = {X;i,..., Xk} of S. For each subset
Xi, let X be an inclusionwise minimal subset of X;
with d(X;) £ b. By the minimality, d(Y) > b = d(X7)
holds for all nonempty proper subsets ¥ C X, imply-
ing that X; is an extreme vertex sct such that X;CS8
and d(X;) £ b. Therefore, {X7,...,X}} is a family
of k disjoint extreme vertex sets in Xs(G), proving
the necessity.

(i) Let S = {X1,...,X%} be a minimum (k,b)-
subpartition of S, where we assume without loss of
generality that § minimizes ), .., |Xi| among all
minimum (k, b)-subpartitions of S. Since d(Xi) £ b,
it suffices to show that each X; is an extreme vertex
set. If X; contains a subset Y with d(Y) < d(X;),
then (S — {Xi}) U {Y} remains a minimum (k,b)-
subpartition of S, which however contradicis the min-
imumity of 3, ., |1Xi|. Therefore, S consists of sub-
sets in Xs4(G). ¢

3. Algorithm

To prove Theorem 1, we first compute the family
X(G) of all extreme vertex sets in G. This can be
done in O(mn + n?logn) time by Lemma 2. We then
construct a binary tree 7 = (V = Xs U X, ) consis-
tent with S and Xs(G). (Actually the algorithm in [7]
can be easily modified so as to output such a binary
tree in the same time complexity.)

Let opt(X,k) denote the minimum cost of a

{(k, b)-subpartition of a subset X, where we define



opt(X,0) = O and opt(X,k) = +oo for all k such
that G has no (k,b)-subpartition of X. We compute
opt(X, k), k € [1,|X]), X € V by dynamic program-
ming as follows.

The set of leaves in T consists of trivial sets {u},
u € S. For each leaf X = {u} € Xs(G), we have

d({u})

+00

if d({u}) £ b,

if d({u}) > b. o

opt(X,1) = {

Consider a nonleaf X € V, and let Y7 and Y2 be the
two children of X in 7, where it hold

Xx5(G) = {X} = Xn, 4(G) U Xy, 5(G)
and Ay, »(G) N Xy, u(G) = 0. (2)

By Lemma 3, there is a minimum (k, b)-subpartition
of X (if any) which consists of subsets in Xx (G).
Hence by (2) we see that, for each k € [2,|X]],
there is an integer i € [0,k] such that opt(X,k) =
opt(Y1,1) + opt(Yz, k — i). Thus it holds

opt(X, k) = ogygh{opt(ym) + opt(Ya, k — i)}

&)
Fork=1,
d(X) if X € Xs(G),
opt(X,1) = { min{opt(Y1,1), opt(¥2,1)}
if X ¢ Xs(G)
1)

(recall that d(Y') > d(X) holds for all proper subset Y
of X € X(G)).

Algorithm SUBPARTITION(S, b)
Input: A binary tree 7 = (V = X5 U X', £) consistent
with S and Xs(G), and a real b 2 0.

Output: {opt(X,k) | 1< %k £|X|} for all nodes X € V.

For each leaf X = {u} € Xs(G),
compute opt(X, 1) according to (1);
while there is unprocessed node in 7 do
Choose a loweset unprocessed node X, and
compute opt(X,1) and
{opt(X,h} | 2 £ h £|X|} according to (4) and (3),
respectively
end /* while */

The time complexity of algorithm SUBPARTITION
is analyzed as follows. Note that {opt(X,k) | 1 £
k £ |X|} can be computed in O(|Y1||Yz|) time if
{opt(Y;, k) | 1 £ k £1Y;|}. 7 = 1,2 is available.

[Lemma 4] Given a binary tree 7 consistent with
S and Xs(G) and a real b 2 0, we can compute
{opt(X,k) | 1 £ k £ |X|} for all nodes X € V in
O(ISI?) time.

Proof. Let i(r) denote the time required to com-
pute {opt(X,%) | 1 £ k £ |X|} for a subset X with
|X| = n. Choose a constant ¢ such that t(1) £ c and
{opt(X,k) | 1 £ k £ |X|} can be computed in at
most 2¢|Y:||Yz| time from {opt(¥;, k) | 1 £ k £ |Y;]},
j =1,2. We show that ¢{(n) < en?. For n = 1, this is
trival. Assuming that ¢(7) < cA? holds #i € {1,n — 1],
we prove t(r) £ cn? holds. Consider a nonleaf X € V
with |X| = n, and its two children Y; and Y2 of X in
7. Let ny = |Y1]| and n2 = |Ya2]. Then by induction

hypothesis, we have

t(n) € t(n1) + t(na) + 2enanz € en + end + 2oning = en’.

This proves the lemma. ¢

For each k € [1,|S]], if opt(S, k) = +oo, then S has
no (k, b)-subpartition. Otherwise, a minimum (k, b)-
subpartition of S can be obtained by retrieving the
integers i that attain the minimum in the recursive
formula, which takes O(|S|) time. This establishes

Theorem 1.
4. Applications

4.1 Minimum kWay Cut

For an edge-weighted graph G = (V, E), a subset
F of edges is called a k-way cut if removal of F' from
G results in at least A connected components. We
denote by (G, k) the cost of a minimum k-way cut
of G. We easily see that there is a minimum k-way
cut F which is given by Uigicjsr E(V;, V;) for some
k-partition {Vi,Va,...,Vik} of V. Thus, the mini-
mum k-way cut problem asks to find a k-partition
Z = {W,V,,...,Vi} of V that minimizes cost(Z) =
2‘,‘ ez 4(Vi). Goldschmidt and Hochbaum [2] proved
that the problem is NP-hard if & is an input param-
eter, and presented an O(n*"/2=3%/2H F(n m)) time
algorithm, where F(n,m) denotes a time bound of a
maximum flow algorithm in an edge-weighted graph
with n vertices and m edges. Recently the time bound
is improved to O(n**/(=17/v®1=31y (4] Karger and
Stein [6] proposed a Monte Carlo algorithm with time
bound of O(n?*~Y log®n).

Several 2-approximation algorithms for the min-



imum k-way cut problem have been proposed.
Saran and Vazirani[10} first proposed a 2(1 — 1/k)-
approximation algorithm which successively finds min-
imum cuts until the graph is partitioned into k com-
ponents and runs in O(mn? log(n?/m)) time. Kapoor
[5) gave an O(k{(nm + n®logn)) time 2(1 — 1/k)-
approximation algorithm. Zhao et al.[12] presented
an O(kmn® log(n?/m)) time approximation algorithm
that has the performance ratio 2 — 3/k for an odd k
and 2 - (3k — 4)/(k* — k) for an even k. Naor and
Rabani [8] showed a 2-approximation algorithm based
on an LP relaxation of the minimum k-way cut. Ravi
and Sinha [9] gave a 2-approximation algorithm based
on an algorithm for computing the strength of graphs.
A minimum k-partition S™ of V, where cost(S") =
24(G, k) holds, is a k-subpartition of V. Hence

opt(V, k) £ cost(S") = 2u(G, k).

Let S be a minimum k-subpartition of V, which can
be found in O(mn + n?logn) time by Theorem 1 with
b = +oo. If § is a k-partition of V, then it is op-
timal to the minimum k-way cut problem. Other-
wise, we choose a subset X € S with the maximum
d(X), and replace X with subset V — Uyes_(x)Y
in S. For the resulting k-partition S’ of V, the set
F' = Uy yrest E(Y,Y’) satisfies

w(F') = opt(V, k) ~ d(X) £ (1~ T)opt(V; k)
£ 2(1 - Du(G,h).

Since minimum k-subpartitions for all & € {2, 7] can
be obtained in O(mn + n®logn) time by Theorem 1,
we have the following result.

[Theorem 5] Given an edge-weighted graph G =
(V, E), 2(1— })-approximate solutions to the minimum
k-way cut problem for all k € {2, n] can be obtained in
O(mn + n?logn) time. &

4.2 Graph Strength

Given an edge-weighted graph G, the strength o(G)
of G was introduced by Gusfield [3] and Cunningham
[1] as a measure of network invulnerability, which is
defined as

'a'(G) = min {z(—fklz | Fi is a minimum k-way cut of G'}.

28k

The strength ¢(G) can be found in O(mn?(m +
nlogn)) time|[1].
We can compute 2-approximate solution Fy to the

minimum k-way cut problem for all £ € [2,n] in
O(mn + n?logn) time by Theorem 5. We choose
a solution Fy that minimizes w(F{}/(k — 1) among
F3,F3,... ,F,. There is a minimum k*-way cut Fy.
with w(Fye)/(k* ~1) = o(G). We see that w(F{)/(k—
1) € w(FL)/(k" = 1) € 20(Fe) /(K — 1) = 20(G).
Hence we have the next result.

[Theorem 6] Given an edge-weighted graph G
(V,E), a partition S of V such that o(G) £
cost(S)/(|S| - 1) £ 20(G) can be determined in

0

O(mn + n®logn) time.
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