グラフの最小コスト部分分割について

永持 仁[†] 上土井 陽子^{††}

†京都大学情報学研究科 606-8501 京都市左京区吉田本町 ††広島市立大学情報科学部 731-3194 広島市安佐南区大塚東三丁目4-1

E-mail: †yoko@ce.hiroshima-cu.ac.jp, ††nag@amp.i.kyoto-u.ac.jp

あらまし 枝重み付きグラフ G=(V,E),節点部分集合 $S\subseteq V$,整数 $k\ge 1$,実数 $b\ge 0$ が与えられたとき に最小部分分割問題を $1\le i\le k$ なる各 i において $d(X_i)\le b$ を満たし,かつ, $\sum_{1\le i\le k}d(X_i)$ を最小とする互いに素な空でない k 個の部分集合 $X_1,X_2,\ldots,X_k\subseteq S$ を見つける問題とする.ここで, d(X) は X と V-X の間の枝の重みの総和とする.本稿では最小部分分割問題が $O(mn+n^2\log n)$ で解決できることを示す.また,上記の結果を最小コスト k 分割問題,グラフ強度問題に適用することでそれらの問題に対する 2 倍近似アルゴリズムの時間計算量を $O(mn+n^2\log n)$ に改良できることを示す.

Minimum Cost Subpartitions in Graphs

Hiroshi NAGAMOCHI† and Yoko KAMIDOI†

† Dept. of Applied Mathematics and Physics, Kyoto University Sakyo, Kyoto, 606-8501, Japan †† Faculty of Information Sciences, Hiroshima City University 3-4-1, Ohzuka-Higashi, Asaminami-ku, Hiroshima, 731-3194, Japan E-mail: †yoko@ce.hiroshima-cu.ac.jp, ††nag@amp.i.kyoto-u.ac.jp

Abstract Given an edge-weighted graph G = (V, E), a subset $S \subseteq V$, an integer $k \ge 1$ and a real $b \ge 0$, the minimum subpartition problem asks to find a family of k nonempty disjoint subsets $X_1, X_2, \ldots, X_k \subseteq S$ with $d(X_i) \le b$, $1 \le i \le k$ so as to minimize $\sum_{1 \le i \le k} d(X_i)$, where d(X) denotes the total weight of edges between X and V - X. In this paper, we show that the minimum subpartition problem can be solved in $O(mn + n^2 \log n)$ time. The result is then applied to the minimum k-way cut problem and the graph strength problem to improve the previously best time bounds of 2-approximation algorithms for these problems to $O(mn + n^2 \log n)$.

1. Introduction

Let G=(V,E) be a simple undirected graph with a vertex set V and an edge set E such that each edge e is weighted by a nonnegative real w(e). The vertex set and the edge set of G may be denoted by V(G) and E(G), respectively. Let n=|V(G)| and m=|E(G)|. For a subset $F\subseteq E(G)$, we denote $\sum_{e\in F} w(e)$ by w(F). For nonempty sets $X,Y\subseteq V$, E(X,Y) denotes the set of edges in G such that one end vertex is in X-Y and the other is in Y-X, and d(X,Y) denotes w(E(X,Y)).

We may denote d(X, V - X) by d(X).

A k-subpartition of a subset X of V is a set of k disjoint nonempty subsets of X, and is called a k-partition of X if the union of all its subsets is X. For a real $b \ge 0$, a k-subpartition (resp., k-partition) of a subset X is called a (k,b)-subpartition (resp., (k,b)-partition) S if $d(X) \le b$ for all $X \in S$. We consider the following problem.

Minimum Subpartition Problem

Input: An instance I = (G, S, k, b) which consists of an edge-weighted graph G, a nonempty subset

 $S \subseteq V(G)$, an integer $k \in [1, |S|]$, and a real $b \ge 0$. Feasible solution: A (k, b)-subpartition S of S. Goal: Minimize $cost(S) := \sum_{X \in S} d(X)$.

In this paper, we prove the next results.

[Theorem 1] Given an edge-weighted graph G, a subset $S \subseteq V$ and a real $b \ge 0$, a minimum (k,b)-subpartition of S (if any) for each $k \in [1,|S|]$ can be obtained in $O(mn + n^2 \log n)$ time.

2. Preliminaries

A set consisting of a single vertex is called *trivial*. Two subsets $X, Y \subseteq V$ intersect each other if $X \cap Y \neq \emptyset$, $X - Y \neq \emptyset$ and $Y - X \neq \emptyset$ hold. A family $\mathcal{Y} \subseteq 2^V$ of subsets of V is called *laminar* if no two subsets in \mathcal{Y} intersect each other. Let $\mathcal{Y} \subseteq 2^S$ be a laminar family of subsets of a subset $S \subseteq V$. We can represent \mathcal{Y} with $S \in \mathcal{Y}$ by a rooted tree T as follows, where we use term "nodes" for the vertices in tree representations.

- (i) The node set V(T) of T consists of nodes each of which corresponds to a subset $X \in \mathcal{Y}$, i.e., $V(T) = \mathcal{Y}$, where the root-corresponds to S.
- (ii) For two nodes $X,Y\in V(T), X$ is a child of Y in T if and only if $X\subset Y$ holds and $\mathcal Y$ contains no set X' with $X\subset X'\subset Y$.

From this, we observe that $|\mathcal{Y}| \leq 2|S| - 1$ holds.

Let $\mathcal{X} \subseteq 2^S$ be a laminar family of subsets of a subset $S \subseteq V$, where $|\mathcal{X}| \leq 2|S| - 1$ holds. We easily see that $2|S| - 1 - |\mathcal{X}|$ new subsets of S can be added to \mathcal{X} so that the resulting family $\mathcal{X} \cup \mathcal{X}'$ remains laminar, where \mathcal{X}' denotes the set of added subsets. We first add all trivial sets $\{v\} \notin \mathcal{X}$, and then consider the tree representation T' of the resulting laminar family $\mathcal{X} \cup \{\{v\} \notin \mathcal{X}\}$. We transform T' into a binary rooted tree by inserting $2|S| - 1 - |\mathcal{X} \cup \{\{v\} \notin \mathcal{X}\}|$ new nodes, where each new node corresponds to a new subset in \mathcal{X}' . A family $\mathcal{X} \cup \mathcal{X}'$ can be represented by a rooted binary tree T, as observed in the above. We call such a binary tree T consistent with S and \mathcal{X} .

a) Extreme vertex sets

Extreme vertex sets are first introduced by Watanabe and Nakamura [11] to solve the edge-connectivity augmentation problem. A nonempty proper subset X of V is called an extreme vertex set of G if

d(Y) > d(X) for all nonempty proper subsets Y of X.

We denote by $\mathcal{X}(G)$ the family of all extreme vertex sets of G. Any trivial set $\{v\}, v \in V$ is an extreme ver-

tex set. It is known that the family $\mathcal{X}(G)$ is laminar (see [7] for example).

[Lemma 2] [7] Given an edge-weighted graph G = (V, E), the family $\mathcal{X}(G)$ of extreme vertex sets and $\{d(X) \mid X \in \mathcal{X}(G)\}$ can be found in $O(mn + n^2 \log n)$ time.

For a subset $S \subseteq V$ and a real $b \geq 0$, we denote by $\mathcal{X}_S(G)$ (resp., $\mathcal{X}_{S,b}(G)$) the family of all extreme vertex sets $X \in \mathcal{X}(G)$ with $X \subseteq S$ (resp., $X \subseteq S$ and $d(X) \leq b$). [Lemma 3] Let I = (G, S, k, b) be an instance of the minimum subpartition problem. Then

- (i) There is a (k,b)-subpartition of S if and only if $\mathcal{X}_{S,b}(G)$ contains a family of k disjoint subsets.
- (ii) There is a minimum (k,b)-subpartition of S which consists of extreme vertex subsets in $\mathcal{X}_{S,b}(G)$.

Proof. (i) The sufficiency is trivial. We show the necessity, assuming that I has a minimum (k,b)-subpartition $S = \{X_1, \ldots, X_k\}$ of S. For each subset X_i , let X_i^* be an inclusionwise minimal subset of X_i with $d(X_i^*) \leq b$. By the minimality, $d(Y) > b \geq d(X_i^*)$ holds for all nonempty proper subsets $Y \subset X_i^*$, implying that X_i^* is an extreme vertex set such that $X_i^* \subseteq S$ and $d(X_i^*) \leq b$. Therefore, $\{X_1^*, \ldots, X_k^*\}$ is a family of k disjoint extreme vertex sets in $X_{S,b}(G)$, proving the necessity.

(ii) Let $\mathcal{S}=\{X_1,\ldots,X_k\}$ be a minimum (k,b)-subpartition of S, where we assume without loss of generality that \mathcal{S} minimizes $\sum_{1\leq i\leq k}|X_i|$ among all minimum (k,b)-subpartitions of S. Since $d(X_i)\leq b$, it suffices to show that each X_i is an extreme vertex set. If X_i contains a subset Y with $d(Y)\leq d(X_i)$, then $(\mathcal{S}-\{X_i\})\cup\{Y\}$ remains a minimum (k,b)-subpartition of S, which however contradicts the minimumity of $\sum_{1\leq i\leq k}|X_i|$. Therefore, \mathcal{S} consists of subsets in $\mathcal{X}_{S,b}(G)$. \diamondsuit

3. Algorithm

To prove Theorem 1, we first compute the family $\mathcal{X}(G)$ of all extreme vertex sets in G. This can be done in $O(mn+n^2\log n)$ time by Lemma 2. We then construct a binary tree $\mathcal{T}=(\mathcal{V}=\mathcal{X}_S\cup\mathcal{X}',\mathcal{E})$ consistent with S and $\mathcal{X}_S(G)$. (Actually the algorithm in [7] can be easily modified so as to output such a binary tree in the same time complexity.)

Let opt(X, k) denote the minimum cost of a (k, b)-subpartition of a subset X, where we define

opt(X,0)=0 and $opt(X,k)=+\infty$ for all k such that G has no (k,b)-subpartition of X. We compute $opt(X,k), k \in [1,|X|], X \in \mathcal{V}$ by dynamic programming as follows.

The set of leaves in \mathcal{T} consists of trivial sets $\{u\}$, $u \in S$. For each leaf $X = \{u\} \in \mathcal{X}_S(G)$, we have

$$opt(X,1) = \begin{cases} d(\{u\}) & \text{if } d(\{u\}) \le b, \\ +\infty & \text{if } d(\{u\}) > b. \end{cases}$$
 (1)

Consider a nonleaf $X \in \mathcal{V}$, and let Y_1 and Y_2 be the two children of X in T, where it hold

$$\begin{split} \mathcal{X}_{X,b}(G) - \{X\} &= \mathcal{X}_{Y_1,b}(G) \cup \mathcal{X}_{Y_2,b}(G) \\ \text{and} \quad \mathcal{X}_{Y_1,b}(G) \cap \mathcal{X}_{Y_2,b}(G) &= \emptyset. \end{split} \tag{2}$$

By Lemma 3, there is a minimum (k,b)-subpartition of X (if any) which consists of subsets in $\mathcal{X}_{X,b}(G)$. Hence by (2) we see that, for each $k \in [2,|X|]$, there is an integer $i \in [0,k]$ such that $opt(X,k) = opt(Y_1,i) + opt(Y_2,k-i)$. Thus it holds

$$opt(X,k) = \min_{0 \le i \le h} \{ opt(Y_1,i) + opt(Y_2,k-i) \}.$$
(3)

For k=1,

$$opt(X,1) = \begin{cases} d(X) & \text{if } X \in \mathcal{X}_{S,b}(G), \\ \min\{opt(Y_1,1), & opt(Y_2,1)\} \\ & \text{if } X \notin \mathcal{X}_{S,b}(G) \end{cases}$$
(4)

(recall that d(Y) > d(X) holds for all proper subset Y of $X \in \mathcal{X}(G)$).

Algorithm Subpartition (S, b)

Input: A binary tree $T = (\mathcal{V} = \mathcal{X}_S \cup \mathcal{X}', \mathcal{E})$ consistent with S and $\mathcal{X}_S(G)$, and a real $b \ge 0$.

Output: $\{opt(X, k) \mid 1 \le k \le |X|\}$ for all nodes $X \in \mathcal{V}$. For each leaf $X = \{u\} \in \mathcal{X}_S(G)$,

compute opt(X, 1) according to (1);

while there is unprocessed node in T do

Choose a loweset unprocessed node X, and compute opt(X, 1) and

 $\{opt(X,h) \mid 2 \le h \le |X|\}$ according to (4) and (3), respectively

end /* while */

The time complexity of algorithm Subpartition is analyzed as follows. Note that $\{opt(X,k) \mid 1 \le k \le |X|\}$ can be computed in $O(|Y_1||Y_2|)$ time if $\{opt(Y_j,k) \mid 1 \le k \le |Y_j|\}, j=1,2$ is available.

[Lemma 4] Given a binary tree \mathcal{T} consistent with S and $\mathcal{X}_S(G)$ and a real $b \geq 0$, we can compute $\{opt(X,k) \mid 1 \leq k \leq |X|\}$ for all nodes $X \in \mathcal{V}$ in $O(|S|^2)$ time.

Proof. Let t(n) denote the time required to compute $\{opt(X,k) \mid 1 \leq k \leq |X|\}$ for a subset X with |X| = n. Choose a constant c such that $t(1) \leq c$ and $\{opt(X,k) \mid 1 \leq k \leq |X|\}$ can be computed in at most $2c|Y_1||Y_2|$ time from $\{opt(Y_j,k) \mid 1 \leq k \leq |Y_j|\}$, j=1,2. We show that $t(n) \leq cn^2$. For n=1, this is trival. Assuming that $t(\hat{n}) \leq c\hat{n}^2$ holds $\hat{n} \in [1,n-1]$, we prove $t(n) \leq cn^2$ holds. Consider a nonleaf $X \in \mathcal{V}$ with |X| = n, and its two children Y_1 and Y_2 of X in \mathcal{T} . Let $n_1 = |Y_1|$ and $n_2 = |Y_2|$. Then by induction hypothesis, we have

$$t(n) \le t(n_1) + t(n_2) + 2cn_1n_2 \le cn_1^2 + cn_2^2 + 2cn_1n_2 = cn^2.$$

This proves the lemma. \Diamond

For each $k \in [1, |S|]$, if $opt(S, k) = +\infty$, then S has no (k, b)-subpartition. Otherwise, a minimum (k, b)-subpartition of S can be obtained by retrieving the integers i that attain the minimum in the recursive formula, which takes O(|S|) time. This establishes Theorem 1.

4. Applications

4.1 Minimum k-Way Cut

For an edge-weighted graph G = (V, E), a subset F of edges is called a k-way cut if removal of F from G results in at least k connected components. We denote by $\mu(G, k)$ the cost of a minimum k-way cut of G. We easily see that there is a minimum k-way cut F which is given by $\bigcup_{1 \le i \le j \le k} E(V_i, V_j)$ for some k-partition $\{V_1, V_2, \ldots, V_k\}$ of V. Thus, the minimum k-way cut problem asks to find a k-partition $\mathcal{Z} = \{V_1, V_2, \dots, V_k\}$ of V that minimizes $cost(\mathcal{Z}) =$ $\sum_{V_i \in \mathcal{Z}} d(V_i)$. Goldschmidt and Hochbaum [2] proved that the problem is NP-hard if k is an input parameter, and presented an $O(n^{k^2/2-3k/2+4}F(n,m))$ time algorithm, where F(n, m) denotes a time bound of a maximum flow algorithm in an edge-weighted graph with n vertices and m edges. Recently the time bound is improved to $O(n^{4k/(1-1.71/\sqrt{k})-31})$ [4]. Karger and Stein [6] proposed a Monte Carlo algorithm with time bound of $O(n^{2(k-1)} \log^3 n)$.

Several 2-approximation algorithms for the min-

imum k-way cut problem have been proposed. Saran and Vazirani [10] first proposed a 2(1-1/k)-approximation algorithm which successively finds minimum cuts until the graph is partitioned into k components and runs in $O(mn^2\log(n^2/m))$ time. Kapoor [5] gave an $O(k(nm+n^2\log n))$ time 2(1-1/k)-approximation algorithm. Zhao et al. [12] presented an $O(kmn^3\log(n^2/m))$ time approximation algorithm that has the performance ratio 2-3/k for an odd k and $2-(3k-4)/(k^2-k)$ for an even k. Naor and Rabani [8] showed a 2-approximation algorithm based on an LP relaxation of the minimum k-way cut. Ravi and Sinha [9] gave a 2-approximation algorithm based on an algorithm for computing the strength of graphs.

A minimum k-partition S^* of V, where $cost(S^*) = 2\mu(G,k)$ holds, is a k-subpartition of V. Hence

$$opt(V, k) \leq cost(S^*) = 2\mu(G, k).$$

Let S be a minimum k-subpartition of V, which can be found in $O(mn+n^2\log n)$ time by Theorem 1 with $b=+\infty$. If S is a k-partition of V, then it is optimal to the minimum k-way cut problem. Otherwise, we choose a subset $X\in S$ with the maximum d(X), and replace X with subset $V-\cup_{Y\in S-\{X\}}Y$ in S. For the resulting k-partition S' of V, the set $F'=\cup_{Y,Y'\in S'}E(Y,Y')$ satisfies

$$w(F') = opt(V, k) - d(X) \le (1 - \frac{1}{k})opt(V, k)$$
$$\le 2(1 - \frac{1}{k})\mu(G, k).$$

Since minimum k-subpartitions for all $k \in [2, n]$ can be obtained in $O(mn + n^2 \log n)$ time by Theorem 1, we have the following result.

[Theorem 5] Given an edge-weighted graph G = (V, E), $2(1-\frac{1}{k})$ -approximate solutions to the minimum k-way cut problem for all $k \in [2, n]$ can be obtained in $O(mn + n^2 \log n)$ time.

4.2 Graph Strength

Given an edge-weighted graph G, the strength $\sigma(G)$ of G was introduced by Gusfield [3] and Cunningham [1] as a measure of network invulnerability, which is defined as

$$\sigma(G) = \min_{2 \le k \le n} \left\{ \frac{w(F_k)}{k-1} \mid F_k \text{ is a minimum } k\text{-way cut of } G \right\}.$$

The strength $\sigma(G)$ can be found in $O(mn^2(m + n \log n))$ time [1].

We can compute 2-approximate solution F'_k to the

minimum k-way cut problem for all $k \in [2,n]$ in $O(mn + n^2 \log n)$ time by Theorem 5. We choose a solution F'_k that minimizes $w(F'_k)/(k-1)$ among F'_2, F'_3, \ldots, F'_n . There is a minimum k^* -way cut F_{k^*} with $w(F_{k^*})/(k^*-1) = \sigma(G)$. We see that $w(F'_k)/(k-1) \le w(F'_{k^*})/(k^*-1) \le 2w(F_{k^*})/(k^*-1) = 2\sigma(G)$. Hence we have the next result.

[Theorem 6] Given an edge-weighted graph G = (V, E), a partition S of V such that $\sigma(G) \leq cost(S)/(|S|-1) \leq 2\sigma(G)$ can be determined in $O(mn+n^2\log n)$ time. \diamondsuit

Acknowledgement

This research was partially supported by the Scientific Grant-in-Aid from Ministry of Education, Science, Sports and Culture of Japan.

文 敬

- W. H. Cunningham, Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach. 32, (1985) 549-561
- [2] O. Goldschmidt and D. S. Hochbaum, Polynomial algorithm for the k-cut problem for fixed k, Mathematics of Operation Research, 19 (1994) 24-37.
- [3] D. Gusfield, Connectivity and edge-disjoint spanning trees. Inf. Process. Lett. 16, (1983) 87–89
- [4] Y. Kamidoi, N. Yoshida and H. Nagamochi, A deterministic algorithm for finding all minimum k-way cuts, 4th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest, Hungary, (2005) 224-233.
- [5] S. Kapoor, On minimum 3-cuts and approximating k-cuts using cut trees, Lecture Notes in Computer Science, Springer, 1084 (1996) 132-146.
- [6] D. R. Karger and C. Stein, A new approach to the minimum cut problems, J. ACM, 43 (1996) 601-640.
- [7] H. Nagamochi, Graph algorithms for network connectivity problems, J. Operations Research Society of Japan, 47 (2004) 199-223.
- [8] J. Naor and Y. Rabani, Tree packing and approximating k-cuts, Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (2001) 26-27.
- R. Ravi and A. Sinha, Approximating k-cuts via network strength, Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (2002) 621-622.
- [10] H. Saran and V. V. Vazirani, Finding k cuts within twice the optimal, SIAM J. Comput., 24 (1995) 101– 108.
- [11] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, J. Comp. System Sci., 35 (1987) 96-144.
- [12] L. Zhao, H. Nagamochi and T. Ibaraki, Approximating the minimum k-way cut in a graph via minimum 3-way cuts, J. of Combinatorial Optimization, 5 (2001) 397-410.