HEEA frRLE S
IPSJ SIG Technical Report

PrYEHE

2006 —AL—108
200679727

Ayt—IRBERICK DTS 7027 ILTY XL

Mikael Onsjoett

B 2 it

HIROF Y LY T 7T 5T 758 (Graph Bisection Problem) 123 LC, B
ifid: (Belief Propagation) IC3-3V A& MRS & C, BMCREEOTLTY X AR
BLz RBCH, TOPHETALTY XLOBRICOWTHR~RS.

A Simple Message Passing Algorithm for Graph Partitioning Problems

MIKAEL ONsJOE!t and OSAMU WATANABE!

Motivated by the Belief Propagation, we propose a simple and deterministic message pass-
ing algorithm for the Graph Bisection problem under the planted solution model. We explain
the derivation of the algorithm and discuss its meaning,

1. Introduction

In this paper, for a problem called “Graph Bi-
section problem”, we explain one simple algorithm
derived by simplifying the Belief Propagation com-
putation for the problem. We mainly discuss the
derivation of the algorithm and its meaning.

We begin by introducing problems discussed in
this paper. A Graph Bisection problem is to find an
equal size partition of a given undirected graph with
the smallest number of crossing edges. Throughout
this paper, we consider undirected graphs with no
loop nor multiple edge, and assume that the num-
ber of vertices is even. We use 2n and m to denote
the number of vertices and edges respectively. For
a graph G = (V,E), an equal size parlition is a
pair of disjoint subsets V4. and V_ of V such that
V =V, UV_ and |[Vy| = |V_|. The Graph Bisec-
tion problem is to find such a partition V, and V_
minimizing |V} x V_ N E|, i.e., the number of edges
between them. In the case where the optimal solu-
tion is not unique, we only require to compute one
of them. The same requirement is assumed for the
other problems.)

We consider another graph partitioning problem,
the Most Likely Partition problem. Intuitively, the

t HATRAY (HER TR Tl « A5 H v
Tokyo Institute of Technology, Dept. Math. and Com-
put. Sci. (vatanabe@is.titoch.ac.jp)
tt Chalmera University of Technology, Dept. Comp. Sci.
and Eng. (nikasldodinlake.net)

problem is to find, for a given graph G = (V, E),
a partition that is most likely under the condi-
tion that G is observed. For defining the prob-
lem precisely, we need to specify a certain random
graph model, i.e., 8 way to generate a graph ran-
domly. For any n, consider a set V of vertices;
we let V = {v1,...,v2n}. For generating a graph,
we first generate a partition of V. This is done
simply by assigning each vertex of V' uniformly at
random to two sets Vi and V_. Define a vector
a = (81,...,a2) € {+1,-1}*" s0 that a; = +1 if
v € V+ and a; = -1 ifv; € V-; this a is called
an assignment for the partition (V4,V_). Then for
a priori determined parameters p and r, we gen-
erate undirected edges as follows: for any vertices
v;,v; € V, put an edge (v;,v;) to E with probabil-
ity p if a; = aj, and put an edge (vi,v;) to E with
probability r if a; # a;. This is the way of gen-
erating a graph randomly. Note that, for any size
parameter n, and parameters p and 7, this model
defines a probability distribution on graphs of size
2n. For any graph G = (V, E), consider any par-
tition (V4,V_) of V, and let a be its assignment.
Then for given parameters p and r, the following is
the probability that G is generated from (Vi,V.)
in the way specified above. (Below by E we denote
the set of ordered pairs of V not in E.)

(10)

PG| (V4, V)]
= H plﬂt=a;]r[¢4¢ﬂ,]

(viw3)EE 1)

x H (-)(°4=°;l(1 — ,.)lﬂn‘ﬂ;l
(u.,o,)GE

where [---] takes 1 if --- holds and 0 otherwise.
We call this probability the likelihood of (Vi,V_-).
Note that the likelihood of (V4.,V..) for observed
G (that is, Pr{(V},V.)|G]) should be computed
as Pr{G|(Vi, V_))] - Pr[(V4,V_)]/ Pr(G]. But both
Pr(G] and Pr[(Vy, V)] are the same for all possible
partitions, we use this probability Pr[(V,., V_)|G]
for determining the most likely partition.

Now our second graph partitioning problem —
Most Likely Partition (MLP) problem — is de-
fined as follows: For a given graph G = (V, E)
and parameters p and r, the problem is to find
a partition V. and V_ of V with the max. likeli-
hood w.r.t. p and r. We also consider a problem
where parameters p and r are not given, which re-
quires to compute also these parameters besides a
partition. In this case, parameters p and r to be
computed are those maximize Pr{(V;, V..)|G] with
most likely partition (Vi, V-) w.r.t. p and r. This
harder version is called a paramelerless wversion.
The Most Likely Partition problem is considered
as a basic problem for various clustering problems;
see, e.g.,>") for the background of the problem.

Planted Solution Model

There are some NP-hard problems, for which
we can show some algorithm that solves the prob-
lem correctly/efficiently on average under a reason-
able average-case scenario. For discussing average-
case performance of algorithms, the choice of an
average-case scenario, that is, the choice of a prob-
ability model for determining an input distribution
is important. The notion of “planted solution” has
been used for defining reasonable probability mod-
els. Here we follow this approach and consider the
standard planted solution model for our graph par-
titioning problems.

Jerrum and Sorkin® studied a planted solution
model for the Graph Bisection problem, which has
been used as a standard model. Here we use this
model for our two graph partitioning problems.
This model specifies a way to generate graph from
a planted solution, which is almost the same as
the one used for defining the most likely parti-

tion. We first fix probability parameters p and r,
0 <r < p<1 Then for a given size parameter
n, and a given equal size partition V; and V2 of
V = {v1,...,v2n}, generate undirected edges in E
as follows (here let a* denote the assignment for
(V3,V2)): for any vertices v;,v; € V, put an edge
(v1,v3) to E with probability p if a] = a3, and put
an edge (vi,v;) to E with probability r if af # aj.
Since r < p, we have on average more edges among
vertices in V (resp., V*) than between V; and V2.
Hence, we can expect that the partition (V;,V2)
achieves the smallest number of cut edges, that is, it
is optimal for the Graph Bisection problem. Thus,
the partition (V, V) is called a planted solution.

The above intuition can be formally justified for
our two graph partitioning problems. It has been
shown® that if p — r = Q(n~'/2), then with high
probability, a planted solution is the unique opti-
mal solution of the Graph Bisection problem. We
can show a similar property for the MLP problem.
That is, it can be shown'?) that if p—r = Q{n~*/2),
then a planted solution is, with high probability, the
unique solution of the MLP problem for the gener-
ated instance. Thus, under the above planted so-
lution model, both of our graph partitioning prob-
lems ask for the same solution for a wide range of
parameters p and r.

Belief Propagation

The algorithm GraphPart is derived from Pearl’s
belief propagation'¥ with some modification.
Roughly speaking, the belief propagation is a way
to compute a marginal probability of the state of
each node in a given Bayesian network. We use
this technique for the MLP problem. For any in-
put G, p, and r for the MLP problem, we can de-
fine a Bayesian network on which a belief propa-
gation algorithm (in short, the BP algorithm) is
expected to compute P(i) = Pr{v; € V4|G], where
the probability is defined under our random model
for defining the most likely partition. Intuitively,
a belief (that v; belongs to V) is the approxima-
tion of P(i). The BP algorithm computes beliefs
in rounds; at each round, it updates beliefs and we
would like to have correct P(i)'s at some round. In
fact, it is shown that the BP algorithm converges
in finite rounds and yields the correct probabili-
ties if a given Bayesian network is a tree; although
such a convergence cannot be guaranteed in general
Bayesian networks, it is often the case that the BP

procedure GraphPart (G, p, r);
begin
set all b; to 0;
repeat MAXSTEP times do {
by +— +o0;
for each v; € V do in parallel {
b = D hy-Thy(by)
v;EN;g
= D he-Th(by);
vy gN;
}
if all b;'s get stabilized then break;
}
output (+1) 5g(b9): ey sg(bﬂ'l));
end-procedure

@1 Computation of pseudo belicfs for the MLP probl

1—
e-=iomer=1,

h _le--1 ey =1
"_c_.+1’ + = q' +1:
Inc_ In
the = 5=, the =[5,

Thy (2) = sg(2) min(|2], thy),
Th_(z) = sg(z) min(|2|, th-),

sg(z) = the sign of 2,

N; = the set of v;’s neighbors, and

+1, ifz>0,
sg(z)=¢ 0, ifz=0,and

-1, otherwise.

algorithm converges and gives quite accurate values
even for Bayesian networks with cycles. Now sup-
pose that the BP algorithm computes P(3) correctly
at some round, then a natural solution for our par-
tition problem is to compute V. (resp., V_) as a set
of vertices v; with P(i) > 0.5 (resp., P(3) < 0.5),
which we may expect to give a partition with the
max. likelihood. Our algorithm is derived from this
BP-based partition algorithm.

2. Our Algorithm and its Derivation

We first explain the algorithm GraphPart of Fig-
ure 1; see Figure 2 for the definition of parameters
and functions used in the algorithm. As explained
in Introduction, the algorithm updates beliefs for
each vertex v; € V. each round. An updated value
of b; is computed by summing up the beliefs of all
vertices v;, multiplied by eigher hy > 0 (if an edge
(vs, v;) exists) and by —h_ < 0 (otherwise). This is
intuitively reasonable because one can expect that
two vertices v; and v; are in the same class (resp.,
in the different classes); if an edge exists (resp.,
does not exist) between them. The algorithm uses
threshold functions Th (z) and Th_(z) so that too
large (or too small) beliefs are not sent to the other
vertices. The algorithm terminates (before the time
bound) if b; gets stabilized for every i, i.e., either
the change of b; becomes small, or |b;| exceeds the
threshold value max(Th,,Th_).

Remark for the Parameterless Case
For the Graph Bisection problem and the MLP
problem of the parameterless version, we need to

B 2 Parameters and functions used in the algorithm

find a partition without knowing the parameters p
and r. For this, we can take the following approach.

First by counting the number of edges, we com-
pute the estimation & of a (= p + r), which should
be very close to &. Then by using a guess E of 3,
run the algorithm GraphPart with guessed 7 and
7, where § = (& + §)/2 and ¥ = (& — §)/2. The
initial guess of 3 is the largest candidate, i.e., o,
and repeat the algorithm by revising 3 with (4/5)F
until any “consistent” equal size partition is ob-
tained. The consistency of the partition can be
tested by checking whether the same partition can
be obtained by the algorithm with parameters p’
and 7' that are estimated by counting the number
of edges respectively within and between two par-
titioned sets.

In this situation, the algorithm is executed by us-
ing parameters p and T that are different from those
used for generating instances; but we may assume
that p+7 (= @) =~ a, and p — 7 (= §) satisfies
B<B< (5/4)8. By our theoretical analysis (see
the next section) we can show that the algorithm
performs accurately in this situation.

Derivation of the Algorithm

The algorithm stated in Figure 1 is obtained from
the standard belief propagation algorithm for the
MLP problem. Here we show its derivation and
explain the points that differ from the belief prop-
agation,

Let G = (V, E) be an input graph with 2n ver-
tices; let V = {w,...,92a}. Our task is to compute,

for given probability parameters p and r, a par-
tition maximizing Pr{(V;, V-)|G] (or equivalently,
the probability defined by (1)). For this, we use
a BP algorithm computing the following marginal
probabilities P(i) for each v; € V.

P(i) = PrivieVy|G]
= >, Plmv)iel
(V4. V)
st vy € Vi

where Prf(Vy,V_)] = 272" since the selection of
(V4,V_) is uniform.. Then we simply assign a; =
+1 (i.e., vi € V4) if and only if P(3) > 0.5.

We first explain this BP algorithm. Below we fol-
low® for notions and notations on the belief prop-
agation. (Although we will not explain the precise
meaning of such notations, it is not essential for our
derivation.) For any v;,v; € V, we let e;; = +1 if
there exists an edge between v; and v; in E, and
e;; = —1 otherwise. A Bayesian network for G is a
graph consisting of nodes {N;}1<ican correspond-
ing to vertices in V nodes {Zi;}1<icican corre-
sponding to all unordered pairs in V x V. The belief
propagation updates beliefs on these nodes by ex-
changing messages between them. But since those
messages are quite simple in our case, we can sim-
plify this scheme so that messages are exchanged
between nodes corresponding to vertices in V. For
each pair of vertices v;,v; € V, where i # j, two
messages 73 (—1) and 7;;(+1) sent from node N; to
Nj are computed as follows from messages m; that
node N; received at the previous round. (In the fol-
lowing, the domain of the subscript & (sometimes
B of[Tor Y is {1,..,2r} - {i}.)

mi5(z) = ogi(z)
x] GsImea(-=) + 8 P)mei()). @)
ey

Here qi, o, and d;; have the following meaning:
gi(z) is a priori probability of a; = z (in our case,
¢i(+1) = gi(—1) = 1/2 except for the vertex 1); a is
a normalization factor to keep mgi(41) +myy(—1) =
1; and &;j(y) = yif e;; = +1, and 8;;(y) = 1—y oth-
erwise. Notice here that for computing a message
wij from node N; to node Nj, the previous value of
7ji, i.e., 8 message from node Nj, is not used. This
is the point we will relax later in our modification.
A belief Bel; at node Nj, intuitively the belief for
a; = +1, is then computed as follows:

[1; m5i(+1)
I1; mss (1) + T, mse(-1)

Now we make several simplifications for our prob-

Bel; =

@3 lexy and lex_ and their approximations re‘x'*. and
lex- (for p = 0.4 and r = 0.2)

lem. First in order to reduce the number of vari-
ables, we use my; = mij(-+1)/m;(—1) and By =
[T, mjs; also let pi = gi(+1)/q:(—1). Note that we
can now consider a; = +1 if B; > 1 and a; = -1
if B; < 1. The following updating rule is obtained
from (2).

mi; = p; H Jig(mni),

kskt]
where fi;(z) is defined by
: _ cjz+1
fl.i(z) = m_l_c“’
c,.=£, if ;3 = +1, and
Cig = _E—p if e = —1
c_——l_r, Hey;=-—1L,

At this point, we introduce one a priori knowledge.
Without losing generality, we may fix the classifica-
tion of one vertex; for example, let us assume that
vertex vy belongs to Vi, i.e., ay = +1. This means
that q1(+1) = 1 and q1(-1) = 0, implying that
/1 = +oo and my; = +oo. For the other v’s, we
have gi(+1) = gi(—1) = 0.5, and hence, p; = 1.
Thus, we have the following simplified rule.
H fi(mu).
k:k#j
Here we may define f;;(+00) = cij.

Let us convert this updating rule to additive one.
For this purpose, we introduce £; = In(m;;) and a
function lex defined by

lex;; (z) = In(£i; (€7)). @

Then, for all v;,v; € V, where i # 1 and i # j, we
have :
> texu(lu), 4

kikAi
Note that £1; = +-co. The logarithmic belief In{B;)

is computed as _Ew ev i, and a; is determined
whether it is positive or negative.

We simplify the above computation a bit fur-
ther. As shown in Figure 3, both functions lex,

m; = +o00, and my; =

b&ij =

and lex- can be approximated well by some lin-
ear functions with thresholds. More specifically, we
consider the following functions for approximating
lexs, o € {+,-}.

. ho - thy, if thy < z,
lex.(z) = ohe - T, if —th, < z < thy,
—~hg - ths, if z < th,,

where h, (i.e., k4 and A_) and th, (i.e., thy and
th_) are those defined in Figure 1. Our (linearized
version of) belief propagation algorithm is to com-
pute messages by (4) with these approximations of
lex Functions.

- Finally we introduce one modification. When
computing a message mi; from node N; to node
Nj, the previous value of m;;, a message that N;
received from Nj, is excluded. But our preliminary
experiments show that the behavior of the algo-
rithm becomes more stable if m;; is computed by
using all previous messages coming to N;. Thus,
we modify the algorithm so that &;; is computed
by using &x; for all k. Then there is no distinction
between messages to N; and to Ny, and we only
need to consider the following quantity:

bi = Zgﬁki(bk), (5)
k

which we may interpret as a message from v; to any
other vertex in V. Furthermore, we may now con-
sider it also as a quantity corresponding to In(B;),
which we will call a pseudo belief. It ia easy to see
that our base algorithm GraphPart computes this
pseudo belief by using the updating formula (5).

3. Discussions

Though simple, from our preliminary experi-
ments, we found that the algorithm peforms quite
well, even better than the original BP computation.
So far, we have been able to give theoretical justifi-
cation to the performance of the algorithm for very
restricted usage of the algorithm, that is, the case
that the number of belief updates is limited to two,
i.e., MAXSTEP = 2. Due to its limitatd usage, we
can prove that the algorithm works with high prob-
ability for relatively easy nonsparse and nondense
situation. More specifically, we prove the algorithm
solves the Bisection Problem if p—r = Q(log n//n);
see our reports!?!Y for detail.

Clearly, the algorithm performs better if we run it
more steps, and we believe that one can prove that
it performs as well as Boppana’s algorithm, It is
our future problem for analyzing such performance

of the algorithm, which we think a good step for
understanding the Belief Propatation in general.

B F xR

1) R.B. Boppana, Eigenvalues and graph bi-
section: an average-case analysis, in Proc.
Symposium on Foundations of Computer Sci-
ence, 280-285, 1987.

2) T.Bui, S. Chaudhuri, F. Leighton, and M.
Spiser, Graph bisection algorithms with good
average behaviour, in Combinatorica 7, 171~
191, 1987.

3) A.Condon and R.Karp, Algorithms for graph
partitioning on the planted partition model,
Random Str. and Algorithms 18, 116-140, 2001.

4) D.Dubhashi, L.Laura, and A.Panconesi, Anal-
ysis and experimental evaluation of a simple
algorithm for collaborative filtering in planted
partition models, in Proc. FST TCS 20083, 168-
182, 2¢03.

5) M.E.Dyer and A.M.Frieze, The solution of
some random NP-hard problems in polynomial
expected time, J.of Algorithms 10, 451489,
1989.

6) M.R. Garey, D.S. Johnson, Computers and
Intractability, Bell Telephone Laboratories, In-
corporated, 1979.

7) M. Garey, D. Johnson, and L. Stockmeyer,
Some simplified NP-complete graph problems,
in Theorel. Comput.Sci. 1, 237-267, 1976.

8) M.Jerrum and G.Sorkin, The Metropolis algo-
rithm for graph bisection, Discrete Appl. Math
82(1-3), 155-175, 1998.

9) R.McEliece, D.MacKay, and J.Cheng, Turbo
decoding as an instance of Pearl’s “Belief Prop-
agation” algorithm, in IEEE J.on Selected Ar-
eas in Comm. 16(2), 1998.

10) F. M°Sherry, Spectral partition of random
graphs, in Proc.40th IEEE Sympos.on Founda-
tions of Computer Science (FOCS'99), IEEE,
1999.

11) M.Onsjd, Master Thesis, 2005.

12) M.Onsjé and O.Watanabe, Simple algorithms
for graph partition problems, Research Report
C-212, Dept.of Math.and Comput.Sci., Tokyo
Inst.of Tech, 2005.

13) M. Onsjé snd O. Watanabe, Simple algo-
rithms for graph partition problems, in Proc.
ISAAC’06, to appear.

14) J.Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Mor-
gan Kaufmann Publishers Inc., 1988.

