AN fHamEES
IPS] SIG Technical Report

PR 2006—AL—108 (9)

200679727

FEMEFEIEIC S &0 RRHED S RIRE
MEFES, HIHRE, SRER, PHEX (£X)
{takao,yagiura, iwaki,hirata}@al.cn.is.nagoya-u.ac. jp

e

ARXTHHAAYERECHTIHLRANTAT) XA BRT S, ZO7NVTY XATH, &
ERICFEEOB MUY MV EEINS Z LIt L FAYEREE~S MVEBBEICETT 3. -0
X7 MVELBHEESEE N ERETH H 2 55, Fib 2RERETHIOT ¥ 7 8R035 7o, NP-
EETH3. ZORHRANTFEICL VIEREZ A5, 850Xy MVEERM S IZHEICRIT
HREREARNBLNS.

HEBKRBIZL Y, BT TIEBWTRBRTZ7VT XANY 7 —FRP DSATUR £V b
BV BAaERFITIZZLBbhoik.

An SDP-Based Heuristic Approé.ch for the Graph Coloring Problem
Takao Ono, Mutsunori Yagiura, Masaya Iwaki, Tomio Hirata (Nagoya University)

abstract

In this paper we will propose a new heuristic algorithm for the graph coloring problem. This problem is
known to be NP-hard. In theory, approximation is also hard. That is, there exists a constant € > 0 such
that we cannot find a coloring for the graph with n vertices using O(n®) times more colors than necessary
in polynomial time unless P = NP. For the graphs with bounded chromatic number, several approximation
algorithms have been proposed. Some of them are based on semidefinite programming (SDP) relaxation,
where there exist sophisticated SDP solvers recently. However, although SDP can be solved in polynomial
time, the time bound is of high order. Thus we consider restricting the feasible region of SDP relaxation.
The results in this paper show that we can accelerate an SDP-based algorithm with little loss of accuracy.

maximum satisfiability problem, have approximation
algorii;hms with constant approximation ratios. How-
ever, the approximation of the graph coloring prob-
lem is harder. That is, no constant approximation

1 Introduction

A vertex coloring for graph G = (V,E) with
n = |V| vertices and m = |E| edges is an assign-

ment ¢: V — Z such that c(i) # c(j) if (i,j) € E.
A k-coloring is a vertex coioring whose range is
{1,2,...,k}. The graph coloring problem is the prob-
lem of finding, for a given graph G, a k-coloring of
G with minimum k. Such k is called the chromatic
number of G and is denoted by x(G). This problem
is known to be NP-hard. Thus in the field of theory
the approximation algorithms for the graph coloring
préblem have been studied. The approximation algo-
rithm is the polynomial time algorithm which finds
for any graph a coloring with at most o times as many
colors as the optimal coloring. This « is called the
approximation ratio of the algorithm. Some NP-hard
problems such as the maximum cut problem and the

ratio can be achieved unless P # NP. Moreover,
there exists a constant € > 0 such that it is NP-hard
to find a coloring using n*x(G) colors.

For the graphs with the bounded chromatic num-
ber, some approximation algorithms with approxima-
tion ratio O(n®) for ¢ < 1 are known. For exam-
ple, Wigderson [10] showed an O(+/n)-approximation
algorithm for 3-colorable graphs. Karger, Motwani
and Sudan (8] made a significant irﬁprovement on
the approximatioil factor by proposing a Semidefinite
Programming (SDP) based approach. Their algo-
rithm approximates the chromatic number of any 3-
colorable graph with n vertices in a factor of O(n!/4),

where O hides polylogarithmic factors.

Inpired by this result, we consider applying the
SDP-based approach for practical use. However, we
found that even with sophiatichte,d solvers such as
CSDP and fast computers, SDP relaxation requires
much time and memory to solve for the graphs with
hundreds of vertices. Thus we consider reducing
the feasible region of the SDP relaxation. That is,
we assign a planar (2-dimensional) vector for each

vertex while Karger, Motwani and Sudan used full-

dimensional vectors. The restricted problem is not
SDP and hence cannot be solved with any SDP
solvers, but we can use a heuristic approach for find-
ing a near-optimal solution. We will propose an al-
gorithm for converting the solution, the assignment
of the planar vectors, to the feasible coloring. As a
result, our algorithm yields better performance than
a simple tabu search for dense graphs.

In Section 2 we first recall SDP and its application
to the graph coloring problem, and then we intro-
duce rank-two SDP relaxation for the graph coloring
problem. We provide our experimental results in Sec-
tion 3. The concluding remarks is in Section 4.

2 Rank-two SDP Relaxation
for the Graph Coloring Prob-
lem ‘

First we recall the semidefinite program-
ming (SDP) and briefly review the SDP relaxation
scheme for the graph coloring problem, proposed
by Karger, Motwani and Sudan [8]. After that,
we pfopose a new relaxation scheme for the graph
coloring problem. Hereafter we call our scheme
“rank-two SDP” in honor to Burer, Monteiro and
Zhang [3], who applied the simliar approach to the
Maiimum Cut Problem. '

2.1 Semidefinite Programming

In the following, let us denote S"** the set of all
n x n symmetric real matrices. We define the inner
product Ae B for two matrices A = (ay;), B = (bi;) €

SnXN pg
AeB= Y
1,7€{1,2,...,n}

ai;ibi;.

Semidefinite Programming is the optimization
problem of the form

max Ce X
s.t. A('C X S bi, (1)
X is positive semidefinite.

All the matrices C, A; and X are assumed to be in
8"*", That is, SDP is the optimization problem with
linear constraints and linear objective function of the
elements of the positive semidefinite matrix.

It is known that we can solve SDP almost optimally
(within additive error €) in polynomial time. There
are many SDP solvers, for example, SDPA [5] and
CSDP {1].

2.2 SDP Relaxation Scheme

For a k-colorable graph G = (V,E) with n =
|V] vertices, we assign an n-dimensional unit vec-
tor v; to each vertex ¢ € V. It is easy to assign these
vectors so that for each edge (i,j) € E the inequal-
ity vi - v; £ —1/(k — 1) holds, where v; - v; denotes
the inner product of v; and v;. With this observa-
tion, Karger, Motwani and Sudan [8] introduced the
notion of vector coloring: A vector k-coloring of a
graph G is an assignment of n-d:mensxona.l unit vec-
tor vy, ve, ..., Uy € R” to the vertices 1,2,...,n,
respectively, such that v; - v; < -1/(k—1) for each
edge e = (i,j) € E. The vector chromatic number of
the graph is the smallest number k admitting the vec-
tor k—coloring. It is easy to see that every k-colorable
graph has'a vector k-coloring. On the other hand,
its inverse does not always hold. Thus the vector
chromatic number isa lower bound for the chromatlc
number.

Karger, Motwani and Sudan proposed the follow-
ing approximation algorithm for the graph coloring
problem: First, assign vector v; € R” for each ver-
tex ¢ € V' and solve the problem:

min o
st. v;-v; <a Ve=(i,j)€E, 2)
v =1 VieV.

This problem is in fact an SDP. To see this, con-
sider the matrix W = (wy;) € S+HIX(n+1) wigh
Wy = Vi Yy and Win4l = Wntli = 0 for all %,
j €{1,...,n}, Wny1,n+1 = a. Then the problem (2)
has the linear constraints and linear objective func-
tion of the elements of W, which is positive semidef-
inite.

For a k colorable graph G with maximum degree
A, we can obtain an optimal solution to (2) with
a = -1/(k —1). Now we choose O(A!'~%*) ran-
dom vectors uy, u, ...in R™. For each vertex i, we
assign the vector u; with the largest inner product
with v;. With high probability there exist at most
|E| /4 edges whose two end vertices receive the same
vector u;. Now we consider that each vector u, cor-
responds to a color. Then with high probability a
constant fraction of the vertices are properly colored,
that is, having no adjacent vertices with the same
color. Fix the colors of such vertices and repeat the
process to the remaining vertices until every vertex
has its own color. This algorithm uses O(A!~2/%) col-
ors for any k-colorable graph.

2.3 A New Heuristic Approach Based
on SDP

SDP-based algorithm in Section 2.2 is good in the-
ory. However, the time bound to solve an SDP is of
high order and thus we cannot apply this algorithm
for large graphs. For example, CSDP (1] uses more
than O(n®) time and about O(n) space to solve an
SDP relaxation for the graph with n vertices. This
motivated us to derive a new approach based on SDP.

In our approach, we use two-dimensional (planar)
unit vectors instead of n-dimensional vectors. With

this modification, the SDP relaxation (2) becomes:
min'a
st. v5-v;<a Y(i,j) € E, 3)
[lvg]] =1 and v; e R®* Vie V.
This problem can be rewritten as follows, using
the positive semidefinite matrix W = (wy;) € S**",
where w;; = v; - v;:

min o

st wi; <o V(i,j) € E,
wy =1 vieV,
W e §™*" ig p.s.d.,
rank W < 2.

We call our approach “rank-two SDP relaxation” in
honor to Burer, Monteiro and Zhang [3], because our
approach is similar to the one that they proposed for
the maximum cut problem.

We note that the problem (3) is not convex op-
timization problem. In fact, although we omit the
proof, this problem is NP-hard. However, we can ap-
ply heuristic approaches to find a reasonably good
solution to (3). It is easy to see that there is no need
to use vectors in (3), because the planar unit vector v;
is characterized by its angle 6; as v; = (cos8;,sin6;).
The problem (3) can now be rewritten as follows:

max 3
st diff(6,6;)28 Vi,))€E (4)
0<6;<2mw VieV,

where diff(8;,8;) = min{|6; — 0;|,2x — |6; — 8,]} de-
notes the difference (between 0 and) of the angles 6;
and 6;.

2.4 Rounding Methods for Rank-Two
SDP Solution to Coloring

In this section we propose two rounding methods
for a solution (8, 61,...,6,) to (4).

The first one is quite simple: We know that if
6; ~ 0; < P then two vertices { and j can have the

same color. Thus we can easily find a k-coloring of G,
where k = [27/(3]: Divide the unit circle into k sec-
tors Sy, ..., Sk with the same center angle 2n/k,
S; ={62ni-1)/k <O <2mifk}(i=12...,
k). We associate the color i to the sector S;. That
is, for each vertex 1 € V with the corresponding an-
gle §; € S¢, we assign the color ¢ of S;. This gives the
correct coloring, because for two adjacent vertices ¢
and j the corresponding angles §; and 8; are apart at
least 27 /k from each other. Thus these two vectors
are in different sectors, meaning that vertices i and j
receive different colors.

With this method, it can be the case that we use
more colors than necessary, due to numerical error.
For example, if the graph G is 3-partite, then we can
take 8 = 2rr/3. However, in the solution to (4) 8 can
be 27/3 — € for a small €. In this case we take k =4
and find 4-coloring of G, in spite of having almost 3-
coloring. We will overcome this by proposing another
rounding method.

The second rounding method comes from the fol-
lowing observation: What we want to find is the. di-
vision of unit circle into k sectors Sy, ..., Sk such
that no two adjacent vertices ¢ and j correspond to
the angle §; and 6; lying in the same sector.

We further convert this problem as follows: Con-
sider for two adjacent vertices ¢ and j two coun-
terclockwise circular arcs a;; = (6;,6;) and aj; =
(6;,06:) on the unit circle. We assume that these arcs
does not include their end points. Let S be the col-
lection of these arcs for all pairs of adjacent vertices.
Now what we want to find is the set & = {y,...,¢x}
of angles such that every circular arc in S includes
at least one angle in the set &. Such set of angles is
called a piercing set of S, and finding a smallest pierc-
ing set of S is the minimum piercing set problem for
arcs. Katz, Nielsen and Segal [9] proposed an algo-
rithm to solve the minimum piercing set problem for
the set of n arcs optimally in time O(nlogn). Thus
we can use the following method to find an optimal
coloring according to the solution (8, 64,...,0,):

1. Construct the set of arcs S.

2. Solve the Minimum Piercing Set Problem for S.
Let the optimal piercing set be ® = {¢1,...,¢x},
where ¢; is listed in the counterclockwise order.

3. For each vertex i € V assign color ¢ (less than k)
if ¢y < B < dr41, and assign color k if0 < 6; <
¢1 0r ¢ < 6; < 2m.

No two adjacent vertices have the same color be-
We can run this
method in time O(mlogm) because step two dom-
inates the running time and |S| = 2m implies the
time O(m logm) in that step. :
"We note that the running time can be reduced in
two reasons. First, the set S has unnecessary arcs. If

cause we use the piercing set.

arc ay; completely contains another arc a, then any
point in a; is also in a;; and thus a;; is redundant.
This means that no more than two arcs are necessary
for each vertex. For vertex i, we only need to consider
arcs a;; with the nearest angle §; to ; in both clock-
wise and counterclockwise order. Now the number |S|
of the member in S is 2n. Second, we can use faster
algorithm (in constant factor) to solve the Minimum
Plercing Set Problem. In our case, the circular-arc
graph Gs of 8 cannot be the complete graph. In
this case a clique cover of Cs with s cliques provides
a piercing set of § with s points, with the point in
the piercing set corresponding to the endf)oint of each
clique. Thus we can run on the circular-arc graph Gs
the minimum clique cover algorithm (7], which runs
in linear time after sorting the endpoints of all the
arcsin S.

3 Experimental Results

We implement the rank-two SDP relaxation in the
following way. For each vertex i we assign angle 6;.
We repeat the following process: Fori=1, 2, ..., n,
we change angle 8; to & which maximizes the function

fu6) = it adjl:llcie!rlxt to ‘.diﬁ(O, 6;)-

The algorithm outputs the best coloring found. We
call this algorithm 2SDP. ‘ :

We made three experiments to evaluate the perfor-
mance of 2SDP. In Experiment 1, we run 2SDP and
the ordinary (full rank) SDP relaxation on the small
graphs in the Second DIMACS Challenge. The re-
sults of the ordinary SDP relaxation works as lower
bounds of the number of colors for the graphs.

In Experiment 2, we compare the results of 28DP
with other heuristics [6, 2, 4]. In this experiments we

used the graphs with more vertices than the graphs

in Experiment 1. We note that we cannot run CSDP
on the SDP relaxation for these graphs because our
PC does not have enough memory.

In Experiment 3, we used random k-partite graphs
with edge density 5%, 10%, ..., 95%, for k = 5 and
9. We run 2SDP and a tabu search on these graphs,
and compare the number of used colors.

3.1 Experiment 1: Comparison Be-
tween 2SDP and Fuill-Rank SDP

Table 1 shows the comparison between the ordinary
SDP relxation with our 25DP relxation by running
on the graph coloring instances given in the second
DIMACS challenge. 2SDP relxation is run on a PC
with a 1GHz Pentium 3 and 6GB of memory, while
CSDP is run on a PC with a 3GHz Xeon and 8GB of
memory. The Xeon PC has roughly four times faster
than the Pentium 3 PC. The data in row “2SDP" are
the numbers of colors used in the obtained coloring.
The data in row “CSDP” are the vector chromatic
numbers of the graphs, that is, the values ~1/a+1
for the optimal value & of the relaxation problem (2).
2SDP provides an optimal solution for 7 graphs out of
11. Except for queen6_6, 2SDP finds a coloring with
at most 7 % more colors than the lower bound of vec-
tor chromatic number. For one exception, queené.5,
2SDP finds a coloring with 50 % more colors than the
vector chromatic number.

3.2 Experiment 2:
Other Heuristics

Comparison to

Next, we examined the performance of 2SDP re-
laxation for larger graphs. Because CSDP requires
O(n*) memory space, we cannot use the original
SDP relaxation for large graphs. Thus we compare
the performance of 2SDP relaxation to other heuris-
tic algorithms, namely, a tabu search proposed by
Hertz and de Werra [6], DSATUR [2], and Iterated
Greedy (IG for short) [4].

The result is in Table 2. The data in
columns 2SDP, HWTabu, and DSATUR are the min-
imum and maximum number of colors used in the col-
orings obtained from ten independent runs for each
The data in column IG have been re-
ported in Culberson and Luo [4]. The table shows
that 2SDP has roughly the same performance as
HWTabu and DSATUR.

instances!.

3.3 Experiment 3: For Random k-

partite Graphs

Finally, we compare the performance of 2SDP with
those of HWTabu and DSATUR on random k-partite
graphs for k = 5 and 9. In these graphs, each parti-
tion has 100 vertices and two vertices ¢ and j in the
different partition are adjacent with fixed probabil-
ity p. Moreover, we select one vertex from each par-
tition to form a clique, which ensures that the chro-
matic number of the graph is exactly k. For each set
of parameter (k,p) we used 10 random graphs and for
each graph we ran each of three algorithms 10 times.

Figures 1 and 2 show the average number of colors
used in the obtained coloring. In both cases, 2SDP
has almost the best performance for dense graphs
with at least 30 % density. Contrary to the intuition,
our experiment in general shows that the denser the
graph is, the better the performance of all algorithms
is. We can explain this result as follows: in a dense

IThe program codes of HWTabu and DSATUR
are obtained from Culberson’'s Web site. The
URL is http://uww.cs.ualberta.ca/~jos/Coloring/
Colorsrc/color.tar.gz.

. 8

1:

Results on the DIMACS challenge instances

Instance vi| |E| 2SDP CSDP (lower bound)
mniles2560 128 | 387 | 8 colors/0.07s 8 colors/979.21s
miles500 * | 128 [1170 | 21 colors/0.10s | 20 colors/1094.70s
miles760 | 128 | 2113 | 33 colors/0.128 31 colors/1388.328
miles1000 | 128 | 3216 | 45 colors/0.32s 42 colors/1282.72s
miles16500 | 128 | 5198 | 73 colors/0.2568 | 73 colors/1371.49s
mulsol.i.1 | 197 | 3925 | 49 colors/0.29s | 49 colors/19414.61s
mulsol.i.2 | 188 | 3885 | 31 colors/0.26s | 31 colors/18976.04s
mulsol.i.3 | 184 | 3916 | 31 colors/0.24s | 31 colors/16811.54s
mulsol.i.4 | 185 | 3946 | 31 colors/0.24s | 31 colors/16180.90s
mulsol.i.5 | 186 | 3973 | 31 colors/0.258 | 31 colors/16499.77s
queen6.6 ' 36| 290 9 colors/0.03s 6.028 colors/1.19s

¥ 2: Results of 25DP compared to those of other heuristic algorithms

Tnstance V] [E] 2SDP_| HWTabu [6] | DSATUR [2] | I1G [4]
DSJC260.5 250 | 31336 | 39-46 4143 37-30 | 32-34
DSJCE00.5 500 | 125248 | 70-80 71-74 65-68 | 57-60
DSJC1000.5 1000 | 499652 | 122-136 125-129 114-119 | 102-106
£1at300.20.0 300 | 21375 | 43-52 45-48 4143 | 20-22
£1at300.26.0 300 | 21633 | 43-52 4548 4143 | 36-38
£1at300.28.0 300 | 21695 | 43-51 4548 4145 | 35-38
£1at1000.50.0 | 1000 | 245000 | 121-133 124-127 114-117 | 50-104
£1at1000.60.0 | 1000 | 245830 | 120-133 122-126 114-117 | 100-105
latin.square.10 | 900 | 307350 | 137-156 146-156 126-134
10450.16a 450 | 8168 | 21-25 17-20 16-18 | 17-18
10460.16b 450 | 8169 | 21-25 17-20 16-17 | 17-18
10460_16c 450 | 16680 | 31-36 . 29-30 24-25 | 25-26
10460.15d 450 | 16750 | 31-36 28-31 2426 | 25-26
oulsol.i.1 197 | 3925 | do~de 4949 49-49 | 4949
schooll 385 [19095 | 2045 14-15 1420 | 1414
schoolinsh 352.] 14612 | 34-46 14-15 14-25 | 14-15

graph, each vertex is connected to many vertices in
every partition. This means that it is easy to find
which partition the vertex belongs to. On the other
hand, it is hard to find the hidden structure in sparse
graphs.

4 Conclusion

In this paper we proposed a new heuristic algo-
rithm, rank-two SDP, for the graph coloring prob-
lem. This is inspired from the SDP-based approxima-
tion algorithm of Karger, Motwani and Sudan. The
change is that, rank-two SDP maps each vertex to a
two-dimensional vector instead of n-dimensional vec-
tor. Although we cannot apply standard SDP solvers
to this restricted SDP, we can always convert its so-
lution to the legal coloring in linear time.

From our experiment, rank-two SDP solves the
small DIMACS instances almost optimally. For
larger instances, rank-two SDP has almost the same
performance as other simple heuristic algorithms
such as the tabu search of Hertz and de Werra, and
DSATUR. The last experiment showed that rank-two
SDP works well for the random k-partite graphs with
edge density more than 30 %. The challenge is to im-
prove the search process for finding a better solution
to the SDP.

&k

(1] Brian Borchers. CSDP, A C library for semidef-
inite programming. Optimization Methods and
Software, 11(1):613-623, 1999.

[2] D. Brélaz. New methods to color vertices of a
graph. Communications of the ACM, 22:251-
256, 1979,

[3] Samuel Burer, Renato D.C. Monteiro, and Yin
Zhang. Rank-two relaxation heuristics for max-
cut and other binary quadratic programs. TR00-
33, Department of Computational and Applied
Mathematics, Rice University, 2000.

[4] Joseph C. Culberson and Feng Luo. Exploring
the k-colorable landscape with iterated greedy.
In David S. Johnson and Michael A. Trick, edi-
tors, Cliques, Coloring, and Satisfiability: Sec-
ond DIMACS Implementation Challenge, vol-
ume 26 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages
245-284. American Mathematical Society, 1993.

[5] Katsuki Fujisawa, Masakazu Kojima, Kazuhide
Nakata, and Makoto Yamashita. SDPA
(semidefinite programming algorithm) user's
manual — version 6.2.0. Research Report B-308,
Dept. Math. & Comp. Sciences, Tokyo Institute
of Technology, December 1995, Revised Septem-
ber 2004.

(6] A. Hertz and D. de Werra. Using tabu search
techniques for graph coloring.
39:345-351, 1987.

Computing,

[7] W.L. Hsu and K.H. Tsai. Linear time algorithms
on circular-arc graphs. Information Processing
Letters, 40:123-129, 1991.

[8] David Karger, Rajeev Motwani, and Madhu Su-
dan. Approximate graph coloring by semidef-
inite programming. Journal of the ACM,
45(2):246-265, 1998.

[9] Matthew J. Katz, Frank Nielsen, and Michael
Segal. Maintenance of a piercing set for inter-
vals with applications. Algorithmice, 36(1):59-
73, February 2003.

[10] Avi Wigderson. Improving the performance
guarantee for approximate graph coloring. Jour-
nal of ACM, 30(4):729-735, 10 1983.

average # of colors

average # of colors

8

20

15

70

8

[4,]
Qo

3
o

T]] L} L))] 2SDPI
HWeaby ------
DSATUR «+-+eve-
1 L 1 L 1 1 1 [} - L
10 20 30 40 80 60 70 80 80 100
density (%)
& 1: Results for 5-partite graphs
¥ T 1 1)) v 2SDPI
HWiaby -----—-
DSATUR -
\\]
\l
‘I
\ -
I‘.‘ \‘\‘
.]
1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 S0 100
density (%)

2: Results for 9-partite graphs

