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Abstract. Given a complete k-partite graph G = (W, V3, ..., Vi; E) satisfying V| = V2| =

|Vkl = n and weights of all k-cliques of G, the k-dimensional assignment problem finds a partition
of vertices of G into a set of (pairwise disjoint) n k-cliques which minimizes the total sum of weights
of the chosen cliques. In this paper, we consider a case that the weight of a clique is defined by the
sum of given weights of edges induced by the clique. Additionally, we assume that vertices of G are
embedded in the d-dimensional space @? and a weight of an edge is defined by the square of the
Euclidean distance between two end vertices. We describe that these problem instances arise from
a multidimensional Gaussian model of a data association problem.

We propose a second-order cone programming relaxation of the prablem. and a polynomial time
randomized rounding procedure. We show that the expected objective value obtained by our al-
gorithm is bounded by (5/2 — 3/k) times the optimal value. Our result improves the prevxous]y
known bound (4 — 6/k) of the approximation ratio.

1 Introduction

Let F = {V1, V4,...,Vi} be a family of vertex sets satisfying |Vi| = |Vo| = --- = |Vi| = n.
A complete k-partite graph G = (W1, V3, ..., Vi; E) is defined by vertex sets V3, V3,..., Vi



and an edge set £ = U{U,V}e(";){{u’ v} | u € U, v €V} A vertex subset Q is called

a clique (g-clique) of G if and only if the complete graph induced by Q is a subgraph
of G (and ¢ = |Q|). Given weights of all k-cliques of G, the k-dimensional assignment
problem finds a partition of vertices of G into a set of (pairwise disjoint) n k-cliques which
minimizes the total sum of weights of the chosen n k-cliques.

We introduce following definitions and assumptions. For any clique @ of G, every
edge connecting two vertices in @ is called cligue edge of Q). Given an edge weight vector
w € RE, we define a weight of a clique @ by the sum of weights of clique edges of
Q. Additionally, we assume that vertices of G are embedded in the d-dimensional space
and the weight of an edge is defined by the square of the Euclidean distance between
two end vertices. In the rest of this paper, we assume that the input of the problem
is k n-sets Vi, V4,..., Vi of rational d-dimensional vectors (ie., V,V4,..., Vi € Q9 and
[Vi| = |V2| = +-- = |Vk| = n). These problem instances arise from & multidimensional
Gaussian model of a data association problem, described in the next section.

In this paper, we propose a second-order cone programming relaxation of the problem
and a polynomial time randomized rounding procedure. We show that the expected ob-
jective value obtained by our algorithm is bounded b; (5 — £) times the optimal value.
Our result improves the previously known bound (4 — —) of the approximation ratio,
which is obtained by Bandelt, Crama and Spieksma in [2]

When k = 2, the k-dimensional assignment problem is the well-known assignment
problem and can be solved by Hungarian method. The 3-dimensional assignment prob-
lem has been actively investigated. When weights of all the 3-cliques are arbitrary, the
problem is a generalization of 3-dimensional matching (3DM) and thus NP-hard [8]. NP-
hardness of some subclasses is discussed in papers [3,6,17). When edge weights satisfy
triangle inequalities, Crama and Spieksma [6] showed that a simple heuristic gives a
4/3-approximation algorithm. For values k > 4, the k-dimensional assignment problem
has been less studied. Early mention of the problem can be found in Haley [9) and Pier-
skalla [12]. Bandelt, Crama and Spieksma [2] considered cases where the weights of cliques
are not arbitrary, but given as a function of edge weights. When edge weights satisfy tri-
angle inequalities and the weight of a clique is defined by the sum of weights of edges
induced by the clique, they showed that there exists (2 — 2/k)-approximation algorithm.
We briefly describe (a modified version of) their algorithm and its approximation ratio
in Section 3.1. For more detained references, see recent survey papers [4] by Burkard and
Cela and [18] by Spieksma.

Multidimensional assignment problem arises from many application areas. Pierskalla [11,
12] mentioned some application settings: capital investment, dynamic facility location,
satellite launching. Other applications appear in Frieze and Yadegar [7) and Crama et
al. 5]. Recently, multidimensional assignment problem have found applications as a tech-
nique to solve data association problems. For example, in multitarget multisensor surveil-
lance systems, we need to associate reports from multisensor to enhance target identi-
fication and state estimation. General classes of these problems can be ,formu,lat,ed as



multidimensional assignment problems [13,14]. Another example is the integration of
market databases. When there is no single source database available about all the in-
formation of interest, techniques of integrating different databases are often applied. By
integrating multiple source market survey data, the obtained single data-set will have
answers to all the questions in original surveys. A class of integration methods is known
as data-fusion procedures or statistical matching [15]. In [16], Soong and de Montigny
studied a problem instance of fusing three databases.

2 Data Association Problem

In this section, we show that our model of multidimensional assignment problem arises
from a simple probabilistic framework of the data association problem. Assume that there
are n objects (targets, randomly chosen customers, etc.) and k data-sets (observations
obtained by radar or global positioning system, results of questionnaires, etc.) such that
each data-set consists of n reports (observations) corresponding to n objects. For fus-
ing k data-sets, we need to find a partition of all the reports into (pairwise disjoint) n
k-sets such that each subset of reports meets every data-set in exactly one report, be-
cause we do not know the correspondence (matching) between reports for any pair of
data-sets. We assume that each report of object 7 may be independently and identically
distributed from d-dimensional normal distribution N(8;, X). In the following, we as-
sume that X is the d-dimensional identity matrix for simplicity. When we have k reports
Q@ = {v1,v2,...,vx} C R? of object , it is well-known that the maximum likelihood esti-
mator (MLE) of 6; is the center of gravity (1/k) }_,o v, since X is the identity matrix,
and the corresponding loglikelihood is

~Co20eq I(1/k) Lyeq ' = vlI* + Co = —(Co/k) Ly ye(g) Ilv — v'I* + Gy

where Co, C; are constants with Cp > 0. Given a partition {@,,Q, ..., Qn} of all the re-
ports such that each set corresponds to reports from a common potential object, the MLE

of the set of n parameters are {(1/k) 3",cq, v | 1€ {1,2,...,n}} and the corresponding
conditional loglikelihood is

_(CO/k Et—l Z(v vl}e Q{) "'U v “2 + ’n,Cl (1)

From the above, we can find the MLE of the set of n parameters by the following two
steps; first, solve the multidimensional assignment problem and find pairwise disjoint n
k-cliques {Q1, @3, ..., @n} which maximizes the loglikelihood (1); second, for each subset
in {Q1,Q2,...,Qn}, output the center of gravity of contained reports. In this model,
we need to solve multidimensional assignment problem, which minimizes sum total of
weights of clique edges, under the assumptions that vertices of G are embedded in the
d-dimensional space R? and the weight of an edge is defined by the square of the Euclidean
distance between two end vertices.



3 Formulations and Relaxations

In this section, we formulate the multidimensional assignment problem as an integer
linear programming problem and (integer) quadratic programming problems. Lastly, we
combine our formulations and give a second-order cone programming relaxation.

In the rest of this paper, we denote the vertex set Vy U--- U Vi by V. For any vertex
subset V C V, §(V) denotes the set of edges in E between V and V' \ V. For any disjoint
pair of vertex subsets U, V C ¥/, we denote the edge subset §(U)N&(V) by E(U, V) and/or
E(V,U). We denote a singleton {v} by v for simplicity, when there is no ambiguity. A
sequence (e;, e, e3) of edges of G is called a ¢riangle of G if the graph induced by edges
{e1, €2, €3} is a 3-cycle in G. For any vector € RF and an edge {u,v} € E, we denote
the element z({u,v}) by z(u,v) and/or z(v, u) for short.

3.1 Integer Linear Programming

We introduce 0-1 valued variable vector € {0, 1}¥. For an arbitrary edge weight vector
w € RE, we can formulate the multidimensional assignment problem as follows,

ILP: | min. Y ece w(e)z(e)

st Y erzuv)=1 (VU €F, WweV\), (2)
z(e;) > z(ez) + z(e3) — 1 (for each triangle (ey, €3, €3) of G), (3)
z(e) € {0,1} (Ve € E).

We show the correctness of the above formulation. For any = € {0, 1}, we define an
edge subset E(:zj:\) by {e € E | z(e) = 1}. Let & be a feasible solution of ILP. Then, for any
pair {U,V} € (3), constraints (2) imply that the edge subset E{z) N E(U,V) is a perfect
matching of the bipartite graph (U, V; E(U,V)). Constraints (3) mean that if [z(e2) =
1 and z(e3) = 1], then z(e,) = 1. Thus constraints (2) and (3) yield that each connected
component of (V, E(z)) contains k-clique.-Since E(a) contains n(1/2)k(k — 1) edges, the
subgraph (V, E(x)) consists of pairwise disjoint n k-cliques. The inverse implication is
clear.

When we drop constraints (3), we can decompose the obtained problem, denoted
by LP, into (1/2)k(k — 1) subproblems each of which is a classical assignment problem
defined on a bipartite graph (U, V; E(U, V)) for a pair {U,V} € (‘D Thus we can solve
LP by applying well-known Hungarian method to each subproblem. In the following,
we briefly describe a randomized version of multiple-hub heuristic proposed by Bandelt,
Crama and Spieksma in [2]. First, we solve the relaxation problem LP and obtain a 0-1
valued optimal solution =P, Next, we choose a vertex subset U € F randomly. Lastly,
we construct a graph G' = (V,6(U) N E(z"F)) and output a family of vertex subsets
{@1,Qz,...,Qxn} of connected components in G'. Since each connected component in &'
is a complete bipartite graph K x-, and meets every V' € F in exactly one vertex, the



obtained vertex subsets @1, Qs;. .., @n are pairwise disjoint k-cliques of G. The obtained
solution corresponds to a feasible solution X P} of ILP defined by :

LPR, .\ _ ) @"F(e) (Ve € 6(V)),
X e) = {ZuEU 2P (u,v)zP(u,v) (Ve = {v,v'} € E\ (V).

Results of Bandelt, Crama and Spieksma [2] imply the following. Under the assumptions
that (i) edge weights are non-negative and

(ii) 37 > 1/2, for each triangle (e;, ez, €3) of G, w(e1) + wlez) > (1/7)w(es), (4)
the expectation of the objective function value of X“F® satisfies that
E [¥.czw(e)XPR(e)] < (2/k)((k — 2) + 1)z*(ILP)

where z*(ILP) is the optimal value of ILP. Since we deal with the case that the weight of
an edge is defined by the square of the Euclidean distance between the end points, prop-
erty (4) is satisfied by setting 7 = 2. Thus, approximation ratio of the above algorithm
is bounded by (4 — 6/k) for our case.

3.2 Integer Quadratic Programming

In this subsection, we reformulate ILP as an integer programming problem with a convex
quadratic objective function. We also fix a subset U € F througllgut this subsection. In
the rest of this section, we use the assumption that vertices in V are embedded in Q¢
and the weight of an edge is defined by the square of the Euclidean distance between two
end points. For any vertex v € V, we denote the position (in Q¢) of v by v € Q¢. For
any clique @ of G, we denote the weight of Q by w(Q).

Let = € {0,1} be a feasible solution of ILP and @ = {Q1,Q3,...,Q,} be the set of
n k-cliques. For any vertex u € U, Q(u) denotes a unique clique in @ including u. The
objective function value of ILP with respect to z is sum total of clique weights and thus

equal to
2uer W(QW)) = Loesuy wle)z(e) + Loy w(Q(u) \ v).

For any vertex u € U, the clique Q(u) meets every subset V € F \ {U} in exactly one
vertex in the singleton Q(v) NV, whose position (in Q%) is denoted by Y vev T(v, ),

because the equality 3,y 7(v,u) = 1 holds. For any pair {V,V’} € (F\{"}), the clique
Q(u) has a unique clique edge in E(V, V') connecting vertices in Q(u) NV and Q(u)NV".
Thus the weight of the edge is equal to

2
IS wey 20,000~ Eyeyr s,
From the above, sum total of clique weights, ) ., w(Q(u)), is given by

Z w(e)z(e) + Z Z | Z&é(v, u)v — | Z z(v', u)v'
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Employing the above function, we obtain the following integer quadratic programming
formulation of our problem;

IQP(U):
2
min. Z w(e)x(e)+z Z Zm(v,u)v-— Z (v, u)v’
ees(U) vel (V.V} veV VeV’

()
st Y uertwv)=1 (We V\U),
Teevzmv)=1 (Vuel YW eF\({U}),
z(e) € {0,1} (Ve € 8(U)).

An advantage of this formulation is that the objective function is a convex quadratic
function. Thus the continuous relaxation problem, obtained by substituting 0-1 con-
straints with non-negativity constraints, is a convex quadratic programming problem,
which is solvable efficiently.

3.3 Second-Order Cone Programming Relaxation

Lastly, we combine formulations ILP and IQP(U) and construct a second-order cone
programming (SOCP) relaxation, which hopefully gives a better lower bound. Here we
note that we do not fix a vertex subset U € F in this subsection. By introducing an
artificial variable z, our relaxation problem is described as follows,

SOCPR:
min. 2
8.t 22 Z{u,u}eE “u - '”"237("" 'U),

22 Yt vesw) llv = viPz(u,v) ,

T S [Satvun- T e
) uel ;{V_V? vev vev!
e(P\W)
Yiewzlwv)=1 (VUEF, VeV \U),
z(e) 20 (Ve € E).

As is well-known, the above problem can be transformed to a second-order cone pro-
gramming problem, which can be solved within any given gap € in polynomial time by
using an interior point method (e.g., see a recent survey paper [1]).

4 Randomized Approximation Algorithm

In this section, we prop'osé. a randomized approxima.tion algorithm.



Algorithm 1.

Input: Subsets V3, V5,..., Vi C QF satisfying [Vi| = [Vo| = -+ = |[Vi| = n.

Output: A feasible solution X of ILP.

Step 1: Solve SOCPR and obtain an optimal solution (z*,z*).

Step 2: Randomly choose a vertex set U € F.

Step 3: For a subvector z*|5w) and for each vertex subset V' € F \ {U}, execute the
followings and obtain 0-1 valued vector Xy indexed by §(U).

Step 3-1: Represent the subvector &*|g(,v) by a convex combination of characteris-
tic vectors of perfect matchings in the bipartite graph (U, V; E(U, V)). We denote
the coefficient. of convex combination with respect to a perfect matching M by
A(M).

Step 3-2: Choose a perfect matching of (U, V; E(U,V)) under the probability func-
tion that a perfect matching M is chosen with probability A(M).

Step 3-3: Set the subvector X |g,v) be the characteristic vector of the chosen perfect
matching.

Step 4: Output a 0-1 valued vector X € {0,1}F defined by

Xu(e) (Ve € 6(U)),
Luer Xu(u, v)Xu(w,v') (Ve = {v,v'} € E\ §(U)).

For executing Step 3-1, we need to represent the subvector &*| g, by a convex combi-
nation of characteristic vectors of perfect matchings in the bipartite graph (U, V; E(U, V))
for each V € F\{U}. We can find a set of coefficients for convex combination by applying
(unweighted version of) Hungarian method O(n?) times. Thus, the time complexity of
Step 3 is bounded by O(kn*?) [10]. The time complexity of Step 4 is bounded by O(k2n3).

The following theorem is our main result.

X(e):{

Theorem 1. Algorithm 1 finds a feasible solution of ILP such that the ezpectation of the

corresponding objective function value is less than or equal to (% — 2) 2** where 2** is the

optimal value of the multidimensional assignment problem defined by subsets V4, ..., V, C
Q? satisfying Vi =+ = [Vi| =n.
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