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Abstract Polynomial time learning of a context-free language is hard even if the learner can
use membership queries. Moreover, the same hardness has been shown for some major subclasses
of context-free languages. In this paper, we show a subclass of context-free languages which is
polynomial time learnable via membership queries, equivalence queries and a special finite exam-
ples. In addition, we show some conversion algorithm from random examples to the set of special
examples. From this result, our subclass of context-free languages is polynomial PAC learnable
via membership queries and random examples.

1 Introduction tunately, there are negative results in poly-
nomial time query learning. With an as-
sumption of one-way functions, the class of
context-free languages is not polynomial time
learnable even though the learner uses mem-

bership and equivalence queries[4].

Learning via queries is one of the most impor-
tant model for grammatical inference. From
early studies of this area, the model of learn-
ing in the limit has been studied. This model
rules the goal of the learning, but definitions
of time complexity for this learning model are
referred in the later studies[8]. Nevertheless,
negative results[3][5] have been shown in this
learning model.

In this paper, we show a polynomial time
learning algorithm for a subclass of context-
free grammars with membership queries,
equivalence queries and a set of characteristic
examples. The subclass of context-free gram-

In the query learning model, Angluin has
shown the polynomial time query learnabil-
ity of regular sets[2]. Following this result,
some extensions of the polynomial time query
learnability has been shown|[7][9][10]. Unfor-

gon

mars is our newly defined and a grammar
in this subclass is called a partitionable and
unique path context-free grammar. In the
class of partitionable context-free grammars,
the learner can decide immediately that, for
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any pair of rules, they can not be contained in
the same grammar. In a unique path context-
free grammar G, for every nonterminal A,
there exist v € ¥* and v € ¥* such that
S%UAU and A%w iff wwv € L(QG) for any

w € ¥*. With this property, the learner can
find whether A can derive w or not by a mem-
bership query for wwv. We show that the
class of simple deterministic grammars is con-
tained in a class of partitionable and unique
path context-free grammars. In [6], it has
been shown that the class of simple determin-
istic grammar is not identifiable in the limit
from polynomial time and data. Thus, our
newly defined subclass is not identifiable in
the limit from polynomial time and data.

2 Preliminaries and defini-
tions

A context-free grammar (CFG for short) is
denoted by G = (N, X, P,S), where N is a
finite set of nonterminals, > is a finite set
of terminals, P is a finite set of production
rules (in short, rules), and S € N is the start
symbol. Let € be the word whose length is 0.
We assume that every grammar in this paper
is e-free. For a set B, we denote by |B| the
cardinality of B. For a string (3, we denote
by || the length of 3. We assume that every
rule is of the form A — af where A € N,
a € X, f € N* such that || < 2 (Greibach
normal form). Let B" = {w € B* | |w| = n}
and BS" = {w € B* | |w| < n} for a finite
set B.

The derivation from ajAas to a3Bas is
denoted by ajAas :G>a15a2 where a1,y €

(NUX)* and A — (in P. The reflexive and
transitive closure of ? is denoted by %;> or

=, If'y:;>w and w € X* then w is a word

generated from v € (N UX)* by G. The lan-
guage generated from v by G is denoted by
La(y) = {w € ¥ | fy%w}. A word gener-
ated from S is called a word generated by G

and the language generated by G is denoted
by L(G) = Lg(S). A language generated by

a CFG G is called a context-free language
(CFL for short).

A nonterminal A € N is said to be reach-
able if S:;MuAﬁ for some w € ¥*, § € N*,

and A is said to be live if Lg(A) # 0.

Let u,v € ¥* and L be a language. We
define u\L = {w € ¥* | uw € L}, L/v =
{w e ¥* |wv € L}, and v\L/v = {w € ¥* |
uwv € L}.

Let ~ be an equivalence relation on a set
P and D(a) be the equivalence class which
contains a € P. We denote by P/ ~ the
family of equivalence classes. That is P/ ~=
{D(a) | a € P}.

If a CFG G = (N, X, P, S) satisfies the fol-
lowings, then G is called a nondeterministic
regular grammar.

e Let A,B € N and a € ¥. There are only
rules of the form A — a or A — aB in
P.

The language generated by a regular gram-
mar is called a regular language. In addition,
if (A — aB) € Pand (A — aC) € P =
B = C holds, then G is called a (determinis-
tic) regular grammar.

If a CFG G = (N, X, P, S) satisfies the fol-
lowings, the G is called a simple deterministic
grammar (SDG for short).

e Every rule in P is of the form A — a8
where A € N, a € ¥ and f € N* such
that || < 2.

e let A€ N,a€ X and B,y € N*. If
both of A — a8 and A — av is in P
then 8 = ~.

The language generated by an SDG is called
a simple deterministic language (SDL for
short).

2.1 Partitionable CFGs

We define a class of CFG called partition-
able CFG in the following. We have shown
that SDLs are polynomial time learnable with
membership queries if a set of representative
samples is given[11]. In this paper, we extend
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the algorithm for the following subclasses of
CFLs.

Definition 1 Let N,, be a set of nontermi-
nals such that |N,| = n(> 1), Let Py(n) =
{A—aB | A€ NyacX,Be N[l <2}
This is the set of all possible rules in Greibach
normal form of a CFG.

Assume an equivalence relation ~, on
Py(n) for every n such that (A1 — ) ~;
(A2 — 7) = (A1 — B) ~; (A2 — v) for
i < j where either Py(i) or Py(j) contains
both of A1 — B and Ay — . We denote ~
by ~.

The subclass of CFGs G(~) is defined as
the following. Every G = (N,%, P,S) € G(~)
satisfies that if (A — () € P then any
(B — ) & P such that (A — ) ~ (B — 7).
In other words, G € G(~) consists of rules
selected at most one rule from every equiva-
lence class.

We call G(~) a ~-partitionable CFG or
a partitionable CFG, and the language class
generated by G(~) is called ~-partitionable
CFLs or partitionable CFLs.

For G = (N,X,P,S) € G(~) and (A
B) € P, we define D.(A — B) = {(B —
N eP|(A—B)~ (B}

A class of G(~) is obviously a subclass of
CFGs. In our learning model, we assume that
~ is a priori knowledge of the learner. Thus,
the learner can check whether a hypothesis is
~-partitionable or not, immediately.

For example, let ~ be an equivalence rela-
tion such that

—

(A—ap) ~(A— ay)

for A € N, a € ¥ and 8,7 € N*. Then
~-partitionable CFGs is the class of SDGs.

2.2 A unique path and a unique
path complete set

We define the following properties for CFGs.

Definition 2 Let G = (N, %, P, S) be a CFG
and A € N. A is called a unique path non-
terminal, if there exist a pair u,v € ¥* such
that

0110

e S=uAv and
o Lg(A) =u\Lg/v.

The derivation S = uwAv is called a unique
path of A.

If every A € N is a unique path nontermi-
nal, then G is called a unique path CFG and
L(G) is called a unique path CFL.

For w € ¥* and A € N of a unique path
CFG, we can distinguish whether w € Lg(A)
or not by a membership query for uwv € ¥*
where S = uAv is a unique path of A.

Definition 3 Let G (N,X,P,S) be a
unique path CFG. A finite set U C ¥X* is a
unique path complete set (UPCS for short),
if there exists ugwvyg € U for every A € N
such that

o up,w,va €XF, and
o S uqAvy is a unique path of A.

We note that either w € L(G) or w € L(G) is
admissible for any UPCS U and any w € U.

For example, assume G = (N, X, P, S) is
an SDG such that N = {S,A,B,C}, ¥ =
{a, b}, and

P={S—aA, A—aAB, A—b, B — b}.

Then, the set {aabb} is a UPCS, because
5%555 is a unique path of S, S:;NLA is a

unique path of A, and S :;> aabB is a unique

path of B.

For a regular grammar G = (N, X%, P, S),
a UPCS equals the live-complete set which is
used to show that the class of regular sets is
polynomial time learnable with membership
queries and a live-complete set[1].

2.3 Queries

In this paper, we assume that the learner can
use the following queries. Let L; be the target
language and Rp is the representation class
by whom the learner guesses a hypothesis.
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Membership query takes w € ¥*, and re-
ply with “yes” if w € L; or “no” if
w ¢ Lt'

Equivalence query
takes a hypothesis grammar G in Rp. If
L(G) = L; then “yes” is returned. If
L(G) # L; then “no” and a counterex-
ample w € (Ly — L(G))U (L(G) — L;) are
returned.

3 The learning algorithm

We prove the following theorem by showing
a learning algorithm.

Theorem 4 We denote by T the language
generated by G such that

e G eG(~) and G is a unique path CFG.

Then, T is polynomial time learnable by the
class of G(~) via a UPCS, equivalence queries
and membership queries.

Throughout this paper, L; denotes the
target language and we assume Gy
(N, X, P, S¢) as the grammar which satisfies
L(G¢) = Ly. In addition, U denotes the given
UPCS.

The learning algorithm for this language
class is as follows.

. Construct nonterminal candidates from
the given UPCS and all possible rules.

. Check consistency of rules by check word
set W.

. Construct base grammars.
. Ask equivalence queries for every hy-
pothesis in base grammars and update

w.

We describe details of each step and prove
the correctness of this algorithm.

0120

3.1 Candidates of nonterminals

and possible rules

From the definition of the UPCS, Cj
{(u,v) € T x X | vwv € U,w € ¥*} con-
tains the pair of uqg € ¥* and v4 € ¥* such
that

S = uaAva

and Lg,(A) = ua\Li/va for every A € Ny.
We denote by (u4,v4) such corresponding el-
ement in C, to A € N;. The learner makes
an equivalence relation on C}, such that no
equivalence class contains both of (u4,v4)
and (up,vp) for every pair of A, B € N;. The
equivalence classes are candidates of nonter-
minals in the hypothesis.

To construct such an equivalence relation,
we use W C X* of a check word set. Let
(up,v1) € Cp, and (ug,v2) € Cp, we define
(uy,v1) (ug,v2) iff vywuy € Ly <=
uowve € Ly for any w € W. Obviously,

we can decide whether (u,v) L4 (x,y) or not
by |W| times membership queries for any
(u,v) € Cp, and (x,y) € Ch.

The learner initializes W = ¥ and extends
it to make a distinction between every A €
Ny and B € N;. We refer to the extension
method in the following section. We denote
Ch/ Ié/ by Nh-

The learner construct the rule set Py (|Ny])
from Ny, that is

PU(’NhD = {Al — aﬁ | A1 € Nh,a S Z,
B e N2

These rules are candidate rules for the hy-
pothesis.

3.2 Consistency check

Let A be an equivalence class in Ny, and
w € W. From the definition of N, it holds
that vwv € L; iff 2wy € L; for any pair
of (u,v),(xz,y) € A. Thus, we can define
T(A,w) =1 if uwv € Ly where (u,v) € A,
otherwise T'(A,w) 0. In addition, for
ByBy---B, € N;Ln where By, Bo, -+, By, €
Np, we define T(B1Bs--- By, w) 1 if
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there exists wi,ws, -+, w,, € X* such
that T(Bl,wl) = 1, T(BQ,U)Q) = 1, teey
T(Bpm,wp) =1 and wiws - - - wy, = w.

The learner decides that a rule A — af in
Py (|Ny|) is not appropriate for the hypothe-
sisif T(A, aw) # T(f3,w) for some w € W. In
the learning algorithm, the learner executes
the following steps.

(step 1) Let By, = Py (|Ny)).

(step 2) For A€ Njanda € 3,ifT(A,a) =
0 then remove A — a from Pj,.

(step 3) For A — af3 where A € Nj, a € &
and 3 € N7, if T(A,aw) # T(B,w) for
some w € W then remove A — af from
Py.

Then, the following lemma holds.

Lemma 5 Let E be the equivalence class
in Ny, such that (e,e) € E. Let G =
(N, 2, Py, E) be a CFG. For any A € Ny,
and w € W, it holds that T(A,w) = 1 iff
w e LGh (A)

Proof: We prove this lemma by the induc-
tion of |w| for w € W.

Base step :  When w = a € X, from the
description of the consistency check (step 2),
it holds that T (A,a) = 1iff (A — a) € P, for
any A € N and a € X.

Induction step Assume that this
lemma holds for w € ¥* such that |w| = n.
We are concerned with aw where a € X.
From the definition of the consistency check
(step 3), it holds that T'(A,aw) = T(5,w)
where (A — af3) € Pj,. On the other hand, it
holds that T'(3,w) = 1 iff w € Lg, (§) from
the assumption of this induction. Thus, this
lemma holds for aw. O

3.3 Base grammars

If we can select the correct rule from D (A —
B) for each (A — ) € B}, we can construct
the correct hypothesis grammar. To complete

0130

such selection in polynomial time, we define a
set of base grammars whose rules are a subset
of Ph-

Definition 6 Let P,/ ~= {Dy,Ds,---,D,}
and <; be an arbitrary total order on D; for
eachi=1,2,--- ,n. Foreveryj =1,2,--- n,
let (Bj — ) € D; such that (B; — () <;
(C — ) for any (C — v) € Dj. We define
PA—a)={(B;j —Bj)eDj|(A—a)c
Dy,j=1,2,--- k—1,k+1,--- ,n}U{A — a}.
Then, the set of base grammars B is

B={G=(Ny,%,P(A—a),E)cg(~)
| (A — Oé) € Ph}

where E is the equivalence class in Ny, such
that (e,¢) € E.

3.4 Equivalence check and update
of the check word set

The learner makes equivalence queries for ev-
ery G € B. If an equivalence query is replied
with “yes” then the learner outputs the cor-
rect hypothesis and terminates. On the other
hand, every equivalence queries are replied
with “no”, then let EX be the set of all
counterexamples returned by the equivalence
queries.
Then, the learner updates W as

W = WUu{weXt|uveX
wwv € EX}.

The learner goes back to the first step
with the updated W. In Fig.1, we show the
pseudo-code of this algorithm Aj.

3.5 Correctness and complexity

This learning algorithm outputs a correct hy-
pothesis if an equivalence query replies with
“yes.” Thus, we show that the algorithm ter-
minates in polynomial time.

Lemma 7 Let Py, be the set of rules which
is checked the consistency with W. Suppose

that W' # 0 in our learning algorithm and let
Wy =WU{we Xt | z,y € X% zwy € W}.
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INPUT: a UPCS U;
OUTPUT: a hypothesis G € G(~);
begin

Ch = {($7z) ‘.’L’E E+,y,2’€ 2*71.'3/'2 € U}U{(E,E)},

W:={a€X}
repeat
Ny = Cn) %
Py := Py(|Npl);

check the consistency and delete inappropriate rules from Py;

let B be the set of base grammars;

W' =0,
for all G € B do
if L(G) = Ly then
output GG and terminate;
else
W= Ww'U{w};
endif
done

for all w € W' do

W =WU{yeXt|z,zeX* v -y 2=w}

done
until (forever))
end.

Figure 1: The learning algorithm A

Let P} be the consistency checked rules with
Wa.
Then, either of the followings holds.

o Cp/ Y2 s finer than Cy,/ 4

e There exists a rule A — ( such that
(A— () e P, but (A— B) & P

Proof: Assume that W’ # () but Cy,/ 22 i
not finer than Cj,/ Y ie. (Cn/ I/22) = (Cp/ 4

).

If there exists w' € W' such that w' €
L(Ggy) — L; for some Gy € B, then a deriva-
tion Ecz}wl exists, here E € N, is the

start synolbol of Gy. On the other hand,
w' & L(GY,) where G}, = (N, %, P}, E) since
T(E,w') = 0, from Lemma 5. Thus, there
exist A € Ny, a € ¥ and B € N; such

0140

that E :> ugAvg j ugaSug : upawivg = w'

and T(A awo) # T(ﬁ,wo) Where ug, vy € X*
and wy € Y. Obviously, (A — af) € P},
from the definition of the consistency check.
Thus, this lemma holds.

Contrary, we suppose w’ € W’ such that
w' € Ly — L(Gy) for some Gy € B. Tt holds
that T(E,w') = 1 and v’ € L(G}) from
Lemma 5 where G}, = (N, %2, Py, E). Now,
we have the assumption that Cj/ 2 is not

finer than C},/ VE Thus, there exist A € Ny,
B,y € Njf and a € ¥ such that

* *

o = uiAvy = uiafBv = ujawiv; = w',
G el eX
h h h

o E= ujAvy = ujayvy, and
G1 G1

o T'(y,w) =0 (Fig.2).
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Figure 2: A derivation for a positive example

This concludes that P,’1 does not contain 4 —
a~y. Thus, this lemma also holds in this case.
O

Lemma 8 The time complezity of the learn-
ing algorithm is bounded by a polynomial of
the size of the given UPCS, and the mazimum
length of counterezamples.

Proof: Let [,, be the maximum length of
counterexamples. Let [; and s be the maxi-
mum length of words in U and the cardinality
of U, respectively. In the learning algorithm,
both of |P,| and |Np| are monotone decreas-
ing from Lemma 7. Thus, the main loop of
the algorithm repeats at most |Cy|| Py (|Ch)|)|
times. Now, |ChHPU(’Ch|)| < ’Ch‘4’2| <
(125)4|2]. The size of B and |W’| is bounded
by a polynomial of |Py|. Thus, the increase
of W is also bounded by a polynomial. O

4 UPCS Construction from
random examples

In probably approximately correct (PAC)
learning, the learner can decide whether a
hypothesis is equivalent to the target lan-
guage or not by consistency checking with
polynomial number of examples[2]. Thus, if
the learner can obtain a UPCS from polyno-
mial number of random examples then the
learning algorithm in Fig.1 can be converted
to a PAC learning algorithm via membership
queries and random examples.

In [11], we have proposed that a set of rep-
resentative samples can be obtained from m
random samples such that

1 ||
m>dlog< 5 )

where |P;| is the size of the target grammar,
0 is the given confidence parameter and d is
the minimum probability such that a rule is
used in the derivation of the sample word.
With the same analysis above, the learner
can obtain a UPCS from m’ random examples

such that
1 N,
m' > = log <M>
P )

where | Ny is the cardinality of the set of non-
terminals of the target grammar, and p is
the minimum occurring probability of unique
paths of any A € N;.

Now, we obtain the following theorem.

Theorem 9 We denote by T the language
generated by G such that

e G €G(~) and G is a unique path CFG.

Then, there exists a learning algorithm which
outputs a correct hypothesis with the probabil-
ity 1 — & using

e membership queries,

e polynomial number of random examples,
and

e the minimum occurring probability of
unique paths of any A € Ny. O

5 Conclusions

In this paper, we show that a class of parti-
tionable and unique path CFGs is polynomial
time learnable from

e equivalence queries, membership queries,
and

e a unique path complete set.

In addition, it has been shown that we can
obtain a PAC like learning algorithm by re-
placing an equivalence query and a UPCS to
polynomial number of random examples.
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