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abstract

We consider the following network design problem; Given a vertex set V with a
metric cost ¢ on V, an integer k > 1, and a degree specification b, find a minimum
cost k-edge-connected multigraph on V' under the constraint that the degree of each
vertex v € V is equal to b(v). This problem generalizes metric TSP. In this paper,
we propose that the problem admits a p-approximation algorithm if b(v) > 2,v € V,
where p = 2.5 if k is even, and p = 2.5 + 1.5/k if k is odd.

1 Introduction

It is a main concern in the field of network
design to construct a graph of the least cost
which satisfies some connectivity requirement.
Actually many results on this topic have been
obtained so far. In this paper, we consider
a network design problem that asks to find
a minimum cost k-edge-connected multigraph
on a metric edge cost under degree specifi-
cation. This provides a natural and flexi-
ble framework for treating many network de-
sign problems. For example, it generalizes the

vehicle routing problem with m vehicles (m-
VRP) [3, 7], which will be introduced below,
and hence contains a well-known metric trav-
eling salesperson problem (TSP), which has
already been applied to numerous practical
problems [8].

Let Z4 and Q4 denote the sets of non-
negative integers and non-negative rational
numbers, respectively. Let G = (V,E) be a
multigraph with a vertex set V and an edge set
E, where a multigraph may have some paral-
lel edges but is not allowed to have any loops.
For two vertices u and v, an edge joining u and



v is denoted by wv. Since we consider multi-
graphs in this paper, we distinguish two par-
allel edges e; = uv and ez = uv, which may be
simply denoted by uv and uv. For a non-empty
vertex set X C V, d(X;G) (or d(X)) denotes
the number of edges whose one end vertex is
in X and the other is in V — X. In particu-
lar d(v; G) (or d(v)) denotes the degree of ver-
tex v in G. The edge-connectivity A(u,v;G)
(or A(u,v)) between u and v is the maximum
number of edge-disjoint paths between them in
G. The edge-connectivity A(G) of G is defined
as minypev A(u,v; G). If M(G) > k for some
k € Z,, then G is called k-edge-connected.
For a function r : (%) — Zy, G is called r-
edge-connected if A(u,v; G) > r(u,v) for every
u,v € V. Edge cost ¢ : (§) — Qy is called
metric if it obeys the triangle inequality, i.e.,
c(uv) + c(vw) > c(uw) for every u,v,w € V.
For a degree specification b : V — Z,, a
multigraph G with d(v; G) = b(v) forallv e V
is called a perfect b-matching. In this paper, we
focus on the following network design problem.

k-edge-connected multigraph with de-
gree specification (k-ECMDS):

A vertex set V, a metric edge cost ¢ : (3) —
Q, a degree specification b : V — Z,, and
a positive integer k are given. We are asked
to find a minimum cost perfect b-matching
G = (V, E) of edge-connectivity k. O

In this paper, we suppose that b(v) > 2 for
all v € V unless stated otherwise, and propose
approximation algorithms to k-ECMDS in this
case.
Problem k-ECMDS is a generalization of
m-VRP, which asks to find a minimum cost
set of m cycles, each containing a designated
initial city s, such that each of the other cities
is covered by exactly one cycle. Observe that
this problem is 2-ECMDS where b(s) = 2m for
the initial city s € V' and b(v) = 2 for every
v €V —s. If m =1, then m-VRP is exactly
TSP. Since TSP is known to be NP-hard [11]
even if a given cost is metric (metric TSP),
k-ECMDS is also NP-hard. If a given cost is
not metric, TSP cannot be approximated un-
less P = NP [11]. For m-VRP, there is a 2-

approximation algorithm based on the primal-
dual method [7].

It is well studied to find a minimum cost
multigraph either with k-edge-connectivity
or with degree specification. It is known
that finding a minimum cost k-edge-connected
graph is NP-hard since it is equivalent to met-
ric TSP when k = 2 and a given edge cost
is metric. On the other hand, it is known
that & minimum cost perfect b-matching can
be constructed in polynomial time (for ex-
ample, see [10]). As a prior result on prob-
lems equipped with both edge-connectivity re-
quirements and degree constraints, Frank [1]
showed that it is polynomially solvable to find
a minimum cost r-edge-connected multigraph
G with £(v) < d(v;G) < u(v), v € V for degree
lower and upper bounds f,u : V — Z4 and a
metric edge cost ¢ such that c(uv) is defined
by w(u) + w(v) for some weight w : V' — Q4
(in particular, c(uv) = 1 for every uv € (%)).
Recently Fukunaga and Nagamochi [4] pre-
sented approximation algorithms for a network
design problem with a general metric edge
cost and some degree bounds; For example,
they presented a (2 + 1/|miny, yev 7(u, v)/2))-
approximation algorithm for constructing a
minimum cost r-edge-connected multigraph
that meets a local-edge-connectivity require-
ment r with r(u,v) > 2, w,v € V un-
der a uniform degree upper bound. After-
wards Fukunaga and Nagamochi [5] gave a 3-
approximation algorithm for the case where
r(u,v) € {1,2} for every u,v € V and £(v) =
u(v) for each v € V. In this paper, we
extend the 3-approximation result [5] to k-
ECMDS. Concretely, we prove that k-ECMDS
is p-approximable if b(v) > 2, v € V, where
p=25ifkisevenand p=25+15/kifkis
odd. To design our algorithms for k-ECMDS,
we take a similar approach with famous 2- and
1.5-approximation algorithms for metric TSP.

2 Algorithm for k-ECMDS

For some degree specification b, there is no per-
fect b-matching. The following theorem shows
provides a necessary and sufficient condition



for a degree specification to admit a perfect
b-matching. Note that b(v) can be 1 in this
theorem.

Theorem 1 Let V be a vertez set with |V| >
2and b : V — Zy be a degree specifica-
tion. Then there exists a perfect b-matching
if and only if Y- oy b(v) is even and b(v) <
Y uev_y O(U) for eachv e V.

Proof: The necessity is trivial. We show
the sufficiency by constructing a perfect b-
matching. We let V. = {v1,...,v,} and
B = Y, 1b(v)/2. For j = 1,...,B, we
define i; as the minimum integer such that
Y7, b(ve) > j, and 7 as the minimum in-

teger such that 3", b(vy) > B +j. Notice
that Z;j:_ll b(ve) < j holds by the definition
if 4; > 2. Then we can see that i; # zg since
otherwise we would have b(v;;) = Y=, b(vg) —

b)) > (B+j)—j=Bifi; > 2 and
b(vi;) > B +j > B otherwise, which contra-
dicts to the assumption.

Let M = {e; = Vi,V | § =1,...,B}.
Then M contains no loop by i; # ;. More-
over Gy is a perfect b-matching since |{j |
ij = £ or i = £}| = b(v;), as required. O

Theorem 1 does not mention the edge-
connectivity. For existence of connected per-
fect b-matchings, we additionally need the con-
dition that Y7 ¢y b(v) > 2(|V|—1) [5]. This is
always satisfied if b(v) > 2, v € V, which we
assume for 1-ECMDS. For k > 2, the condi-
tions in Theorem 1 and b(v) > k, v € V are
sufficient for the existence of k-edge-connected
perfect b-matchings as our algorithm will con-
struct such b-matchings under the conditions.

Now we describe our algorithm to k-
ECMDS. Let (V,b,¢c,k) be an instance of k-
ECMDS. The conditions appeared in Theo-
rem 1 and b(v) > k for all v € V can be veri-
fied in polynomial time, where they are appar-
ently necessary for an instance to have k-edge-
connected perfect b-matchings. Hence our al-
gorithm checks them, and if some of them
are violated, it outputs message “INFEASI-
BLE”. In the following, we suppose the exis-
tence of perfect b-matchings with b(v) > k for

allve V. If 2 < |V| < 3, then every perfect
b-matching is k-edge-connected because any
non-empty vertex set X C V' is {v} or V —{v}
for some v € V, and then d(X) = d(v) > k.
Hence we can assume without loss of generality
that |V| > 4.

For an edge set F on V, we denote graph
(V,F) by Gr. Let M be a minimum cost edge
set such that Gps is a perfect b-matching. In
addition, let H be an edge set of a Hamil-
tonian cycle spanning V' constructed by the
1.5-approximation algorithm for TSP due to
Christofides [11].

Initialization: After testing the feasibility of
a given instance, our algorithm first prepares
M and k¥ = [k/2] copies Hi,...,Hy of H.
Let E denote the union M U H; U ---U Hy of
them. Notice that Gg is 2k’-edge-connected
by the existence of edge-disjoint k' Hamilto-
nian cycles. We call a vertex v in a handling
graph G an excess vertez if d(v; G) > b(v) (oth-
erwise a non-ezcess vertezr). In Gg, all vertices
are excess vertices since d(v; Gg) = b(v) +2k'.
In the following steps, the algorithm reduces
the degree of excess vertices until no excess
vertex exists while generating no loops and
keeping k-edge-connectivity (Notice that k <
2k’ if k is odd). This is achieved by two phases,
Phase 1 and Phase 2, as follows.

Phase 1: In this phase, we modify only edges
in M while keeping edges in Hy,...,Hy un-
changed. We define the following two opera-
tions on an excess vertex v € V.

Operation 1: If v has two incident edges zv
and yv in M with z # y, replace zv and
yv by new edge zy.

Operation 2: If v has two parallel edges uv in
M with d(u) > b(u), remove those edges.

Phase 1 repeats Operations 1 and 2 until
none of them is executable. For avoiding am-
biguity, we let M’ denote M after executing
Phase 1, and M denote the original set in what
follows. Moreover, let E' = M'UH;U---UHj.
Note that d(v) — b(v) is always a non-negative



even integer throughout (and after) these oper-

ations because d(v; Gg) — b(v) = 2k’ and each-

operation decreases the degree of a vertex by
2. If no excess vertex remains in G, then we
are done. We consider the case in which there
remain some excess vertices, and show some
properties on M’ before describing Phase 2.

Claim 1 Ewvery excess vertex in Ggr has at
least one incident edge in M’ and its neigh-
bors in Gpp are unique.

Proof: Omitted due to the space limitation.
d

For an excess vertex v in Ggr, let n(v) de-
note the unique neighbor of v in Gy If n(v)
is also an excess vertex in Ggr, we call the pair
{v,n(v)} by a strict pair.

Claim 2 Let {v,n(v)} be a strict pair. Then
d(v;Gyr) = d(n(v);Gpr) = 1, k is odd, and
b(v) = b(n(v)) = k.

Proof: By Claim 1, d(v;Gy) =
d(n(v);Gumr). I d(v;Gyr) = d(n(v);Gper) >
1, Operation 2 can be applied to v
and n(v), a contradiction. Hence
d(v;Gmr) = d(n(v);Gw) = 1 holds.
Let v € {v,n(v)}. Then it holds that
d(v;Gpr) = d(uw;Gryu.ul,,) + dw;Gyr) =
2k' +1 = 2[k/2] + 1. Since d(u; Ggr) — b(u)
is even, b(u) must be odd. This fact and
d(u,Ggr) > b(u) > k indicates that b(u) = k
and k is odd. O

By definition, the existence of excess ver-
tices which are in no strict pairs indicate that
of some non-excess vertices. Upon completion
of Phase 1, let N denote the set of non-excess
vertices in Ggr, and S denote the set of strict
pairs in Ggr. If N = 0, all excess vertices are
in some strict pairs. By Claim 2, k is an odd
integer in this case, and furthermore k > 3 by
the assumption that b(v) > 2, ve Vifk=1.
From this fact and |V| > 4, N = @ implies that
at least two strict pairs exist (i.e., |S| > 2).

Phase 2: Now we describe Phase 2. First, we
deal with a special case in which V consists of
only two strict pairs.

Claim 3 IfV consists of two strict pairs after
Phase 1, we can transform Ggr into a k-edge-
connected perfect b-matching without increas-
ing the cost.

Proof: Let V = {u,v,w,2} and H =
{uv,vw,wz, zu}. Now E' = M'UH,U---UHp
(k > 2). Then either M’ = {uv,wz} (or
{vw, 2u}) or M’ = {uw,vz} holds. In both
cases, we replace M' U Hy U Hy, by E" =
{wv, vw, wz, zu,uw,vz} (see Fig. 77). Then,
we can see that d(v; Ggr) = 3forallv € V and
GEgr is 3-edge-connected. Since d(v;Gg;) = 2

for v € V,i = 3,...,k' and Gp; is 2-edge-

connected for ¢ = 3,...,k', it holds that
d(v; Gegrubsu.ugy) = 3+2(K —2) = k =
b(v) for v € V and the edge-connectivity of
GErUH3U.UH,, 18 3 + 2(k' — 2) = k (The ex-
istence of strict pair implies that & is odd by
Claim 2.).

Hence it suffices to show that c¢(E") <
(M) + ¢(Hy) + ¢(Hz). If M’ = {uw, vz} (or
{vw, zu}), then it is obvious since E” = M'U
H; € M'U Hy U H,. Let us consider the other
case, i.e., M' = {uwv,wz}. From M'U H; U H;,
remove {uv,uv}, replace {wz,zu} by {wu},
and replace {vw, w2} by {vz}. Then the edge
set becomes E" without increasing edge cost,
as required. : O

In the following, we assume that |S| > 3
when N = (. In this case, Phase 2 modifies
only edges in H;, i = 1,...,k while keeping
the edges in M’ unchanged. Let V(H;) de-
note the set of vertices spanned by H;. We
define detaching v from cycle H; to be an op-
eration that replaces the pair {uv,vw} C H;
of edges incident to v by a new edge uw.
Note that this decreases d(v) by 2, but H; re-
mains a cycle on V(H;) := V(H;) — {v}. For
each excess vertex v in Ggr, Phase 2 reduces
d(v) to b(v) by detaching v from (d(v; Ggr) —
b(v))/2 cycles in Hy,...,Hy. We notice that
(d(v; Ggr) —b(v))/2 < k' by d(v;GEr) —b(v) <
d(v;Gg) — b(v) = 2k’. One important point
is to keep |V(H;)| > 2 for each ¢ = 1,...,K
during Phase 2. In other words, we always se-
lect H; with |V (H;)| > 3 to detach an excess
vertex. This is necessary because, if we detach



a vertex from H; with V(H;) = 2, then H; be-
comes a loop. In addition, we detach the two
excess vertices 4 and v in a strict pair from dif-
ferent cycles in Hy, ..., Hy, respectively. This
is in order to maintain the k-edge-connectivity
of Gg as will be explained below.

Claim 4 It is possible to decrease the degree of
each excess vertex v in G to b(v) by detach-
ing from some cycles in Hy,...,Hy so that
|V (H;)| remains at least 2 fori=1,...,k and
the two excess vertices in each strict pair are
detached from H; and H; with i # j, respec-
tively.

Proof: First, let us consider the case of S #
0. Recall k > 3 and k¥’ = [k/2] > 2 in this
case. For each strict pair {u,v} € S, we detach
" 4 and v from different cycles in Hj,...,Hp.
On the other hand, we detach excess vertex
z from arbitrary (d(z;Ge) — b(z))/2 cycles.
After this, each of Hj,..., Hy is incident to
at least one vertex of any strict pair in S in
addition to all non-excess vertices in N. By the
relation between |S| and |N| we explained in
the above, it holds that |V (H;)| > |S|+|N| > 2
for each i =1,...,K, as required.

Next, let us consider the case of S = 0. As
explained in the above, |[N| > 1 holds for this
case. If |[N| > 2, the claim is obvious since each
of Hy, ..., Hy is always incident to all vertices
in N. Hence suppose that |N| = 1, and let
be the unique non-excess vertex in N. Then all

edges in M’ are incident to z, since otherwise

S = 0 implies that Operation 1 or 2 would be
applicable to some vertex in V — z. In other
words, b(z) = d(z;Gr) = |M’'| + 2k’ holds
before Phase 2. Moreover Y y_, b(v) > b(x)
also holds by the assumption that perfect b-
matchings exist. Now assume that we have
converted some excess vertices in Ggr into non-
excess vertices by detaching them from some
of Hy,...,Hp while keeping |V(H;)| > 2, i =
1,...,k, and yet an excess vertex y € V —
z remains. Hence ) oy d(v) > Y oy b(v).
Then there remains a cycle H; with |V(H;)| >

2 because

2 Z V(H:)| = Zd(U§GH1u~--UHk/)
1<i<k’ veEV

= Y d(v)-2|M|
eV

> > b(v) +b(x) —2|M|
vEV -z

> 2(b(z) - M)

> 4K,

Therefore we can detach an excess vertex y
from such H; as long as such a vertex exists.
This implies that the claim holds also for |N| =
1. O

In the following, we let H] denote H; after
Phase 2, and H; denote the original Hamil-
tonian cycle for i = 1,...,k’. Moreover let
E" = M'UH{U---UHj,. The algorithm out-
puts Gg». The entire algorithm is described
as follows.

Algorithm UNDIRECT (k)

Input: A vertex set V, a degree specification
b:V — Z,, a metric edge cost ¢ : V —
Q4, and a positive integer k

Output: A k-edge-connected perfect b-
matching or “INFEASIBLE”

1 if ) cpb(v) is odd, Fv
Y uev—o b(w) or k > b(v) then
2:  Output “INFEASIBLE” and halt
3: end if;
Compute a minimum cost perfect b-
matching Gy,
if |V| < 3 then
Output Gps and halt
end if;
Compute a Hamiltonian cycle Gy on V by
Christofides’ algorithm;
9: k' := [k/2]; Let Hi,...,Hw be k' copies
of H;

# Phase 1

10: M':= M;

11: while Operation 1 or 2 is applicable to a
vertex ve 'V
with d(v; Gyrumyo--um,,) > b(v) do

bv) >

~»



12:  if 3{zv,vy} C M’ such that z # y then
13: M = (M — {zv,vy}) U {zy} #
Operation 1

14:  else
15: if Iaxv,vz} C M’ such that
d(z; GM’quu---uH,,,) > b(z) then
16: M = M - {zv,vz} #
Operation 2
17: end if
18  end if
19: end while;
# Phase 2

20: if V consists of two strict pairs then

21: Rename vertices so that H =
{uv, vw, wz, zu};

222 Hby:=0; M := {uw,vz};

23:  Output G M'UH}U--UH, and halt

24: end if;

25: H] := H; foreach i =1,...,k;
26: whlle Jv € V with d(v; GM’UH’U UHL, ) >
b(v) do
27 if v and n(v) forms a strict pair then
28: Detach v from H} and n(v) from H’,
where i # j
29: else

30: Detach v from H] with V(H}) > 2
31: end if

32: end while;

33 E":=M'UH,U
34: Output Ggr

-+ U Hp;

Claim 5 Gg» is a k-edge-connected perfect b-
matching.

Proof: We have already seen the case in which
V consists of two strict pairs. Hence we sup-
pose the other case in the following. Moreover
we have already observed that d(v;Ggr) =
b(v) holds for each v € V. Furthermore Ggn~
is loopless since G is loopless and no opera-
tions in the algorithm generate loops. Hence
we prove the k-edge-connectivity of Ggr be-
low.

Let u,v € V. (i) First suppose that u and
v are in some (possibly different) strict pairs in
Gg/. Moreover, let u ¢ V(H’) and v ¢ V(Hj)
(hence u € V(H}) for i’ # i and v € V(H’)

for j' # j). For each £ € {1,...,K'} — {4,5},
AMu,v; Gr;) = 2 holds because u,v € V(H)).
Ifi = j, /\(u,v, GH'qu) = 1 holds because
d(u;Gy) = d(v,GM/) = 1 and n(u),n(v) €
V(H}). Then it holds that Mu,v;Ggr) =
2(k' — 1) +1 = k in this case (Recall that
the existence of strict pairs implies that k is
odd by Claim 2). Hence we let i # j, and
show that A(u,v; GgéquuM,) > 3 from now
on, from which A(u,v; Ggr) > 2(k'—2)+3 =k
can be derived.

Let N and S denote the sets of non-excess
vertices and strict pairs in Gg/ after Phase 1
respectively. Suppose that V(H;)NV(Hj) =
In this case, it can be seen that N = (Z) and
hence |S| > 3 by the assumption about the
relation between N and S. Since at least
one vertex of each strict pair is spanned by
each cycle in Hy, ..., H},, we can see that M’
contains at least three vertex-disjoint edges
that join vertices in V(H) and in V(H}), two
of which are u and v. This 1nd1cates that
)\(u,v,GHQUH;,UM/) > 3 holds (see the graph
of Figure 1 (b)).

Let us consider the case of V(H!) n
V(H}) # 0 in the next. By the existence of u
and v, |S| > 1 holds. If u and v forms a strict
pair (ie., wv € M'), Au,v;Gpr) = 1 holds.
Since V(H;)NV (H}) # @ implies MGrpm) 2
2, we see that A(u,v; GH/UH/UM,) >3in thlS
case. Thus let v and v belong to different
strict pairs (i.e., |S| > 2). Then there ex-
ists two vertex-disjoint edges in M’ joins ver-
tices in V(H]) and in V(H}) (see Figure 1
(a)). If we split each vertex w € V(H!) N
V(H}) into two vertices w' and w” so that
H! and Hj are vertex-disjoint cycles, and add
new edges w'w” joining those two split ver-
tices to M’, then we can reduce this case to
the case of V(H]) N V(Hj) = 0, in which
Alw, v; GH’UH’UM’) >3 has already been ob-
served in the above (see Figure 1). Accord-
ingly, we have A(u, v; GH;U;I;,UM,) > 3 if u and
v are in some strict pairs, as required.

(ii) In the next, let » and v be not in any
strict pairs. For z € {u,v}, let n'(2) denote
z itself if z € N, and n(z) otherwise. Notice
that n'(2) € N for any z € {u,v}, ie., it is



(a) (b)

Figure 1: Reduction to the case of V(H]) N
V(H}) =0

spanned by Hi,...,H},. If z € {u,v} is not
spanned by p > 0 cycles in H],..., H,, (and
hence z is an excess vertex in Gg/), then z
has at least k — 2(k’ — p) incident edges in M’
because d(z; Gar) = b(z) —d(z; Griu-um,) =
k —2(k' — p). Hence A(z,n/(z);Ggr) > 2(k' —
p) +k—2(k' —p) = k holds for each z € {u, v},
where we define A\(z, 2; Gg») = +co0. Moreover
it is obvious that A(n'(u),n'(v);Ggr) > 2K'.
Therefore, it holds that

A(u,v;Ggr) > min{\(u,n'(uv); Ggr),
A('(u), 7' (v); Ggr), A(W (v), v; Gpn) }
> k.

(iii) Finally, let us consider the remaining
case, i.e., u is in a strict pair and v is a vertex
which is not in any strict pair. Let us define
n/(v) as in the above. Then A(v, n/(v); Ggr) >
k holds. Without loss of generality, let u be de-
tached from Hj, and spanned by Hj, ..., H},.
Since un(u) € M’ and n(u),n'(v) € V(H!),
it holds that A(u, n(U);GMtU[.]i) = 1, and
A(n(w), 7' (); G piugry) > 2. Then,

Ay, 7/ (v); Ggr) >
min{A(u, n(u); Gumromy),
Mn(w),n'(v); Garom )}
+ A(u, 7' (v); GHQU'"UHL/)
2142k —1)=2K -1=k.
Therefore, '

’\(Iu'> v; GE”) > min{/\(u, n’('l)); GE'//),
Av, n’('v);GEw)} >k,

holds, as required. O

Let us consider the cost of the graph Gg».
The following theorem on the Christofides’ al-
gorithm gives us an upper bound on c(H).
Here, we let §(U) denote the set of edges whose
one end vertex is in U and the other isin V-U
for nonempty U C V.

Theorem 2 ([6, 12]) Let
OPTrsp =

min 3 .cx c(e)z(e)
8. b Deeswyx(€) 22 foreach D #UCV,

z(e) >0 for each e € E.
Christofides’ algorithm for TSP always outputs
a solution of cost at most 1.50PTrsp. O

Claim 6 c(E") is at most 1+ 3[k/2]/k times
the optimal cost of k-ECMDS.

Proof: No operation in Phases 1 and 2 in-
creases the cost of the graph since the edge
cost is metric. Hence it suffices to show that
c¢(MUHU- - -UHy) is at most (1+3[k/2]/k)-
¢(G), where G denotes an optimal solution of
k-ECMDS. Since G is a perfect b-matching,
c(M) < ¢(G) obviously holds. Thus it suffices
to show that c(H;) < 3¢(G)/k for 1 <i <K/,
from which the claim follows.

Let 2 : (%) — Zy be the function such
that z¢(uv) denotes the number of edges join-
ing u and v in G. Since G is k-edge-connected,
> ecsw) Za(€) > k holds for every nonempty
U C V. Hence 2z¢/k is feasible for the lin-
ear programming in Theorem 2, which means
that OPT7sp < 2¢(G)/k. By Theorem 2,
¢(H;) < 1.50PTrsp. Therefore we have
c(H;) < 3¢(G)/k, as required. O

Claims 5 and 6 establish the next.

Theorem 3 Algorithm UNDIRECT(k) is a
p-approzimation algorithm for k-ECMDS,
where p = 2.5 if k is even and p = 2.5+ 1.5/k
if k is odd. O

Algorithm UNDIRECT (k) always outputs
a solution for k > 2 as long as there exists a
perfect b-matching and b(v) > k for all v € V.
This fact and Theorem 1 imply the following
corollary.



Corollary 1 For k > 2, there ezists a k-
edge-connected perfect b-matching if and only
if Yeevb(v) is even and k < b(v) <
Y ucv—p b(u) forallveV. O

We close this section with a few remarks.
The operations in Phases 1 and 2 are equiv-
alent to a graph transformation called split-
ting, followed by removing generated loops
if any. There are many results on the con-
ditions for splitting to maintain the edge-
connectivity [2, 9]. However, the splittings in
these results may generate loops. Hence al-
gorithm UNDIRECT(k) needs to specify a se-
quence of splitting so that removing loops does
not make the degrees lower than the degree
specification.

One may consider that a perfect (b — 2k')-
matching is more appropriate than a perfect b-
matching as a building block of our algorithm,
since there is no excess vertex for the union of a
perfect (b— 2k’)-matching and k' Hamiltonian
cycles. However, there is a degree specifica-
tion b that admits a perfect b-matching, and no
perfect (b— 2k')-matching. Furthermore, even
if there exits a perfect (b — 2k')-matching, the
minimum cost of the perfect (b—2k’)-matching
may not be a lower bound on the optimal cost
of k-ECMDS. Therefore we do not use a per-
fect (b—2k')-matching in general case. When a
degree specification b is uniform, we can show
that a perfect (b — 2k')-matching exists and
its cost can be estimated. By using this, we
can improve the approximation factor of our
algorithm in this case.
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