辺連結度制約と次数制約をもつネットワーク設計問題

福永拓郎, 永持仁 京都大学情報学研究科数理工学専攻

概要

本報告では、辺連結度と各節点の次数に制約が与えられているネットワーク設計問題について考える。具体的には、節点集合 V, メトリック辺コスト c, 正整数 k, 指定次数 b が入力として与えられているとする。このとき、節点 $v \in V$ の次数が b(v) となるような V 上のコスト最小 k-辺連結グラフを求める問題を考える。この問題は、巡回セールスマン問題の一般化となっている。我々は、各節点 $v \in V$ に対し $b(v) \geq 2$ が成り立つという仮定のもと、近似アルゴリズムを与える。このアルゴリズムの近似率は、k が偶数のときは 2.5, k が奇数のときには 2.5 + 1.5/k である。

Network design with edge-connectivity and degree constraints

Takuro Fukunaga, Hiroshi Nagamochi Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University

abstract

We consider the following network design problem; Given a vertex set V with a metric cost c on V, an integer $k \geq 1$, and a degree specification b, find a minimum cost k-edge-connected multigraph on V under the constraint that the degree of each vertex $v \in V$ is equal to b(v). This problem generalizes metric TSP. In this paper, we propose that the problem admits a ρ -approximation algorithm if $b(v) \geq 2$, $v \in V$, where $\rho = 2.5$ if k is even, and $\rho = 2.5 + 1.5/k$ if k is odd.

1 Introduction

It is a main concern in the field of network design to construct a graph of the least cost which satisfies some connectivity requirement. Actually many results on this topic have been obtained so far. In this paper, we consider a network design problem that asks to find a minimum cost k-edge-connected multigraph on a metric edge cost under degree specification. This provides a natural and flexible framework for treating many network design problems. For example, it generalizes the

vehicle routing problem with m vehicles (m-VRP) [3, 7], which will be introduced below, and hence contains a well-known metric traveling salesperson problem (TSP), which has already been applied to numerous practical problems [8].

Let \mathbb{Z}_+ and \mathbb{Q}_+ denote the sets of nonnegative integers and non-negative rational numbers, respectively. Let G=(V,E) be a multigraph with a vertex set V and an edge set E, where a multigraph may have some parallel edges but is not allowed to have any loops. For two vertices u and v, an edge joining u and

v is denoted by uv. Since we consider multigraphs in this paper, we distinguish two parallel edges $e_1 = uv$ and $e_2 = uv$, which may be simply denoted by uv and uv. For a non-empty vertex set $X \subset V$, d(X;G) (or d(X)) denotes the number of edges whose one end vertex is in X and the other is in V-X. In particular d(v;G) (or d(v)) denotes the degree of vertex v in G. The edge-connectivity $\lambda(u, v; G)$ (or $\lambda(u,v)$) between u and v is the maximum number of edge-disjoint paths between them in G. The edge-connectivity $\lambda(G)$ of G is defined as $\min_{u,v\in V} \lambda(u,v;G)$. If $\lambda(G)\geq k$ for some $k \in \mathbb{Z}_+$, then G is called k-edge-connected. For a function $r:\binom{V}{2}\to\mathbb{Z}_+,\ G$ is called redge-connected if $\lambda(u, v; G) \ge r(u, v)$ for every $u, v \in V$. Edge cost $c: \binom{V}{2} \to \mathbb{Q}_+$ is called metric if it obeys the triangle inequality, i.e., $c(uv) + c(vw) \ge c(uw)$ for every $u, v, w \in V$.

For a degree specification $b: V \to \mathbb{Z}_+$, a multigraph G with d(v; G) = b(v) for all $v \in V$ is called a *perfect b-matching*. In this paper, we focus on the following network design problem.

k-edge-connected multigraph with degree specification (k-ECMDS):

A vertex set V, a metric edge cost $c:\binom{V}{2} \to \mathbb{Q}_+$, a degree specification $b:V\to\mathbb{Z}_+$, and a positive integer k are given. We are asked to find a minimum cost perfect b-matching G=(V,E) of edge-connectivity k.

In this paper, we suppose that $b(v) \geq 2$ for all $v \in V$ unless stated otherwise, and propose approximation algorithms to k-ECMDS in this case.

Problem k-ECMDS is a generalization of m-VRP, which asks to find a minimum cost set of m cycles, each containing a designated initial city s, such that each of the other cities is covered by exactly one cycle. Observe that this problem is 2-ECMDS where b(s) = 2m for the initial city $s \in V$ and b(v) = 2 for every $v \in V - s$. If m = 1, then m-VRP is exactly TSP. Since TSP is known to be NP-hard [11] even if a given cost is metric (metric TSP), k-ECMDS is also NP-hard. If a given cost is not metric, TSP cannot be approximated unless P = NP [11]. For m-VRP, there is a 2-

approximation algorithm based on the primaldual method [7].

It is well studied to find a minimum cost multigraph either with k-edge-connectivity or with degree specification. It is known that finding a minimum cost k-edge-connected graph is NP-hard since it is equivalent to metric TSP when k = 2 and a given edge cost is metric. On the other hand, it is known that a minimum cost perfect b-matching can be constructed in polynomial time (for example, see [10]). As a prior result on problems equipped with both edge-connectivity requirements and degree constraints, Frank [1] showed that it is polynomially solvable to find a minimum cost r-edge-connected multigraph G with $\ell(v) \leq d(v;G) \leq u(v), v \in V$ for degree lower and upper bounds $\ell, u: V \to \mathbb{Z}_+$ and a metric edge cost c such that c(uv) is defined by w(u) + w(v) for some weight $w: V \to \mathbb{Q}_+$ (in particular, c(uv) = 1 for every $uv \in \binom{V}{2}$). Recently Fukunaga and Nagamochi [4] presented approximation algorithms for a network design problem with a general metric edge cost and some degree bounds; For example, they presented a $(2+1/|\min_{u,v\in V} r(u,v)/2|)$ approximation algorithm for constructing a minimum cost r-edge-connected multigraph that meets a local-edge-connectivity requirement r with $r(u,v) \geq 2$, $u,v \in V$ under a uniform degree upper bound. Afterwards Fukunaga and Nagamochi [5] gave a 3approximation algorithm for the case where $r(u,v) \in \{1,2\}$ for every $u,v \in V$ and $\ell(v) =$ u(v) for each $v \in V$. In this paper, we extend the 3-approximation result [5] to k-ECMDS. Concretely, we prove that k-ECMDS is ρ -approximable if $b(v) \geq 2$, $v \in V$, where $\rho = 2.5$ if k is even and $\rho = 2.5 + 1.5/k$ if k is odd. To design our algorithms for k-ECMDS. we take a similar approach with famous 2- and 1.5-approximation algorithms for metric TSP.

2 Algorithm for k-ECMDS

For some degree specification b, there is no perfect b-matching. The following theorem shows provides a necessary and sufficient condition

for a degree specification to admit a perfect b-matching. Note that b(v) can be 1 in this theorem.

Theorem 1 Let V be a vertex set with $|V| \ge 2$ and $b: V \to \mathbb{Z}_+$ be a degree specification. Then there exists a perfect b-matching if and only if $\sum_{v \in V} b(v)$ is even and $b(v) \le \sum_{u \in V-v} b(u)$ for each $v \in V$.

Proof: The necessity is trivial. We show the sufficiency by constructing a perfect b-matching. We let $V=\{v_1,\ldots,v_n\}$ and $B=\sum_{\ell=1}^n b(v_\ell)/2$. For $j=1,\ldots,B$, we define i_j as the minimum integer such that $\sum_{\ell=1}^{i_j} b(v_\ell) \geq j$, and i'_j as the minimum integer such that $\sum_{\ell=1}^{i_j} b(v_\ell) \geq B+j$. Notice that $\sum_{\ell=1}^{i_j-1} b(v_\ell) < j$ holds by the definition if $i_j \geq 2$. Then we can see that $i_j \neq i'_j$ since otherwise we would have $b(v_{i_j}) = \sum_{\ell=1}^{i_j} b(v_\ell) - \sum_{\ell=1}^{i_j-1} b(v_\ell) > (B+j) - j = B$ if $i_j \geq 2$ and $b(v_{i_j}) \geq B+j > B$ otherwise, which contradicts to the assumption.

Let $M = \{e_j = v_{i_j}v_{i'_j} \mid j = 1,..., B\}$. Then M contains no loop by $i_j \neq i'_j$. Moreover G_M is a perfect b-matching since $|\{j \mid i_j = \ell \text{ or } i'_j = \ell\}| = b(v_i)$, as required. \square

Theorem 1 does not mention the edge-connectivity. For existence of connected perfect b-matchings, we additionally need the condition that $\sum_{v \in V} b(v) \geq 2(|V|-1)$ [5]. This is always satisfied if $b(v) \geq 2$, $v \in V$, which we assume for 1-ECMDS. For $k \geq 2$, the conditions in Theorem 1 and $b(v) \geq k$, $v \in V$ are sufficient for the existence of k-edge-connected perfect b-matchings as our algorithm will construct such b-matchings under the conditions.

Now we describe our algorithm to k-ECMDS. Let (V, b, c, k) be an instance of k-ECMDS. The conditions appeared in Theorem 1 and $b(v) \geq k$ for all $v \in V$ can be verified in polynomial time, where they are apparently necessary for an instance to have k-edge-connected perfect b-matchings. Hence our algorithm checks them, and if some of them are violated, it outputs message "INFEASIBLE". In the following, we suppose the existence of perfect b-matchings with $b(v) \geq k$ for

all $v \in V$. If $2 \le |V| \le 3$, then every perfect b-matching is k-edge-connected because any non-empty vertex set $X \subset V$ is $\{v\}$ or $V - \{v\}$ for some $v \in V$, and then $d(X) = d(v) \ge k$. Hence we can assume without loss of generality that $|V| \ge 4$.

For an edge set F on V, we denote graph (V, F) by G_F . Let M be a minimum cost edge set such that G_M is a perfect b-matching. In addition, let H be an edge set of a Hamiltonian cycle spanning V constructed by the 1.5-approximation algorithm for TSP due to Christofides [11].

Initialization: After testing the feasibility of a given instance, our algorithm first prepares M and $k' = \lceil k/2 \rceil$ copies $H_1, \ldots, H_{k'}$ of H. Let E denote the union $M \cup H_1 \cup \cdots \cup H_{k'}$ of them. Notice that G_E is 2k'-edge-connected by the existence of edge-disjoint k' Hamiltonian cycles. We call a vertex v in a handling graph G an excess vertex if d(v; G) > b(v) (otherwise a non-excess vertex). In G_E , all vertices are excess vertices since $d(v; G_E) = b(v) + 2k'$. In the following steps, the algorithm reduces the degree of excess vertices until no excess vertex exists while generating no loops and keeping k-edge-connectivity (Notice that k <2k' if k is odd). This is achieved by two phases, Phase 1 and Phase 2, as follows.

Phase 1: In this phase, we modify only edges in M while keeping edges in $H_1, \ldots, H_{k'}$ unchanged. We define the following two operations on an excess vertex $v \in V$.

Operation 1: If v has two incident edges xv and yv in M with $x \neq y$, replace xv and yv by new edge xy.

Operation 2: If v has two parallel edges uv in M with d(u) > b(u), remove those edges.

Phase 1 repeats Operations 1 and 2 until none of them is executable. For avoiding ambiguity, we let M' denote M after executing Phase 1, and M denote the original set in what follows. Moreover, let $E' = M' \cup H_1 \cup \cdots \cup H_{k'}$. Note that d(v) - b(v) is always a non-negative

even integer throughout (and after) these operations because $d(v; G_E) - b(v) = 2k'$ and each operation decreases the degree of a vertex by 2. If no excess vertex remains in $G_{E'}$, then we are done. We consider the case in which there remain some excess vertices, and show some properties on M' before describing Phase 2.

Claim 1 Every excess vertex in $G_{E'}$ has at least one incident edge in M' and its neighbors in $G_{M'}$ are unique.

Proof: Omitted due to the space limitation. \Box

For an excess vertex v in $G_{E'}$, let n(v) denote the unique neighbor of v in $G_{M'}$. If n(v) is also an excess vertex in $G_{E'}$, we call the pair $\{v, n(v)\}$ by a *strict pair*.

Claim 2 Let $\{v, n(v)\}$ be a strict pair. Then $d(v; G_{M'}) = d(n(v); G_{M'}) = 1$, k is odd, and b(v) = b(n(v)) = k.

Proof: By Claim 1, $d(v; G_{M'})$ $d(n(v); G_{M'})$. If $d(v; G_{M'}) = d(n(v); G_{M'}) >$ Operation 2 can be applied to va contradiction. and n(v), Hence $d(v;G_{M'})$ $= d(n(v); G_{M'})$ 1 holds. Let $u \in \{v, n(v)\}.$ Then it holds that $d(u;G_{E'}) = d(u;G_{H_1 \cup \cdots \cup H_{k'}}) + d(u;G_{M'}) =$ $2k' + 1 = 2\lceil k/2 \rceil + 1$. Since $d(u; G_{E'}) - b(u)$ is even, b(u) must be odd. This fact and $d(u, G_{E'}) > b(u) \geq k$ indicates that b(u) = kand k is odd.

By definition, the existence of excess vertices which are in no strict pairs indicate that of some non-excess vertices. Upon completion of Phase 1, let N denote the set of non-excess vertices in $G_{E'}$, and S denote the set of strict pairs in $G_{E'}$. If $N=\emptyset$, all excess vertices are in some strict pairs. By Claim 2, k is an odd integer in this case, and furthermore $k\geq 3$ by the assumption that $b(v)\geq 2$, $v\in V$ if k=1. From this fact and $|V|\geq 4$, $N=\emptyset$ implies that at least two strict pairs exist (i.e., $|S|\geq 2$).

Phase 2: Now we describe Phase 2. First, we deal with a special case in which V consists of only two strict pairs.

Claim 3 If V consists of two strict pairs after Phase 1, we can transform $G_{E'}$ into a k-edge-connected perfect b-matching without increasing the cost.

Proof: Let $V=\{u,v,w,z\}$ and $H=\{uv,vw,wz,zu\}$. Now $E'=M'\cup H_1\cup\cdots\cup H_{k'}$ $(k\geq 2)$. Then either $M'=\{uv,wz\}$ (or $\{vw,zu\}$) or $M'=\{uw,vz\}$ holds. In both cases, we replace $M'\cup H_1\cup H_2$ by $E''=\{uv,vw,wz,zu,uw,vz\}$ (see Fig. ??). Then, we can see that $d(v;G_{E''})=3$ for all $v\in V$ and $G_{E''}$ is 3-edge-connected. Since $d(v;G_{H_i})=2$ for $v\in V, i=3,\ldots,k'$ and G_{H_i} is 2-edge-connected for $i=3,\ldots,k'$, it holds that $d(v;G_{E''\cup H_3\cup \ldots \cup H_{k'}})=3+2(k'-2)=k=b(v)$ for $v\in V$ and the edge-connectivity of $G_{E''\cup H_3\cup \ldots \cup H_{k'}}$ is 3+2(k'-2)=k (The existence of strict pair implies that k is odd by Claim 2.).

Hence it suffices to show that $c(E'') \leq c(M') + c(H_1) + c(H_2)$. If $M' = \{uw, vz\}$ (or $\{vw, zu\}$), then it is obvious since $E'' = M' \cup H_1 \subseteq M' \cup H_1 \cup H_2$. Let us consider the other case, i.e., $M' = \{uv, wz\}$. From $M' \cup H_1 \cup H_2$, remove $\{uv, uv\}$, replace $\{wz, zu\}$ by $\{wu\}$, and replace $\{vw, wz\}$ by $\{vz\}$. Then the edge set becomes E'' without increasing edge cost, as required.

In the following, we assume that $|S| \geq 3$ when $N = \emptyset$. In this case, Phase 2 modifies only edges in H_i , i = 1, ..., k' while keeping the edges in M' unchanged. Let $V(H_i)$ denote the set of vertices spanned by H_i . We define detaching v from cycle H_i to be an operation that replaces the pair $\{uv, vw\} \subseteq H_i$ of edges incident to v by a new edge uw. Note that this decreases d(v) by 2, but H_i remains a cycle on $V(H_i) := V(H_i) - \{v\}$. For each excess vertex v in $G_{E'}$, Phase 2 reduces d(v) to b(v) by detaching v from $(d(v; G_{E'})$ b(v))/2 cycles in $H_1, \ldots, H_{k'}$. We notice that $(d(v; G_{E'}) - b(v))/2 \le k'$ by $d(v; G_{E'}) - b(v) \le$ $d(v;G_E)-b(v)=2k'$. One important point is to keep $|V(H_i)| \geq 2$ for each $i = 1, \ldots, k'$ during Phase 2. In other words, we always select H_i with $|V(H_i)| \geq 3$ to detach an excess vertex. This is necessary because, if we detach

a vertex from H_i with $V(H_i)=2$, then H_i becomes a loop. In addition, we detach the two excess vertices u and v in a strict pair from different cycles in $H_1, \ldots, H_{k'}$, respectively. This is in order to maintain the k-edge-connectivity of $G_{E'}$ as will be explained below.

Claim 4 It is possible to decrease the degree of each excess vertex v in $G_{E'}$ to b(v) by detaching from some cycles in $H_1, \ldots, H_{k'}$ so that $|V(H_i)|$ remains at least 2 for $i=1,\ldots,k'$ and the two excess vertices in each strict pair are detached from H_i and H_j with $i \neq j$, respectively.

Proof: First, let us consider the case of $S \neq \emptyset$. Recall $k \geq 3$ and $k' = \lceil k/2 \rceil \geq 2$ in this case. For each strict pair $\{u,v\} \in S$, we detach u and v from different cycles in $H_1, \ldots, H_{k'}$. On the other hand, we detach excess vertex z from arbitrary $(d(z;G_{E'})-b(z))/2$ cycles. After this, each of $H_1, \ldots, H_{k'}$ is incident to at least one vertex of any strict pair in S in addition to all non-excess vertices in N. By the relation between |S| and |N| we explained in the above, it holds that $|V(H_i)| \geq |S| + |N| \geq 2$ for each $i = 1, \ldots, k'$, as required.

Next, let us consider the case of $S = \emptyset$. As explained in the above, $|N| \geq 1$ holds for this case. If $|N| \ge 2$, the claim is obvious since each of $H_1, \ldots, H_{k'}$ is always incident to all vertices in N. Hence suppose that |N|=1, and let x be the unique non-excess vertex in N. Then all edges in M' are incident to x, since otherwise $S = \emptyset$ implies that Operation 1 or 2 would be applicable to some vertex in V-x. In other words, $b(x) = d(x; G_{E'}) = |M'| + 2k'$ holds before Phase 2. Moreover $\sum_{v \in V-x} b(v) \ge b(x)$ also holds by the assumption that perfect bmatchings exist. Now assume that we have converted some excess vertices in $G_{E'}$ into nonexcess vertices by detaching them from some of $H_1, \ldots, H_{k'}$ while keeping $|V(H_i)| \geq 2$, i = $1, \ldots, k'$, and yet an excess vertex $y \in V$ – x remains. Hence $\sum_{v \in V} d(v) > \sum_{v \in V} b(v)$. Then there remains a cycle H_i with $|V(H_i)| >$ 2 because

$$\begin{split} 2 \sum_{1 \leq i \leq k'} |V(H_i)| &= \sum_{v \in V} d(v; G_{H_1 \cup \dots \cup H_{k'}}) \\ &= \sum_{v \in V} d(v) - 2|M'| \\ &> \sum_{v \in V - x} b(v) + b(x) - 2|M'| \\ &\geq 2(b(x) - |M'|) \\ &\geq 4k'. \end{split}$$

Therefore we can detach an excess vertex y from such H_i as long as such a vertex exists. This implies that the claim holds also for |N| = 1.

In the following, we let H_i' denote H_i after Phase 2, and H_i denote the original Hamiltonian cycle for $i=1,\ldots,k'$. Moreover let $E''=M'\cup H_1'\cup\cdots\cup H_{k'}'$. The algorithm outputs $G_{E''}$. The entire algorithm is described as follows.

Algorithm UNDIRECT(k)

Input: A vertex set V, a degree specification $b: V \to \mathbb{Z}_+$, a metric edge cost $c: V \to \mathbb{Q}_+$, and a positive integer k

Output: A k-edge-connected perfect b-matching or "INFEASIBLE"

- 1: if $\sum_{v \in V} b(v)$ is odd, $\exists v : b(v) > \sum_{u \in V v} b(u)$ or k > b(v) then
- 2: Output "INFEASIBLE" and halt
- 3: end if;
- 4: Compute a minimum cost perfect bmatching G_M ;
- 5: if $|V| \leq 3$ then
- 6: Output G_M and halt
- 7: end if;
- 8: Compute a Hamiltonian cycle G_H on V by Christofides' algorithm;
- 9: $k' := \lceil k/2 \rceil$; Let $H_1, \ldots, H_{k'}$ be k' copies of H;
 - # Phase 1
- 10: M' := M;
- 11: **while** Operation 1 or 2 is applicable to a vertex $v \in V$ with $d(v; G_{M' \cup H_1 \cup \cdots \cup H_{k'}}) > b(v)$ **do**

```
if \exists \{xv, vy\} \subseteq M' such that x \neq y then
12:
          M' \,:=\, (M' - \{xv,vy\}) \,\cup\, \{xy\}
13:
          Operation 1
14:
       else
          if \exists \{xv, vx\} \subseteq M' such that
15:
          d(x; G_{M' \cup H_1 \cup \cdots \cup H_{k'}}) > b(x) then
             M' := M' - \{xv, vx\}
16:
                                                       #
             Operation 2
17:
          end if
       end if
18:
19: end while;
     # Phase 2
20: if V consists of two strict pairs then
       Rename vertices
21:
                                 so that
       \{uv, vw, wz, zu\};
       H_2' := \emptyset; M' := \{uw, vz\};
22:
       Output G_{M' \cup H'_1 \cup \cdots \cup H'_{k'}} and halt
23:
24: end if;
25: H'_{i} := H_{i} for each i = 1, ..., k';
26: while \exists v \in V with d(v; G_{M' \cup H'_1 \cup \cdots \cup H'_{k'}}) >
    b(v) do
       if v and n(v) forms a strict pair then
27:
          Detach v from H'_i and n(v) from H'_j,
28:
          where i \neq j
29:
       else
          Detach v from H'_i with V(H'_i) > 2
30:
       end if
31:
32: end while;
33: E'' := M' \cup H'_1 \cup \cdots \cup H'_{k'};
34: Output G_{E''}
```

Claim 5 $G_{E''}$ is a k-edge-connected perfect b-matching.

Proof: We have already seen the case in which V consists of two strict pairs. Hence we suppose the other case in the following. Moreover we have already observed that $d(v; G_{E''}) = b(v)$ holds for each $v \in V$. Furthermore $G_{E''}$ is loopless since G_E is loopless and no operations in the algorithm generate loops. Hence we prove the k-edge-connectivity of $G_{E''}$ below.

Let $u, v \in V$. (i) First suppose that u and v are in some (possibly different) strict pairs in $G_{E'}$. Moreover, let $u \notin V(H'_i)$ and $v \notin V(H'_j)$ (hence $u \in V(H'_{i'})$ for $i' \neq i$ and $v \in V(H'_{i'})$

for $j' \neq j$). For each $\ell \in \{1, \ldots, k'\} - \{i, j\}$, $\lambda(u, v; G_{H'_{\ell}}) = 2$ holds because $u, v \in V(H'_{\ell})$. If i = j, $\lambda(u, v; G_{H'_{\ell} \cup M'}) = 1$ holds because $d(u; G_{M'}) = d(v; G_{M'}) = 1$ and $n(u), n(v) \in V(H'_i)$. Then it holds that $\lambda(u, v; G_{E''}) = 2(k'-1)+1=k$ in this case (Recall that the existence of strict pairs implies that k is odd by Claim 2). Hence we let $i \neq j$, and show that $\lambda(u, v; G_{H'_i \cup H'_j \cup M'}) \geq 3$ from now on, from which $\lambda(u, v; G_{E''}) \geq 2(k'-2)+3=k$ can be derived.

Let N and S denote the sets of non-excess vertices and strict pairs in $G_{E'}$ after Phase 1, respectively. Suppose that $V(H'_i) \cap V(H'_j) = \emptyset$. In this case, it can be seen that $N = \emptyset$, and hence $|S| \geq 3$ by the assumption about the relation between N and S. Since at least one vertex of each strict pair is spanned by each cycle in $H'_1, \ldots, H'_{k'}$, we can see that M' contains at least three vertex-disjoint edges that join vertices in $V(H'_i)$ and in $V(H'_j)$, two of which are u and v. This indicates that $\lambda(u,v;G_{H'_i\cup H'_j\cup M'}) \geq 3$ holds (see the graph of Figure 1 (b)).

Let us consider the case of $V(H_i)$ \cap $V(H_i) \neq \emptyset$ in the next. By the existence of u and $v, |S| \ge 1$ holds. If u and v forms a strict pair (i.e., $uv \in M'$), $\lambda(u, v; G_{M'}) = 1$ holds. Since $V(H_i') \cap V(H_j') \neq \emptyset$ implies $\lambda(G_{H_i' \cup H_i'}) \geq$ 2, we see that $\lambda(u, v; G_{H'_i \cup H'_i \cup M'}) \geq 3$ in this Thus let u and v belong to different strict pairs (i.e., $|S| \geq 2$). Then there exists two vertex-disjoint edges in M' joins vertices in $V(H_i)$ and in $V(H_i)$ (see Figure 1 (a)). If we split each vertex $w \in V(H_i)$ $V(H'_{j})$ into two vertices w' and w'' so that H'_i and H'_i are vertex-disjoint cycles, and add new edges w'w'' joining those two split vertices to M', then we can reduce this case to the case of $V(H_i) \cap V(H_i) = \emptyset$, in which $\lambda(u, v; G_{H'_{i} \cup H'_{i} \cup M'}) \geq 3$ has already been observed in the above (see Figure 1). Accordingly, we have $\lambda(u, v; G_{H'_i \cup H'_i \cup M'}) \geq 3$ if u and v are in some strict pairs, as required.

(ii) In the next, let u and v be not in any strict pairs. For $z \in \{u, v\}$, let n'(z) denote z itself if $z \in N$, and n(z) otherwise. Notice that $n'(z) \in N$ for any $z \in \{u, v\}$, i.e., it is

Figure 1: Reduction to the case of $V(H_i') \cap V(H_i') = \emptyset$

spanned by $H'_1,\ldots,H'_{k'}$. If $z\in\{u,v\}$ is not spanned by p>0 cycles in $H'_1,\ldots,H'_{k'}$ (and hence z is an excess vertex in $G_{E'}$), then z has at least k-2(k'-p) incident edges in M' because $d(z;G_{M'})=b(z)-d(z;G_{H'_1}\cup\ldots\cup H'_{k'})\geq k-2(k'-p)$. Hence $\lambda(z,n'(z);G_{E''})\geq 2(k'-p)+k-2(k'-p)=k$ holds for each $z\in\{u,v\}$, where we define $\lambda(z,z;G_{E''})=+\infty$. Moreover it is obvious that $\lambda(n'(u),n'(v);G_{E''})\geq 2k'$. Therefore, it holds that

$$\lambda(u, v; G_{E''}) \ge \min\{\lambda(u, n'(u); G_{E''}), \\ \lambda(n'(u), n'(v); G_{E''}), \lambda(n'(v), v; G_{E''})\} \\ \ge k$$

(iii) Finally, let us consider the remaining case, i.e., u is in a strict pair and v is a vertex which is not in any strict pair. Let us define n'(v) as in the above. Then $\lambda(v,n'(v);G_{E''})\geq k$ holds. Without loss of generality, let u be detached from H'_1 , and spanned by $H'_2,\ldots,H'_{k'}$. Since $un(u)\in M'$ and $n(u),n'(v)\in V(H'_1)$, it holds that $\lambda(u,n(u);G_{M'\cup H'_1})=1$, and $\lambda(n(u),n'(v);G_{M'\cup H'_1})\geq 2$. Then,

$$egin{aligned} \lambda(u,n'(v);G_{E''}) &\geq \\ \min\{\lambda(u,n(u);G_{M'\cup H_1'}), \\ \lambda(n(u),n'(v);G_{M'\cup H_1'})\} \\ &+ \lambda(u,n'(v);G_{H_2'\cup\cdots\cup H_{k'}'}) \\ &\geq 1+2(k'-1)=2k'-1=k. \end{aligned}$$

Therefore,

$$\lambda(u, v; G_{E''}) \ge \min\{\lambda(u, n'(v); G_{E''}), \\ \lambda(v, n'(v); G_{E''})\} \ge k,$$

holds, as required.

Let us consider the cost of the graph $G_{E''}$. The following theorem on the Christofides' algorithm gives us an upper bound on c(H). Here, we let $\delta(U)$ denote the set of edges whose one end vertex is in U and the other is in V-U for nonempty $U \subset V$.

Theorem 2 ([6, 12]) Let

 $OPT_{TSP} =$

$$\begin{array}{ll} \min & \sum_{e \in E} c(e) x(e) \\ s. \ t. & \sum_{e \in \delta(U)} x(e) \geq 2 \quad \textit{for each } \emptyset \neq U \subset V, \\ & x(e) \geq 0 \qquad \qquad \textit{for each } e \in E. \end{array}$$

Christofides' algorithm for TSP always outputs a solution of cost at most $1.5OPT_{TSP}$.

Claim 6 c(E'') is at most $1+3\lceil k/2\rceil/k$ times the optimal cost of k-ECMDS.

Proof: No operation in Phases 1 and 2 increases the cost of the graph since the edge cost is metric. Hence it suffices to show that $c(M \cup H_1 \cup \cdots \cup H_{k'})$ is at most $(1+3\lceil k/2 \rceil/k) \cdot c(G)$, where G denotes an optimal solution of k-ECMDS. Since G is a perfect b-matching, $c(M) \leq c(G)$ obviously holds. Thus it suffices to show that $c(H_i) \leq 3c(G)/k$ for $1 \leq i \leq k'$, from which the claim follows.

Let $x_G: \binom{V}{2} \to \mathbb{Z}_+$ be the function such that $x_G(uv)$ denotes the number of edges joining u and v in G. Since G is k-edge-connected, $\sum_{e \in \delta(U)} x_G(e) \ge k$ holds for every nonempty $U \subset V$. Hence $2x_G/k$ is feasible for the linear programming in Theorem 2, which means that $\mathrm{OPT}_{TSP} \le 2c(G)/k$. By Theorem 2, $c(H_i) \le 1.5\mathrm{OPT}_{TSP}$. Therefore we have $c(H_i) \le 3c(G)/k$, as required.

Claims 5 and 6 establish the next.

Theorem 3 Algorithm UNDIRECT(k) is a ρ -approximation algorithm for k-ECMDS, where $\rho = 2.5$ if k is even and $\rho = 2.5 + 1.5/k$ if k is odd.

Algorithm UNDIRECT(k) always outputs a solution for $k \geq 2$ as long as there exists a perfect b-matching and $b(v) \geq k$ for all $v \in V$. This fact and Theorem 1 imply the following corollary.

Corollary 1 For $k \geq 2$, there exists a k-edge-connected perfect b-matching if and only if $\sum_{v \in V} b(v)$ is even and $k \leq b(v) \leq \sum_{u \in V-v} b(u)$ for all $v \in V$.

We close this section with a few remarks. The operations in Phases 1 and 2 are equivalent to a graph transformation called *splitting*, followed by removing generated loops if any. There are many results on the conditions for splitting to maintain the edge-connectivity [2, 9]. However, the splittings in these results may generate loops. Hence algorithm UNDIRECT(k) needs to specify a sequence of splitting so that removing loops does not make the degrees lower than the degree specification.

One may consider that a perfect (b-2k')matching is more appropriate than a perfect bmatching as a building block of our algorithm, since there is no excess vertex for the union of a perfect (b-2k')-matching and k' Hamiltonian cycles. However, there is a degree specification b that admits a perfect b-matching, and no perfect (b-2k')-matching. Furthermore, even if there exits a perfect (b-2k')-matching, the minimum cost of the perfect (b-2k')-matching may not be a lower bound on the optimal cost of k-ECMDS. Therefore we do not use a perfect (b-2k')-matching in general case. When a degree specification b is uniform, we can show that a perfect (b-2k')-matching exists and its cost can be estimated. By using this, we can improve the approximation factor of our algorithm in this case.

References

- A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on Discrete Mathematics 5 (1992) 25-53.
- [2] A. Frank, On a theorem of Mader, Discrete Mathematics 191 (1992) 49–57.
- [3] G. N. Frederickson, M. S. Hecht, C. E. Kim, Approximation algorithms for some

- routing problems, SIAM Journal of Computing 7 (1978) 178–193.
- [4] T. Fukunaga, H. Nagamochi, Approximating minimum cost multigraphs of specified edge-connectivity under degree bounds, Proceedings of the 9th Japan-Korea Joint Workshop on Algorithm and Computation (2006) 25-32.
- [5] T. Fukunaga, H. Nagamochi, Approximating a generalization of metric TSP, IEICE Transactions on Information and Systems, to appear.
- [6] M. X. Goemans, D. J. Bertsimas, Survivable networks, linear programming relaxations and the parsimonious property, Mathematical Programming 60 (1993) 145–166.
- [7] M. X. Goemans, D. P. Williamson, The primal-dual method for approximation algorithms and its application to network design problems, PWS, 1997, Ch. 4, pp. 144-191.
- [8] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, 1985.
- [9] W. Mader, A reduction method for edgeconnectivity in graphs, Annals of Discrete Mathematics 3 (1978) 145–164.
- [10] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003
- [11] V. Vazirani, Approximation Algorithm, Springer, 2001.
- [12] L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Mathematical Programming Study 13 (1980) 121–134.