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Abstract: For a graph G, a subset D of vertices is a paired-dominating set of G if every vertex not
in D is adjacent to a vertex in D and the subgraph induced by D has a perfect matching. The paired-
domination number of a graph is the minimum cardinality of paired-dominating sets. Haynes and Slater
proved that the problem of determining the paired-domination number is NP-hard. In this paper, we
give a linear time algorithm for computing the paired-domination number of a series-parallel graph. Our
algorithm is based on the work by Kikuno, Yoshida, and Kakuda which is an algorithm for computing

an ordinary dominating set of a series-parallel graph.

1 Introduction

Let G = (V,E) be a graph without isolated vertices with vertex set V and edge set E. The open
neighborhood of a vertex x is defined by No(z) = {y | zy € E} and the closed neighborhood of z is
Nglz] = Ne(z)U{z}. Aset D CV is a dominating set if every vertex not in D is adjacent to a vertex in
D. The domination number of G is the minimum cardinality of a dominating set, and denoted by v(G).

Paired-domination was introduced by Haynes and Slater [4]. A set D C V is a paired-dominating set
if D is a dominating set and the induced subgraph (D) has a perfect matching. If zy € M, where M is
a perfect matching in (D), we say that x and y are paired in D. The paired-domination number v,.(G)
is the minimum cardinality of a paired-dominating set in G. By the definition, clearly v(G) < 75 (G) for
any graph G.

Paired-domination was proposed with the following application in mind. If we think of each x € D

as the location of a guard that can protect vertex in N¢{z], then domination requires every vertex to be



protected. In paired-domination, each guard is assigned another adjacent one, and they are designed as
backup for each other.

Every graph without isolated vertices has a paired-dominating set because the end vertices of any max-
imal matching form a paired-dominating set. After the paper [4] was published, some graph-theoretical
results for the paired-domination problem have been studied, e.g. [1,2,6,10]. From algorithmic point of

view, the following was also shown in [4].

Theorem 1.1 (Haynes and Slater [4]). Dectding, for a given graph G and posttive integer k, “Is vp:(G) <
k?” is NP-complete.

Since the problem of determining the paired-domination number of an arbitrary graph is NP-hard,
it is important to consider algorithms of paired-domination number in special graphs. However, as far
as we know, only few efficient algorithms are proposed for the paired-domination problem. Qiao, Kang,
Cardei and Du [9] presented a linear time algorithm computing the paired-domination number for trees.
Kang, Soh, and Cheng [6] presented a linear time algorithm for inflated graphs.

In this paper, we consider the paired-domination problem for series-parallel graphs. It is known that
many NP-hard problems can be efficiently solved for series-parallel graphs [11]. Kikuno, Yoshida, and
Kakuda [7] gave a linear time algorithm for finding a minimum dominating set in a series-parallel graph.
Linear time algorithms for solving the problems of independent domination and total domination [8],
weighted perfect domination [12] for series-parallel graphs were presented. Efficient edge domination

problem for series-parallel graphs were studied by Grinstead, Slater, Sherwani and Holmes [3].

2 Series-Parallel Graphs

2.1 Definition of series-parallel graphs

The class of (two terminal) series-parallel graphs can be defined in several ways. The following is a

recursive definition.
Definition 2.1. Series-parallel graphs are obtained only by the following recursive rules:
1. An edge xy is a series-parallel graph with terminals x and y.

2. Suppose that Gy with terminals x and y, and G2 with terminals z and w are series-parallel graphs.
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Figure 1: Two series-parallel graphs G and G3, and the series and parallel connection of them.
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Figure 2: A binary decomposition tree of a series-parallel graph.

(a) The series connection of Gi1 and Gs by identifying y with z is a series-parallel graph with

terminals x and w.

(b) The parallel connection of G1 and Gy by identifying x with z, and y with w is a series-parallel

graph with terminals x and y.

Fig. 1 shows two series-parallel graphs GG and G2, and their series and parallel connections.

In [5,7], a linear time algorithm to recognize whether a given graph is a series-parallel graph was
given. A binary decomposition tree T of a series-parallel graph G = (V, E) is a binary tree in which there
are |E| leaf nodes and every internal node has exactly two children. Each edge zy € E corresponds to
a leaf node of T which is labeled by (z,y). Each internal node of T" corresponds to the series-parallel
graph obtained from a series or parallel connection of its two children, and labeled by the terminals of
the graph. The root of the tree T labeled (z,y) represents the series-parallel graph G. Fig. 2 shows a

binary decomposition tree of a series-parallel graph.

2.2 Paired-dominating set in series-parallel graphs

For technical reasons, we introduce a definition that is slightly modified by relaxing the restrictions of
paired-domination with respect to terminals.

Let G = (V, E) be a series-parallel graph with terminals z and y. For «, 8 € {00, 01,10, 11}, a subset
D C V is an (a, B)-paired-dominating set if it is a dominating set of G — A for A C {z,y}, where

e 2 € Aand Ng[z]ND =0 iff o =00,
e x¢Dandzx ¢ Aiff a =01,
e z € Dif and only iff &« =10 or 11,

e yc Aand Ngly|nD =0 iff 3 =00,

yé¢Dandy¢ Aiff 5=01,

yeDiff f=10o0r 11,
and the induced subgraph (D \ B) for B C {z,y} \ A has a perfect matching, where
e z ¢ Biff a =10,

e yc Biff 5=10.



(a) a (00,10)-paired-dominating set (b) a (01,11)-paired-dominating set

(c) a (11,11)-paired-dominating set

Figure 3: Examples of («, 3)-paired-dominating sets D (vertices in D are colored in black).

The («, B)-paired-domination number vpr(G, @, 3) of G is the minimum cardinality of an («, 8)-paired-
dominating set. If there is no («, 3)-paired-dominating set for given o and 3, we define v, (G, o, ) = 0.

That is, a terminal does not have to be dominated by a vertex in D if &« = 00 or § = 00. Also,
if a terminal is in D, it does not have to have a paired vertex if & = 10 or 8 = 10. For example,

(a, B)-paired-dominating sets are shown in Fig. 3.
Example. Let G be a series-parallel graph shown in Fig. 3.

o Consider the set of vertices colored in black in Fig. 3(a). In this figure, Ng[z] N D = 0, and the
induced subgraph (D) — {y} has a perfect matching. Hence it is a (00, 10)-dominating set. Since it
is a minimum (00, 10)-dominating set, we have v,.(G, 00,10) = 3.

e The dominating set in Fig. 3(b) is a minimum (01, 11)-dominating sct, and thus v,(G,01,11) = 4.
o The dominating set in Fig. 3(c) is a minimum (11, 11)-dominating set, and thus v, (G, 11,11) = 4.
e G has no (00, 00)-dominating set, and hence .. (G, 00,00) = oo.

It should be noted that an (a,()-paired-dominating set is a paired-dominating set if and only if
a, B € {01,11}.

3 Algorithm

In this section, we describe an algorithm for determining the paired-domination number of a given series-
parallel graph. Our algorithm calculates the («, 8)-paired-domination number of the series-parallel graphs
corresponding to the nodes in a binary decomposition tree from leaf node to the root.

Informally, the values of & and g imply the following assertions:
e o = 00 means that z is not dominated by any vertex.
e o = 01 means that = ¢ D and is already dominated.

e o = 10 means that x € D, but it needs to be dominated by a vertex outside to make a perfect

matching.

e o = 11 means that x € D and it already has a paired vertex.



Lemma 3.1. Let G be a series-parallel graph consisting of two vertices x and y and an edge between
them. Then

or(G.00,00) = 0, )
Yo(G,01,10) = 1, @)
(G, 10,01) = 1, 3)
vor(G,10,10) = 2, (4)
Yoe(G11,11) = 2, 5)
Yor(G, o, B) = o0, for other o and 8

The dominating set corresponds to (1) is the empty set, (2) is {y}, (3) is {z}, (4) and (5) are {z,y}.

Lemma 3.2. Suppose that G, is the series-parallel graph with terminals z and y, and G2 with terminals
z and w. Let G be the series connection of G1 and G2 by identifying y and 2. Then

Yor{G1, @, 00) + v (G2, 01, B),
Ypr (G1, @, 01) + 7 (G2, 00, 3),
Ypr (G, ¢, §) = min Yor(G1,a,01) + v, (G2, 01, 3), . (6)
Yor(G1, @, 10) + pe (G2, 11, 3) — 1,
Yor(G1, 0, 11} + 45 (G2, 10, 8) — 1,

Proof. Let D be a minimum (o, 3)-paired-dominating set in G and D1 = DNV (Gy) and D» = DNV (G2).
Then either y=2€ Dory=2¢ D.

Assume that y = 2 € D. So, y € Dy and z € D,. If D is an (o, 10)-paired-dominating set in G,
then y has no paired vertex in D;. Since (D) has a perfect matching, the terminal z of G> must have
paired vertex in Dy. Hence Dy is a (11, B)-paired-dominating set. Clearly |D| = |D1| + |D2| — 1, and
D, and D, are a minimum (e, 10)- and (11, 8)-paired-dominating sets, respectively. Hence we obtain
Yor(G, &, B) = vpr(G1, &, 10) + vpr(G2, 11, 3) — 1. By considering the case that D is an (a, 11)-paired-
dominating set, we show the equation v, (G, &, 8) = Vpr (G1, 0, 11) + Ypr (G2, 10, 8) — 1 holds by a similar
argument.

Next assume that y = z ¢ D. Then D, is either an (¢, 00)- or an («,01)-paired-dominating set. If
D is an («, 00)-paired-dominating set, then Dy must be a (01, 8)-paired-dominating set. Hence we have
Yor (G, &, 8) = vpr(G1, @, 00) + v (G2,01, 8). If D is an («, 01)-paired-dominating set, then Dy is either
(00, B)- or a (01, B)-paired-dominating set. It is similarly shown that the remaining equations hold. O

Lemma 3.3. Suppose that Gy is a series-parallel graph with terminals x and y, and G4 with terminals



z and w. Let G be the parallel connection of G1 and G2 by identifying x with z, and y with w. Then

Yor (G,00,00) = ~5.(G1,00,00) 4+ vp: (G2, 00, 00), (7)
Yor(G,00,01) = kIEligl{v/pr(Gl,O0,0k) ~pr(Gzg, 00,00} }, (8)
Yor(G,00,10) = 7p:(G1,00,10) + ¥ (G2, 00, 10) — (9)
Yor (G,00,11) = krfliill{'ypr(G’l,OQ 1k) + vpr (G2, 00, 1l) — 1}, (10)
'\/pr(Gvol}OO) = m.in {Vpr(GI»Oiroo) +’7PF(G270j> 00)}’ (11)
Ypr(G,01,01) = oL k+l>1{7pr(01701 0k) + vpr (G2, 05,00)}, (12)
or(G,01,10) = _mm {7or(G1,01,10) + vpr (G2, 04, 10) }, (13)
Yo (G,0L,11) = 1+J>1k+l l{vpr(Gl,Oz 1K) + vpr(Ga, 04, 11) — 1}, (14)
Yor(G,10,00) = v5:(G1,10,00) + 75 (G2, 10,00) — 1, (15)
Yor(G,10,01) = krflm {vor(G1,10,0k) + vp:e (G2, 10,00) — 1}, (16)
pr(G110,10) =  7pe(G1, 10, 10) + (G, 10, 10) — 2 (17)
Yor (G, 10,11) = leigl{Vpr(Gl, 10, 1k) + vpr (G, 10, 11) — 2}, (18)
Ypr(G,11,00) = m,iﬂ {7p:(G1, 14, 00) + 75: (G2, 15,00) — 1}, (19)
Yor(G,11,01) = it lk+l>1{7pr(leh 0k) + ypr (G2, 15,00) — 1}, (20)
WPr(lelvlo) = ,g_n_lnl{Wpr(GhlLlO) +7pr(G271j710) - 2}7 (21)
itj=
(G AL = min (3G 18, 1R) (G, 13, 10) — 23, (22)

Proof. In this proof, only the value of « is considered. Let D be a minimum («, 3)-paired-dominating
set in G and Dy = DNV(G,) and Dy = DNV(Gy). Theneithera =z2€ Dorz=2¢ D.
(Case 1) @ = 00. In this case, x ¢ D; and z ¢ D, and the two vertices has no adjacent vertex in D. Hence
Dj and Dy are (00, 8;1)- and (00, 8)-paired-dominating set of Gy and Ga, respectively, for appropriate
B and Ba.
(Case 2) « = 01. In this case, x ¢ D; and z ¢ D, and these are dominated by D. Suppose that D is
(00, 81)-paired-dominating set of G for some ;. Then z must be dominated by a vertex in Dy. Hence
Dy is a (01, B2)-paired-dominating set for some fB,. If Dy is (01, 8;1)-paired-dominating set of G1, then
D5 is either a (00, 8;)- or (01, ;)-paired-dominating set.
(Case 3) a@ = 10. In this case, z € D; and z € D, and the two vertices has no paired vertex in D. Hence
D; and Dy are (10, 81)- and (10, B2)-paired-dominating set of G and Gs, respectively, for appropriate
51 and (s.
(Case 4) o = 11. In this case, z € D and z € Dy. Suppose that D, is (10, 8;)-paired-dominating set of
G, for some 3;. Then z must have paired vertex in Dy. Hence Dy is a (11, B2)-paired-dominating set for
some fy. Similarly, if Dy is a (11, 8;)-paired-dominating set of Gy, then D5 is a (10, f2)-paired-dominating
set.

From the discussions of the above four cases, we can show the sixteen equations (7)-(22) hold. O

If (o, 3)-paired-domination numbers for each a and § is calculated, we can obtain the paired-



dominating number. The following lemma is clearly holds.

Lemma 3.4. For a series parallel graph G,
Yor(G) = min{vp:r (G, 01, 01), ¥ (G, 01, 11), 4pe(G, 11, 01), v, (G, 11, 11) }.

Based on Lemma 3.1, 3.2, 3.3 and 3.4, we now describe an algorithm for computing paired-domination
number of a series-parallel graph in Algorithm 1 and 2. These algorithms compute a binary decomposition
tree of a given series-parallel graph, and then calculate the (a, 8)-paired-domination numbers for each
a and 3 recursively by using equations in Lemma 3.1, 3.2, and 3.3. Finally, after the («, 3)-paired-
domination numbers of the entire series-parallel graph are obtained, the algorithm computes the paired-
domination number by Lemma 3.4, and outputs it.

Algorithm 1 MIN-PD-SP(G)
Input: A series-parallel graph G
Output: The paired-domination number v, (G)
Construct a binary decomposition tree T of G
T* « T {T* is the root of T'}
gp «— CALC-PARTIAL-PD(T™) {described in Algorithm 2}
return min{gp[01, 01}, gp[01,11], gp[11,01], gp[11, 11|}

Algorithm 2 CALC-PARTIAL-PD(T™)

Input: a node of a binary decomposition tree T';
Output: two dimensional array gple, 8] stores the (e, 8)-paired-domination numbers
if T* is a leaf node then
gp[00,00] — 0
gp(01,10} « 1
gp(10,01] « 1
gp[10,10] « 2
gp[11,11] « 2
return gp
else
gpl « CALC-PARTIAL-PD(left-child of T*)
gp2 «— CALC-PARTIAL-PD(right-child of T%)
if T* is the series connection of its children then
foreach a, 3 € {00,01,10,11} do
calculate gp[a, 8] from gpl and gp2 by applying the equation (6) in Lemma 3.2
end for
else
foreach «, 8 € {00,01,10,11} do
calculate gp[a, ] from gpl and gp2 by applying the equations (7)-(22) in Lemma 3.3
end for
end if
return gp
end if

Theorem 3.5. Algorithm MIN-PD-SP computes the paired-domination number of the given series-

parallel graph with n vertices in time O(n).

Proof. The construction of the binary decomposition tree T' takes O(n) time. For leaf nodes and internal
nodes of T, the («, §)-domination number for the node is calculated in O(1) time. Since the number of



nodes in T is 2|E| — 1 and any series-parallel graph has at most 3n — 6 edges, the time complexity of our

algorithm needs O(n) time. O

4

Conclusion

Our algorithm described in Section 3 computes the paired-domination number of a series-parallel graph

in linear time. This algorithm is easily modified so that it outputs a minimum paired-dominating set

instead of the paired-domination number. Studying the paired-domination in k-trees, or the class of

perfect graphs are also interesting.
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