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Abstract: Protein structure analysis is one of the most important research issues in
the post-genomic era, and faster and more accurate index data structures for such 3-
D structures are highly desired for research on proteins. The geometric suffix tree is
a very sophisticated index structure that enables fast and accurate search on protein
3-D structures. By using it, we can search from 3-D structure databases for all the
substructures whose RMSDs (root mean square deviations) to a given query 3-D structure
are not larger than a given bound. In this paper, we propose a new data structure based
on the geometric suffix tree whose query performance is much better than the original
geometric suffix tree. We call the modified data structure the prefix-shuffled geometric
suffix tree (or PSGST for short). According to our experiments, the PSGST outperforms
the geometric suffix tree in most cases. The PSGST shows its best performance when the
database does not have many substructures similar to the query. The query is sometimes
100 times faster than the original geometric suffix trees in such cases.

1 Introduction in molecular biology. Recently, more and
more protein structures are solved by state-

Protein 3-D structure analysis is one of the X
of-the-art technologies such as NMR (nu-
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clear magnetic resonance), and the size of
the protein 3-D structure database increases
larger and larger. Now, there are more than
40,000 entries in the PDB database [2] and
it is still increasing. The protein structures
are said to have similar functions if their 3-
D structures are similar. Thus, to analyze
the functions of a protein whose structure
is newly determined, it is very important to
search for similar (sub)structures from the
growing database. There are many compari-
son algorithms for protein structures [4], and
the results could be very accurate, but it
will require enormous amount of time to ap-
ply them against the very large databases.
Hence, indexing techniques for protein strue-
ture databases are highly desired to avoid the
large computation time.

The similarity of two protein structures
is often measured by the RMSD (root mean
square deviation) [1, 3, 10]. The geometric
suffix tree [11] is an indexing data structure
that enables efficient search from a 3-D struc-
ture database for all the substructures whose
RMSDs to a given query are not larger than
some given bound. It also has many po-
tential applications, such as 3-D motif find-
ing and functional prediction. The geometric
suffix tree is based on the famous suffix trees
for alphabet strings [5, 7, 9, 12, 13}, but it
deals with 3-D coordinates instead of alpha-
bet characters. In this paper, we propose a
new data structure based on the geometric
suffix tree, which we call the prefix-shuffled
geometric suffix tree, or PSGST for short. It
improves the query performance of the geo-
metric suffix tree by changing the order of
atoms in each substructure. We will demon-
strate the PSGSTs’ performance through ex-
periments.

This paper is organized as follows. In sec-
tion 2, we explain the preliminaries. In sec-
tion 3, we explain a new notion called the
‘prefix-shuffled structure’ that would help us
to improve the query performance of the ge-
ometric suffix trees. Then, in section 4, we
explain the newly proposed data structure,

the prefix-shuffled geometric suffix tree. In
section 5, we demonstrate the performance
of it through experiments. Finally in sec-
tion 6, we conclude our results and discuss
future work.

2 Preliminaries

2.1 RMSD: The Root Mean
Square Deviation
A protein is a chain of amino acids. Each
amino acid has one unique carbon atom
named C,,, and the set of all the C, atoms in
a protein is called the backbone of the pro-
tein. The backbone is topologically linear,
but it forms a geometrically very complex
structure in the 3-D space. Most previous
work on protein 3-D structures deals with the
coordinates of the backbone atoms. Conse-
quently, we also consider the coordinates of
the backbone atoms as the target to index.
The most popular and basic measure to
determine geometric similarity between two
sets of points in 3-D, like the positions of
backbone atoms, is the RMSD (root mean
square deviation) [1, 3, 10]. To compute the
RMSD between two sets of 3-D coordinates,
we must know which atom in one structure
corresponds to which atom in the other. Let
the two sets of points (i.e., structures) to
be compared be P = {p1,ps,...,Pn} and
Q =1{q1,¢,.-.,qn}, where p; and §; are 3-
D coordinates, and p; corresponds to ¢; for
all . The RMSD is the minimum value of
[0, 15 — (R @ + D))/} /2 over all the
possible rotation matrices R and translation
vectors ¥, where || - || denotes the norm. Let
R(P,Q) and 7(P,Q) be R and ¥ that mini-
mizes the value. We call S, |15 — (R(P, Q)-
g + 9(P,Q))||* the MSSD (minimum sum
squared distance) of P and @, and we call
the square root of the MSSD the RSSD (root
sum squared distance). Note that the RSSD
is the RMSD multiplied by /n.
It is R known
that (P, Q) = T, (7 — R(P,Q)-@)/n. Ti
means that the centroids of the two point



sets must be translated to the same point by
1A7(P, Q). Hence, if both of the point sets are
translated so that their centroids are located
at the origin of the coordinates, the RMSD
problem is reduced to a problem of finding R
that minimizes f(R) = Y1, ||p:— R-¢]|?. We
can find R(P,Q) in linear time by using the
singular value decomposition (SVD) {1, 10]
as follows. Let H = Y p;-qt. Then
f(R) can be described as 7, (pi0; + ¢ @) —
trace(R - H), and trace(RH) is maximized
when R = VUT, where UAV is the SVD of
H. The SVD of H can be done in constant
time as H is a fixed-size 3 X 3 matrix (see
[6] for SVD algorithms). Hence R(P, Q) can
be obtained in constant time from H. Note
that there are rare degenerate cases where
det(VUT) = —1, which means that VU7 is
a reflection matrix. We ignore the degener-
ate cases in this paper. In this way, we can
compute the RMSD in O(n) time. Moreover,
according to [11], all of the RMSD value, the
optimal rotation matrix R(P, @), and the op-
timal translation vector 1A7(P, Q) can be com-
puted incrementally by keeping some addi-
tional values for computation, i.e., we can
compute them for P, = {p1,pa,...,0:} and
Q; = {G1, @, .., ¢} in O(1) time after we
compute them for P,y = {p1,Ds,.-.,Pi-1}
and Q;_1 = {q1,,.-.,Gi-1}, for any ¢ (see
[11] for more details).

2.2 Geometric Suffix Trees

The suffix tree of a string is the compacted
trie of all its suffixes. Likewise, the geometric
suffix tree [11] is based on a data structure
called the geometric trie, which is defined as
follows.

Consider a set of n 3-D structures W =
{W;} (1 < i < n), where W; is the i-th
structure in the set. Let ¢; be the length
of W;, and let u“)y) denote the coordinates
of the j-th atom of W;. Let W;[j..k] denote
{ﬁ;i),u‘iﬁl, e ,u')',(f)}, which means a struc-
ture formed by the (k — j + 1) atoms from
the j-th atom to the k-th atom in W;. We
call it a substructure of W;. Furthermore, we

w

call W;[L..41 (1 < j < ¢;) a prefix substruc-
ture of W,;. Conversely, W;[j..¢;] is called a
suffix substructure. The geometric trie for
W is defined as a rooted tree data structure
that has the following features (Figure 1):

1. All the internal nodes (nodes other than
the root and the leaves) have more than
one child.

2. The tree has n leaves, each of which cor-
responds to one protein structure in W,
and no two leaves correspond to the same
structure. Let leaf(i) denote the leaf
that corresponds to W;.

3. All the edges e except for some of edges
that end at leaves correspond to a sub-
structure P(e) = W;[7..k], and they have
information of some 3-D rotation ma-
trix R(e) and some 3-D translation vector
¥(e) for each.

4. Let S{e) be P(e) rotated by R(e) and
translated by @(e), which is called the
‘edge structure’ of e. For a node z in the
tree, consider a structure S(z) that can
be constructed by concatenating all the
edge structures on the path from the root
to z, which is called the ‘node structure’
of z. For any leaf v = lea f(7) and its node
structure S{v), the RSSD between any
prefix substructure of S{v) and the prefix
substructure of W; (of the same length)
must not be larger than some given fixed
bound bggsp.

5. For an edge e = (v, w) with some corre-
sponding substructure P(e), the ‘branch-
ing structure’ str(e) is defined as a struc-
ture that is obtained by adding the co-
ordinates of the first atom of S(e) (i.e.,
S(e)[1]) after S{v). For any internal
node v with more than one outgoing
edge with corresponding substructures,
the RSSD between str{e;) and str(es)
must be larger than bgssp, where ¢; and
ey are arbitrary two of the edges.

Then the geometric suffiz tree of a struc-
ture P = {p1, P2, .. ., Pn ) is defined as the ge-
ometric trie of all the suffix substructures of



Figure 1: A geometric trie for two protein 3-D structures.

P. The geometric suffix tree can be stored in
O(n) memory, though there are O(n?) sub-
structures in the target structure. It can be
built in O(n?) time by just adding suffix sub-
structures into the tree one by one. The ge-
ometric suffix tree can be easily extended to
deal with all the suffix substructures of a set
of structures, as in the case of the generalized
suffix trees [7].

A prefix substructure of a node struc-
ture is called a ‘representative structure’. To
search for a substructure similar (i.e., RMSD
is within some bound bgysp) to a query
Q[1..m] using the geometric suffix tree, we
first search for all the representative struc-
tures of length m whose RMSD to @ is within
brmsp + (brssp/v/m). There always exist
(one or more) original substructures that cor-
respond to each representative structure. We
choose as the answers to the query the origi-
nal substructures that correspond to the enu-
merated representative structures, such that
their RMSDs are actually within bgpsp.

3 Prefix-Shuffled
Structures

When we search for similar substructures
from the geometric suffix trees, we incremen-
tally compare RSSDs between the prefix sub-
structures of the query structure and repre-
sentative structures. In Figure 2, the line
noted as ‘Normal’ shows the RSSDs of pre-
fix substructures (of various lengths) of two
very different proteins (a myoglobin and a

rhodopsin taken from the set of structures
used in section 5). In this example, the
RMSD between two prefix substructures of
length 30 is 9.40A (i.e., RSSD is 50.624),
which means that the two structures are not
at all similar to each other.

Consider the case that the myoglobin
structure above is stored in the geometric
suffix tree as a representative structure, and
we want to find all the representative struc-
tures whose RSSDs to the rhodopsin struc-
ture above is within 20.0A. Then we must in-
crementally compare these prefix structures
up to 12 atoms. It means that we have
to meaninglessly compute RSSDs 12 times,
though these two structures are not at all
similar to each other.

Let 7 = {m,7,..., 7} be some per-
mutation of length k.  For a structure
P = {p1,P2...,Pn} such that n >
k, consider a new structure H,(P) =
{ﬁm iy 7ﬁwk7ﬁk+lyﬁk+2, e >ﬁn}7 which
we call the prefix-shuffled structure of P by
.

In Figure 2, the dotted line noted as
‘Random’ shows the RSSDs between the pre-
fix substructures of the prefix-shuffled struc-
tures of the same two structures (a myo-
globin and a rhodopsin) used in the ‘Normal’
experiment by a randomly-generated permu-
tation of length 30.! In other words, we com-
pare H.(P) and H.(Q) instead of P and Q.

!The permutation we used here is {3,25,
12,29,2,13,19, 16, 17, 10,11,9,7, 1,8, 18, 26, 27, 23, 5,
28, 15,21, 20,24, 14, 30, 22, 4, 6).
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Figure 2: Prefix RSSDs and Shuffled Prefix RSSDs.

According to the figure, the RSSD exceeds
20.0A if the prefix substructure length be-
comes larger than 7, which is much smaller
than the ‘12’ in the previous ‘Normal’ case.
It is a very reasonable result, because the
distances between two adjacent atoms in the
prefix-shuffled structure is often much larger
than those in the original structure. This im-
plies that we can improve query performance
if we shuffle the structures by some appropri-
ate permutation (both for the database and
the query).

4 Prefix-Shuffied

Geometric Suffix Trees

We define the prefiz-shuffled geometric suf-
fizx tree (PSGST for short) for a structure
P as the geometric trie over all the prefix-
shuffled suffix substructures of P by some
permutation 7 (i.e., {H,(Pls.n])]1 < 1 <
n — |r| + 1}). The memory requirement for
storing the PSGST is O(n) (same as the geo-
metric suffix tree). Recall that the geometric
suffix tree is built by just adding each suffix
substructures one by one. The PSGSTs can
also be built in the same way as the geomet-
ric suffix trees, which requires O(n?) time.

Moreover, we can search for substructures
that is similar to ) by just searching for rep-
resentative structures that is similar to the
prefix-shuffled query H,(Q) on the PSGST,
if the length of () is not smaller than the
length of w. In this paper, we do not deal
with queries which are shorter than the per-
mutation 7.

To construct the PSGSTs, we need some
appropriate permutation of a given length.
A random permutation can be used for this
purpose. It can be generated in O(klogk)
time by sorting a sequence of random num-
bers, where £ is the length of the permuta-
tion.

Other than the random permutations,
the following permutation can also be used.
A permutation 7 = {m,m, ..., m:} is called
a furthest permutation if it satisfies m, = 1,
7y = k, and ming; |m; — me} > minge; |75 —m,)
for any ¢ and j such that ¢ < j. We
call it ‘furthest’ because ; is furthest from
{m,...,m_1} among m;, mir1,..., Tk For
example, {1,9,5,3,7,2,4,6,8} is a furthest
permutation. We can assume that the dis-
tance between two atoms Py, and ﬁ,r]. would
be large if |m; — ;| is large. Therefore we con-
sider the furthest permutation might be suit-



able for the PSGSTs. Note that a furthest
permutation of length k£ can be obtained in
O(k) time by using a simple bit operation
technique.

In the next section, we will show through
experiments how well our simple strategy
works for 3-D substructure search.

5 Experiments

In this section, we demonstrate the perfor-
mance of the PSGSTs. All the experiments
are done on a Sun Fire 15K super computer
with 288 GB memory and 96 UltraSPARC
III Cu CPUs running at 1.2GHz.?2 As a data
for experiments, we used a set of 228 myo-
globin or myoglobin-related PDB data files
containing 275 protein structures, which is
the same set used in the experiments by [11].
The total number of amino acids in the pro-
tein set is 41,719.

At first, we compared the construction
time of PSGSTs against the construction
time of the geometric suffix trees, by set-
ting the RSSD bound bgrssp = 20.0A (Ta-
ble 1). In the table, the ‘GST’ column
shows the construction time of the geometric
suffix tree against the myoglobin database.
Next, we constructed 100 PSGSTs with dif-
ferent random permutations of length 50.2
The ‘Random’ column shows the average,
minimum, and maximum construction time
among these 100 experiments. They are a
little faster than constructing the geometric
suffix tree, but it is not much different. We
also did experiments by using the furthest
permutation of length 50. The ‘Furthest’ col-
umn shows the result. The result is almost
the same as the average of the results of ran-
dom permutations. We assume these results
are very reasonable, as there is no difference
between the algorithms for the PSGSTs and
the geometric suffix trees except for the pre-
fix shuffling.

2We used only one CPU for each experiment.
3We used the Mersenne-Twister [8] for generating
random numbers.

We next examined the query speed of the
above 101 PSGSTs (i.e., the 100 PSGSTs
constructed with different random permuta-
tions, and the one constructed with the fur-
thest permutation) and the geometric suf-
fix tree (Table 2). We used two protein
substructures as queries: (a) A substruc-
ture from the 20th amino acid to the 69th
amino acid of the backbone structure of a
rhodopsin® (named 1F88) obtained from the
PDB, and (b) A substructure from the 20th
amino acid to the 69th amino acid of the
backbone structure of a myoglobin (named
103M), which is also contained in the myo-
globin database we used for constructing the
geometric suffix trees and the PSGSTs. Note
that these queries are same as those used in
[11]. For each query, we searched for sim-
ilar substructures with 10 different settings
of the RMSD bound (brarsp). In the table,
the ‘#similar structures’ rows show the num-
bers of similar structures obtained with the
designated bgpsp settings, the ‘GST’ rows
show the query time on the geometric suf-
fix tree, and the ‘PSGST’ rows show the
query time on the PSGSTs. In the ‘PSGST’
rows, the ‘Random’ rows show the aver-
age/minimum/maximum query time among
the 100 PSGSTs constructed with different
random permutations, while the ‘Furthest’
rows show the query time on the PSGST con-
structed with the furthest permutation.

In the experiment (a), the PSGST out-
performs the geometric suffix tree in all the
101 cases. The PSGSTs constructed with
random permutations perform about 1.9-13
times better than the geometric suffix tree
in average. Moreover, they perform more
than 100 times better than the geometric
suffix tree in the best case. If-we use the
furthest permutation, the PSGST performs
about 2.6-37.5 times better than the geomet-
ric suffix tree. The results by the furthest
permutation is better than the average of re-

4As seen in section 3, rhodopsins have nothing to
do with myoglobins, and their structures are totally
different.



Table 1: Time for constructing the geometric suffix trees and the PSGSTs.

PSGST
GST Random
Average | Minimum | Maximum Furthest
[ Time (sec) [ 39.10 [ 37.26 | 35.87 38.65 37.89 |

sults by random permutations, but it is not
the best one among the 101 permutations we
tried.

Consider a Figure 2-like graph for two
similar structures. In this case, the RSSD
will not go up until the end of the struc-
ture. Thus, we can easily imagine that the
PSGSTs are not so efficient if the database
has many structures similar to the query,
which can be seen in the experiment (b).
But, according to the table, the PSGST out-
performs the geometric suffix tree in most
cases. If we use a random permutation, the
PSGST performs about 1.5 times better than
the geometric suffix tree in average. If we use
the furthest permutation, the PSGST out-
performs the geometric suffix tree in all the
cases but 1 case. All in all, we can conclude
that the PSGST outperforms the geometric
suffix tree.

6 Discussion

We proposed a new data structure based
on the geometric suffix tree, which we
call the prefix-shuffled geometric suffix tree
(PSGST). The PSGSTs show higher query
performance than the geometric suffix trees
in most cases. In the best case, a query on
a PSGST is more than 100 times faster than
the same query on the geometric suffix tree.

Several tasks remain as future work. The
PSGST performs well especially when there
are not many substructures similar to the
query in the database. It means that the
PSGST can be used as a very powerful fil-
tering tool for some other more flexible sim-
ilarity search algorithms on 3-D structures,
which is one of the future tasks. Another
future task is finding gapped 3-D motifs of
proteins by using the PSGST. We do not

know how to get the optimal permutation for
the PSGST, which is an open problem. On
PSGSTs, we cannot search for queries which
are shorter than the permutation (which is
used for constructing the PSGST). It is also
an open problem how to do deal with such
queries.
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