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abstract

The capacitated tree-routing problem (CTR) in a graph G = (V, E) consists of
an edge weight function w : E — RT, a sink s € V, a terminal set M C V with
a demand function ¢ : M — R™, a routing capacity x > 0, and an integer edge
capacity A > 1. The CTR asks to find a partition M = {Z;,Z3,...,Z;} of M and a
set T = {11, T3, ..., Ty} of trees of G such that each T} spans Z; U {s} and satisfies
Y ez 4(v) < K. A subset of trees in T can pass through a single copy of an edge
e € F as long as the number of these trees does not exceed the edge capacity A; any
integer number of copies of e are allowed to be installed, where the cost of installing
a copy of e is w(e). The objective is to find a solution (M, T) that minimizes the
installing cost > .z[[{T € T | T contains e}|/X|w(e). In this paper, we propose
a (2 + psr)-approximation algorithm to the CTR, where pgr is any approximation
ratio achievable for the Steiner tree problem.

1 Introduction tree-routings that connects given terminals to
a sink s in a network with a routing capacity
k > 0 and an edge capacity A > 0. A network
is modeled with an edge-weighted undirected

we consider a capacitated routing problem un-
der a multi-tree model. Under this model,
we are interested in constructing a set 7 of
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graph. Each terminal has a demand > 0, and
a tree in the graph can connect a subset of ter-
minals to s if the total demands in the subset
does not exceed the routing capacity k. The
weight of an edge in a network stands for the
cost of installing a copy of the edge. A sub-
set of trees can pass through a single copy of
an edge e as long as the number of these trees
does not exceed the edge capacity A; any in-
teger number of copies of e are allowed to be
installed. The goal is to find a feasible set of
tree-routings that minimizes the total weight
of edges installed in the network. We call this
problem the capacitated tree-routing problem
{CTR for short), which can be formally stated
as follows, where we denote the vertex set and
edge set of a graph G by V(@) and E(G), re-
spectively, and RT denotes the set of nonneg-
ative reals.

Capacitated Problem
(CTR):

Input: A graph G, an edge weight function
w : E(G) - R*, asink s € V(G), a set
M C V(G) of terminals, a demand function
g : M — R*, a routing capacity x > 0, and
an integer edge capacity A > 1.

Feasible solution: A partition M = {Z, Z,
.oy Zgy of M and aset T = {T1,T>,..., Ty}
of trees of G such that Z; U {s} C V(T;) and
> wez; 4(v) < x hold for each 4.

Goal: Minimize

E hT(e)w(e)a

e€E(G)
where hr(e) = [{T € T | e € E(T)}|/)\],
ecE.

The CTR is our new problem formulation
which includes several important routing prob-
lems as its special cases. First of all, the CTR
with A = 1 and k = +00 i3 equivalent to the
Steiner tree problem. Given an edge-weighted
graph G and a subset Z C V(G), the Steiner
tree problem asks to find a minimum weighted
tree T' of G with Z C V(T'). The Steiner tree
problem is NP-hard, and the current best ap-
proximation ratio for the Steiner tree problem
is about 1.55 [6].

Secondly the CTR is closely related to the
capacitated network design problem (CND),

Tree-Routing

which has received a number of attentions in
the recent study [2, 4, 7]. The problem is de-
scribed as follows.

Capacitated Network Design Problem
(CND):

Input: A graph G, an edge weight function
w : E(G) - R", asink s € V(G), a set
M C V(G) of sources, a demand function
g : M — R, and an integer edge capacity
A>1.

Feasible solution: A set P = {P, | v € M}
of paths of G such that {s,v} C V(P,) holds
for each v € M.

Goal: Minimize

> he(eule),

e€E(G)

where hp(e) = [}, .cep(p,) 9(v)/A], € € E.

Salman et al [7) designed a T7-
approximation algorithm for the CND by using
approximate shortest path trees. Afterwards
Hassin et al. [2] gave a (2-+ pgr)-approximation
algorithm, where pgr is any approximation ra-
tio achievable for the Steiner tree problem. By
using of a slight intricate version of this algo-
rithm, they improved the approximation ra-
tio to (1 + psr) when every source has unit
demand. Note that the CTR and the CND
are equivalent in the case where x = 1 and
g(v) =1 for every v € M.

The third variant of the CTR is the capac-
itated multicast tree routing problem (CMTR)
which can be formally stated as follows.

Capacitated Multicast Tree Routing
Problem (CMTR):

Input: A graph G, an edge weight function
w: E(G) — R*, a source s, a set M C V(G)
of terminals, a demand function ¢ : M — R™,
and a routing capacity x > 0.

Feasible solution: A partition M = {Z;, Zs,
vy Zyy of M and a set 7 = {T1,Ts,..., Ty}
of trees induced on vertices of G such that
Z; U{s} C V(T;) and X 5 q(v) < & hold
for each i.

Goal: Minimize

Y hr(eule) = Y w(T),

e€E(G) T;eT



where hr(e) = |{T € T |e € E(T)}|, e € E,
and w(T;) denotes the sum of weights of all
edges in T;.

Observe that the CMTR is equivalent to
the CTR with A = 1. For the CMTR with a
general demand, a (2+ pgr)-approximation al-
gorithm is known [3]. If g(v) = 1 forallv € M,
and k is a positive integer in an instance of the
CMTR, then we call the problem of such in-
stances the unit demand case of the CMTR.
For the unit demand case of the CMTR, Cai
et al. [1] gave a (2 + psr)-approximation algo-
rithm, and Morsy and Nagamochi [5] recently
proposed a (3/2+ (4/3) psr )-approximation al-
gorithm.

In this paper, we prove that the CTR ad-
mits a (2 + psr)-approximation algorithm. For
this, we derive a new result on tree covers in
graphs.

The rest of this paper is organized as fol-
lows. Section 2 introduces some notations and
two lower bounds on the optimal value of the
CTR. Section 3 describes some results on tree
covers. Section 4 presents our approximation
algorithm for the CTR and analyzes its ap-
proximation factor. Section 5 concludes.

2 Preliminaries

This section introduces some notations and
definitions. Let G be a simple undirected
graph. We denote by V(G) and E(G) the sets
of vertices and edges in G, respectively. For
two subgraphs (G; and G of a graph G, let
G1 + G2 denote the subgraph induced from G
by E(G1) UE(G2). An edge-weighted graph is
a pair (G, w) of a graph G and a nonnegative
weight function w : E(G) — R*. The length
of a shortest path between two vertices u and
v in (G, w) is denoted by d(gw)(u,v). Given
& vertex weight function ¢ : V(G) — R* in
G, we denote by ¢(Z) the sum ) - q(v) of
weights of all vertices in a subset Z C V(G).
Let T be a tree. A subtree of T is a con-
nected subgraph of T. A set of subtrees in T
is called a tree cover of T if each vertex in T is
contained in at least one of the subtrees. For
a subset X C V(T) of vertices, let T(X) de-
note the minimal subtree of T that contains X
(note that T'(X) is uniquely determined).

Now let T be a rooted tree. We denote
by L(T) the set of leaves in T. For a vertex
v in T, let Ch(v) and D(v) denote the sets
of children and descendants of v, respectively,
where D(v) includes v. A subtree T, rooted at
a vertex v is the subtree induced by D{v), i.e.,
T, = T(D(v)). For an edge e = (u,v) in a
rooted tree T', where u € Ch(v), the subtree
induced by {v} U D(u) is denoted by T, and
is called a branch of T,,. For a rooted tree T,
the depth of a vertex u in T}, is the length (the
number of edges) of the path from v to u.

The rest of this section introduces two
lower bounds on the optimal value to the CTR.
The first lower bound is based on the Steiner
tree problem.

Lemma 1 Given a CTR instance I =
(G,w,s,M,q,k,)), the minimum cost of a
Steiner tree to (G, w, MU{s}) is a lower bound
on the optimal value to the CTR instance I.

Proof. Consider an optimal solution
(M*,T*) to the CTR instance I. The edge set
E* =Upier-E(T')(C E(G)) contains a tree T
that spans M U {s} in G. We see that the cost
w(T) of T in G is at most that of the CTR so-
lution. Hence the minimum cost of a Steiner
tree to (G,w, M U {s}) is no more than the
optimal value to the CTR instance I. 0

The second lower bound is derived from an
observation on the distance from vertices to
sink s.

Lemma 2 Let I = (G,w,s,M,q,x,)) be an
instance of CTR. Then,

> diguw(s,v)a(v)/(kX)

vEM

is a lower bound on the optimal value to the
CTR instance I.

Proof. Consider an optimal solution (M* =
{Z1,...,2,},T* = {Th,...,T,}) to the CTR
instance I. Let opt(I) = 3 cp(q) hr-(e)w(e)
be the optimal value of the CTR instance I.
Since |[{T" € T* | e € E(T")}| < Ahr=(e) holds
for all e € E(Q), we see that

> w@ < Y Mr(ule). (1)

TieT™ e€E(G)



Also, for each tree T; € T*, we have

> dGw(s,v)a(v) < w(T) Y qv) < ru(T),

vEZ; VEZ;

(2)
since w(T;) > d(guw)(s,v) for all v € V(T;).
Hence the proof is completed by summing (2)
overall trees in 7* and using (1). 0

3 Tree Cover

The purpose of this section is to present some
results on the existence of tree covers, based on
which we design our approximation algorithm
to the CTR in the next section.

We first review a basic result on tree covers.

Lemma 3 [3] Given a tree T rooted at r,
an edge weight function w : E(T) — R,
a terminal set M C V(T), a demand func-
tion ¢ : M — R*, and a routing capacity
with k > ¢(v), v € M, there is a partition
Z = Z1U 25 of M such that:

(i) For each Z € Z, there is a child u ¢
Ch(r) such that Z C V(T,). Moreover,
{Z € 21 | Z C V(T,)} < 1 for all
u € Ch(r);

(ii) ¢(Z) < k/2for all Z € Zy;
(ili) /2 < q(Z) < kfor all Z € Zy; and

(iv) Let T = {T(ZU{r}) | Z € Z.}U{T(Z) |
Z € 2,}. Then E(T")NE(T") = 0 for all
T',T" € T, and hence Y per w(T') <
w(T).

Furthermore, such a partition Z can be ob-
tained in polynomial time. ]

From the construction of a partition Z in
Lemma 3, the following corollary is straight-
forward.

Corollary 1 Let Z = Z1 U 25 be defined as
in Lemma 8 to (T,r,w,M,q, k). Then:

(i) E(T(Z)) N BE(T(Uzez,Z)) = @ for all
Z € 2Z,.

Figure 1: Illustration of the case of |Z,| =
g+ g > X in an iteration of algorithm
TREECOVER; (a) Line 3.4 identifies a terminal
t; € V(T,) with the minimum vertex weight d,
where t; € V(T,) in this figure; (b) Line 3.6.3
or 3.6.4 constructs C; that contains all sub-
sets in {Zy, Z1,...,Z,} and some subsets in
{21,...,25} so that |C;| = A, where the gray
subtrees indicate the subsets in C;.

(1) Let Zo € 21 be a subset such that Zy C
V(T,) for somew € Ch(r). If 2' ={Z €
Zo | Z CV(Ty)} # 0, then Z' contains
a subset Z' such that E(T{Zy U Z")) N
E(T(Z)) =0 for all Z € Z — {Zy,Z'}.
[l

We now describe a new result on tree cov-
ers. For an edge weighted tree T rooted at
s, a set M C V(T) of terminals, and a ver-
tex weight function d : M — R*, we want to
find a partition M of M and to construct a
set of induced trees T(Z U {tz}), Z € M by
choosing a vertex tz € V(T) for each subset
Z € M, where we call such a vertex tz the
hub vertex of Z. To find a “good” hub vertex
tz for each Z € M, the following lemma classi-
fies a partition M of M into disjoint collections
C1,Ca,...,Cs and then computes tz, Z € M,
such that ¢z = argmin{d(t) | t € Uzec,Z} for
each Z € C;, j < f—1, and tz = s for each
zZecC fe

Lemma 4 Given a tree T rooted at s, an edge
weight function w : E(T) — RT, a terminal
set M C V(T), a demand function q : M —
R™*, a vertex weight functiond: M — R™T, a



real Kk with k > q(v), v € M, and a positive in-
teger A, there exist a partition M = U1<;<sC;
of M, and a set B = {t; = argmin{d(t) | t €
Uzec; Z} | § < f—1}U{ts = s} of hub vertices
such that:

(1) Gl <Aforallj=1,2,...,f;
() ¢(Z)<kforal ZeCj,j=1,2,...,f;

(iii) EZEqu(Z) > kA2 for dll j =

2,...,f—1;
(iv) E(T(Z))NE(T(Z")) = 0 for all distinct
Z,7Z' € M; and
) Lt T = {T(ZU{}) | Z€C;, 1< <

£}, and let all edges of each T(ZU{t;}) €
T',Ze€C;,1<j< f be directed toward
t;. Then for each edge e € E(T), the
number of trees in T' passing through e
in each direction is at most A.

Furthermore, a tuple (M,B,T’) can be com-
puted in polynomial time. O

To prove Lemma 4, we can assume without
loss of generality that in a given tree T, (i) all
terminals are leaves, i.e., M = L(T), and (ii)
|Ch{v)| = 2 holds for every non-leaf v € V(T),
ie., T is a binary tree rooted at s, by split-
ting vertices of degree more than 3 with new
edges of weight zero [5]. We prove Lemma 4 by
showing that the next algorithm actually deliv-
ers a desired tuple (M, B, T’). The algorithm
constructs collections C1,Cs,..., by repeating
a procedure that first chooses a certain vertex
v in the current tree, computes a partition Z
of the set of terminals in the subtree rooted at
v by Lemma 3, and then selects several subsets
in Z to form the next new collection C;.

Algorithm TREECOVER

Input: A binary tree T rooted at s, an edge
weight function w : E(T) — R*, a terminal
set M = L(T) with q(v) > 0, v € M, a vertex
weight function d : M — R™, a routing
capacity xk with & > q(v), v € M, and

a positive integer .

Output: A tuple (M, B,7’) that satisfies
Conditions (i)-(v) in Lemma 4.

Initialize: T:=T, 7’ := 0, and j := 0.

1. Choose a maximum depth vertex v € V(T
with ¢(V(T,) " M) > kA/2, and let j:=j+ 1.
2. If v is a leaf of T', then let Z := {v}, C; :=
{Z}, and t; :=v.
3. If v is not a leaf of 7', then
3.1. Denote Ch(v) = {u, %} and Z, = V(T,) N M.
3.2. Find a partition 21 U 25 of Z,, by applying
Lemma 3 with (T, w,v, Zy,q, k).
Denote 27 = {ZO,Z)} and 2, = {Z1,...,2,
YU{Zy,...,Z;}, where ZgUZlu---UZg
CV(T,) and ZQ UZ1 U---u Zg CV(Ty)
(see Fig. 1).
Let t; € Z, be such that d(¢;) is minimum,
where t; € V(T,,) w.olg.
If |Z5] = [g] + |g| < A, then let N
Cj = {2y U Zy, 21, ... ,Zg,Zl,...,Zg}.
3.6. If |Z,] > ), then
3.6.1. Find Zy € {Zy,...,Z,} such that E(T
(Z)YNE(T{Zo U Zy)) = 0 for all Z € Z;U
23 — {2y, Zp}, by using Corollary 1(ii).
3.6.2. Let & € V(T(Z)),i=1,2,...,§ be
the vertex closest to v in T, where the dist-
ance from ;.1 to v in T is not larger than
that from Z; tov, 1 <i<g—1, w.olg.
3.6.3. If ¢(Zy U Z3) < K, then let

3.3.

34.

3.5.

CJ = {Zl’l "aZb:IaZO U Zb;Zb+17' "7Zg}
U{Zl,...,Z,\_g}.
3.6.4. If ¢(Zy U Zp) > &, then let
Cj = {Z(),Zl, .. .,Zg} @] {Zl, A :Z)\—g—l}v

4. For each Z € C;, let t7 :=t; and
T =T U{T(ZJ{tz})}.
5. Remove the set of terminals in C; from M
and let T := T(M U {s}).
6. Repeat steps in lines 1-5 with the current
tree T as long as (M) > k) /2.
7. Let f:=j41,t5:=s, and Cy := 0.
8. If M is not empty, then
8.1. Find a partition Z; U Z5 of M by
applying Lemma 3 with (T, w, s, M, q, k).
8.2. Let Cf := {Zo U Zy} U Z,, where
21 ={2Zy,2Zy}.
9. Let M := UlSijCj, B = {t] | 1< J < f},
and 77 :=T'U{T(Z U{s}) | Z € Cy}.
10. Output (M, B, 7).

Now we prove that the tuple (M,B,7")
output from algorithm TREECOVER satisfies
Conditions (i)-(v) in Lemma 4.

(i) Clearly, |C;| =1 < A for any collection



C; computed in line 2. Consider a collection C;
computed in line 3.5. We have [C;| = g+ § +
1 < XAsince g+ g < X. For any collection C;
computed in line 3.6.3 or 3.6.4, it is easy to see
that |C;| = X holds. Note that |Z3] < Ain a
partition Z;UZy of the current M computed in
line 8.1 since ¢(Z) > k/2, Z € Z3 and q(M) <
kA/2. Hence [Cf| = | Z5]+1 < A for a collection
C; computed in line 8.2. This proves (i).

(ii) For a collection C; computed in line 2,
q9(Z) < k, Z € Cj, by the assumption that
g(v) < k for all v € M. Consider a parti-
tion Z; U 2, computed in line 3.2 by applying
Lemma 3 to (T,,w,v, Zy,q,x). Lemma 3(ii)-
(iii) implies that ¢(Zo U Zg) < x and ¢(Z) < &
for all Z € 2Z5. Furthermore, for a col-
lection C; computed in line 3.6.3, we have
q(Zy U Zp) < k. Hence each subset Z added
to C; in line 3.5, 3.6.3, or 3.6.4 has demand
at most k. Lemma 3(ii)-(iii) implies also that
each subset of C¢ computed in line 8.2 has de-
mand at most x. This proves (ii).

(iif) This condition holds for a collection
C; computed in line 2 since g(v) = q(V(T},) N
M) > kA/2. Consider a collection C; com-
puted in line 3.5. We have Ezecj q(Z) =
Y- zezuz, 9Z) = a(Zy) > kKX/2 since 21 U Z,
computed in line 3.2 is a partition of Z, and
q(Zy) > k\/2 by using the condition in line 1.
For a collection C; computed in line 3.6.3,
Lemma 3(iii) implies that > zec; A(Z) =
A(k/2) since ¢(Z) > k/2, Z € C;. For a
collection C; computed in line 3.6.4, we have
Yzec; 12) = Lacico19(Zi) + d(Zo U Zy) +

Lii<icg 1Z) + Dicicng-19(Zi) > (b —
De/2+c+({(g—b)+ X —g—1)k/2=r)/2
since ¢(ZyU Zp) > x. This completes the proof
of property (iii).

(iv) Consider the execution of the jth it-
eration of the algorithm. By the construction
of C; and Lemma 3(iv), we have E(T(Z1)) N
E(T(Z3)) = 0 for all distinct Z1,2Z, € C;.
Moreover, since any collection computed in
line 2, 3.5, or 8.2 contains all subsets in a par-
tition Z; U 25 of Z, computed in line 3.2 and
by the assumption in line 3.6.2 used in con-
structing C; in line 3.6.3 or 3.6.4, we conclude
that E(T(Z")) N E(T(M — Uzec, Z))) = 0 for
all Z’ € C;. Hence for any distinct subsets

Z1,Z5 € M, we have E(T{Z)NE(T(Z5)) = 0
since a partition M of M output from the
algorithm is a union of collections C;, j =
1,2,..., f. This proves (iv).

Before proving the property (v), we can
show the following lemma (the proof is omitted
due to space limination).

Lemma 5 Let (M,B,7') be a tuple ob-
tained from a binary tree T by algorithm
TREECOVER. Then for each edge e = (z,y) €
E(T), where y € Chgz(z), we have

(@) For T} = {T(Z U {tz}) €T | Z¢€
it holds |T}| < 1;

() {T(ZZU{tz}) €e T | Z € M, Z
V(f) - V(Ty)ytz € V(fy)” < A-—

and

N

(i) {T(ZUu{tz}) € T' | Z € M,Z C

g(fy),tz e V(@) -V@YH < A- 1T

We are ready to prove property (v) in
Lemma 4. Let e = (z,y) be an arbitrary

.edge of T, where y € Cha(z). Let all edges

of T(Z Uty) € T', Z € M, be directed to-
ward £z, and let 77 be as defined in Lemma 5.
The number of trees in 7’ passing through e
toward y is at most the sum of the number of
trees in 77 and treesin {T(ZU{tz}) € T' | Z €
M,Z CV(T)-V(T,),tz € V(T,)}. Similarly,
the number of trees in 7”7 passing through e
toward z is at most the sum of the number
of subsets in 7] and trees in {T(Z U {tz}) €
T | ZeM,ZCV(T),tz e V(T)-V(T)}
Hence Lemma 5(i)-(iti) completes the proof of
(v). O

4 Approximation
CTR

This section presents an approximation algo-
rithm for an instance I = (G,w, s, M, q,k, \)
of the CTR problem based on results on tree
covers in the previous section. The basic idea
of the algorithm is to compute an approximate
Steiner tree T in (G, w, M U {s}), find a tree
cover 7' of the tree T such that [{T' € 77 |

Algorithm to



e € E(T")}| < Afor each e € E(T), and finally
connect each tree in 77 to s in order to get a
tree-routings 7 in the instance I.

Algorithm ArPPROXCTR

Input: An instance I = (G, w, s, M,q,x,\) of
the CTR.

Output: A solution (M, T) to I.

Step 1. Compute a pgr-approximate solution
T to the Steiner tree problem in G that
spans M U {s} and then regard T as a
tree rooted at s.

Dcfine a function d : M — R by setting
d(t) = d(G,w)(S,t), te M.

Step 2. Apply Lemma 4 to (T,w,s,M,q,d,
Kk, A) to get a partition M = Ui<j<fC;
of M, a set B = {t1,t,...,t5} of hub
vertices, where tz = {; for each Z € C;,
i=12,....,f,and aset T' = {T{Z U
{tz}) | Z € M} of subtrees of T that
satisfy Conditions (i)-(v) of the lemma.

Step 3. For each edge e = (u,v) of T, v €
Chr(u), with |[{T" € T' | e € E(T")}] >
A
Define Cin(€) :={Z e M| Z CV(T)~—
V(Ty),tz € V(T,)} and Couile) :={Z €
M I ZC V(Tv)th € V(T) - V(Tv)}'

while |[{T" € 7" |e € E(T")}| > A do
Choose two arbitrary subsets Z €
Cin(e) and Z' € Coyi(e), where Z €
Cjand Z' € Cj, 1< 4,5/ < f.
Let C; = (CJ —{Z}hHu{Z'}, Cjr =
(Cj/ -{Z'hHu {Z}, tz = ty, and
tz =1,
Let Cin(e) = Cin(e) — {Z} and
Cout(€) 1= Cout(e) — {Z'}.
Let 77 := (T' —{T(ZU{t;}), T{Z'U
[ty U AT U {t2}), 12 U
{tz b}

Step 4. For each j = 1,2,...,f — 1, choose a
shortest path SP(s,t;) between s and ¢;
in (G,w) and join ¢; to s by installing a
copy of each edge in SP(s,t;).
Let T:={T(ZU{tz})+ SP(s,tz) | Z €
M} and output (M, T).

The idea of Step 3 in APPROXCTR is orig-
inated from a procedure of swapping paths in
the algorithm for the CND due to Hassin et al.
[2].

We state the following lemma without
proof due to space limitation.

Lemma 6 Let T' be output by algorithm
APPROXCTR applied to an instance I =
(G,w,s,M,q, ,)) of the CTR problem. Then
for any edge e of the Steiner tree T, we have
HT(Zu{tz}) € T' | Z € M,e € E(T{Z U
{tzI)}H < X O

Next we show the feasibility and compute
the approximation factor of the approximate
solution (M, T) output from algorithm Ap-
PROXCTR.

Theorem 1 For an instance I = (G, w,s,
M,q,x,)\) of the CTR, algorithm APPROX-
CTR delivers a (2+ psr)-approzimate solution
(M, T), where pgr is the approzimation ratio
of solution T to the Steiner tree problem.

Proof. Since M = U;<;<¢C;, Lemma 4(ii)
implies that ¢(Z) < k for all Z € M. That
is, (M, T) satisfies the routing capacity con-
straint on each tree. Now we show that 7
satisfies the edge capacity constraint, that is,
HT' € T | e € E(T")}| < Ahr(e) for any
e € E(G). Note that each tree in 7 is a tree
T(ZU{tz}) € T', Z € M, plus the shortest
path SP(s,tz) between s and ¢z in (G, w). By
Lemma 6, installing one copy on each edge of
the Steiner tree T implies that [{T{ZU{tz}) €
T'|Z e M,e€ E(T(ZU{tz}))}| < X for any
e € E(T). On the other hand, each collection
C;, j < f, contains at most A subsets of M, all
of which are assigned to a common hub vertex
t;. Hence it is enough to install one copy of
each edge in a shortest path SP(s,t;) between
sand t; in (G,w), j < f—1 (¢ty = s), in order
to get a feasible set 7 of tree-routings. This
implies that the number of trees in 7 passing
through a copy of each installed edge on the
network is at most A. Thereby (M, 7) is fea-
sible to I and the total weight of the installed
edges on the network is bounded by

w(T)+ > dy).

1<j<f-1



For a minimum Steiner tree T* that spans
M U {s}, we have w(T) < psr - w(T™) and
w(T*) < opt(I) by Lemma 1, where opt(I)
denotes the weight of an optimal solution to
the CTR. Hence w(T") < pgr - opt(I) holds. To
prove the theorem, it suffices to show that

Z d(t;) < 2opt(I).

1<i<f~1

3)

Consider a collection Cj, j < f—1 obtained
by applying Lemma 4 to (T, w, s, M, q,d, k, A)
in Step 2. Note that even if some subsets of
C; are applied by swapping in Step 3, the hub
vertex of the updated collection remains un-
changed. That is, the set B of hub vertices
computed in Step 2 does not change through-
out the algorithm. Hence Lemma 4(iii) implies
that

Do a®d) > dt) Y qlt) > (sA/2)d(ty).

teZeC; teZeC;
(4)

By summing inequality (4) overall C;’s (com-
puted in Step 2), 7 < f — 1, we have

Y A Y Y @O/

1<5<f-1 1<G<f-1 teZec;

< 3" @@/ (=A)d(e).

teM

Hence Lemma 2 completes the proof of (3).
a

5 Conclusion

In this paper, we have studied the capacitated
tree-routing problem (CTR), a new routing
problem formulation under a multi-tree model
which unifies several important routing prob-
lems such as the capacitated network design
problem (CND) and the capacitated multi-
cast tree routing problem (CMTR). We have
proved that the CTR is (24 psr )-approximable
based on some new results on tree covers,
where pgr is any approximation factor achiev-
able for the Steiner tree problem. Future
work may include design of approximation al-
gorithms for further extensions of our tree-
routing model.
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