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Abstract. We consider a server location problem with only one server to move. If each request must
be served on the exact position, there is no choice for the online player and the problem is trivial. In
the online chasing problem a request is given as a region such that the service can be done anywhere
inside. Namely, for each request an online algorithm chooses an arbitrary point in the region and moves
the server there. In this paper we focus on a regular n-gon. We prove that the greedy algorithm is
O(n)-competitive. We also give a preliminary observation of the work function algorithm and conjecture
that it achieves a constant competitive ratio with an appropriate setting of the parameter.

1 Introduction

In the k-server problem the player manages k servers by changing their location so that at least one of
them serves the request at each time step [9]. In this paper we study a 1-server problem on the zy-plane.
One may think that if the player owns only one server, there is no choice in server location and therefore
the competitive ratio is always one. This is obviously true if the player has to move the server to the
exact position of the request. However, if it is enough to move it somewhere near the request, then the
player does have a choice. Namely, in the online chasing problem, each request has a certain region such
that the request can be served if the server moves or stays inside the region. The single server can choose
an arbitrary point in the region in order to reduce the total travel distance. Natural applications include
allocation of a relay broadcasting car to follow up consecutive incidents and that of a taxi in an old city
with severe traffic restrictions.

Friedman and Linial first studied this problem and proved that there exists a competitive online
algorithm for the online chasing problem for any convex region [6]. They began with a line chasing and
extended the analysis to a half plane and general convex bodies. However, they were not interested in
any specific shape of the region or specific values of the competitive ratio {only such a result is an upper
bound of 28.53 for the competitive ratio of the line chasing). The problem has not appeared in the
literature since then.

Our Contribution. In this paper we focus our attention on a regular n-gon (without rotation) as
the shape of the region and investigate how we can take advantage of the information of the specific
shape. It is shown that: (i) The greedy algorithm (GRD, which moves the server to the nearest position
in the request region from the previous position) works quite well for a small n. For instance, it achieves
competitive ratios of 2, v/2, and 3.24 for a regular triangle, a square, and a regular pentagon, respectively.
Especially for a square region, the ratio equals the lower bound for an arbitrary convex region [6], that
is, GRD is optimal. Our result for a general n is 1/sin 3= for odd n and 1/sin Z for even n. Our analysis



is tight, namely, there are request sequences for which the competitive ratio of GRD coincides the above
values. (ii) We give a preliminary observation of the work function algorithm WFA,, which minimizes
the weighted sum of the distance to the next position and the length of the optimal tour that terminates
at the next position. Please note that the competitive ratio of GRD is O(n) for a regular n-gon. We
consider some input sequences which seem to be cruel against WrA, and conjecture that WFa,, achieves
a constant competitive ratio by setting the parameter a appropriately.

Related Work. In a broader sense, the CNN problem [8, 11] can be regarded as a special case of the
online chasing problem; One can just set the region {(z,y) | « = r, or y = r,} for a request (scene) on
R(re,ry). Although the upper bound remains still large, [7] showed that with a nontrivial restriction the
competitive ratio decreases to 9. Chrobak and Sgall provided a 5-competitive work function algorithm
for the weighted 2-server problem which corresponds to a special case of the CNN problem [5]. [1]
illustrated the application of the work function algorithm to some problems belonging to metrical service
systems (MMS). It is also famous that the work function algorithm is (2V — 1)-competitive and optimal
for general metrical task systems (MTS) where the size of the space is N [4]. See [2] for the recent
progress in the k-server problem.

2 Greedy Algorithm

In the online chasing problem a request R; = (z;,y;) is given somewhere on the zy-plane at each time

step i = 1,2,...,m. Then an online algorithm ALG sets the sole server on a point A; in region D; that
is associated with R;. For an input sequence o = (Ry,Ra,...,R.,), the cost of ALG is defined as
ALG(o) = SA; + ZAi—lAi, (1)
i=2

where S is the initial location of the server and A; | A; denotes the Euclidean distance between A;_; and
A;. The offline problem, i.e., minimization of SA; + ZZ‘ A;_1A; subject to A; € D; given in advance
for all i, is solved in polynomial time if every region D; is convex [10]. In this paper we let region D;
be the union of a regular polygon with centroid R; and its interior. The polygon does not rotate and
therefore we can assume without loss of generality that its bottom side is always parallel to the z-axis.
We set the length of sides in the polygon as one. It should be noticed that the size of the polygon does
not matter to the online competitiveness. We use the definition of the competitive ratio as in [12, 3]:
The competitive ratio of an online algorithm ALG is ¢ if there exists a constant b such that, for all input
sequences o, ALG(0) — ¢- OPT (o) < b, where OPT is an optimal offline algorithm. We call the value of
ALG(0)/OPT (o) for some specific o the cost ratio.

The greedy algorithm for the online chasing problem is defined as below. For a regular polygon one
can easily see that there are two types on the server’s behavior: The server arrives on one of the sides
after vertical movement against that side, or on one of the vertices.

Algorithm GRD: For each request ¢, (i) if the server’s previous position A;_; is not in D;, then move
the server to X € D; such that minimizes A, _;X. (i) Otherwise, do not move the server.

Lemma 1. For a regular n-gon (n > 3) the competitive ratio of GRD is at most 1/ sin 5 for odd n and
1/sinZ for even n.

Proof. We begin with an odd n. Let us investigate the behavior of GRD and an arbitrary offline algorithm
OFF for an input sequence 0. We write the positions of GRD’s and OFF’s server as Ay, As,...,A,, and
P1,Ps,..., Py, respectively. Since it may occur for some of the requests that GRD moves the server while
OFF does not, a simple piecewise comparison does not work. Therefore, we must adopt some potential
function for an amortized analysis. One can observe that the server of GRD always approaches the server
of OFF when OFF does not change the position. So some kind of distance between the two servers appears
to help, but it turns out that simple oncs are insufficient. Our choice of the potential function is

n—1

O(z,y) =)

k=0

. 2km 2km
zsin — + ycos — |, (2)
n n




Figure 1: Case where E is maximized (n
odd.) Figure 2: GRD for o7 (n odd.)

where (z,y) is the displacement from the position of OFF’s server to that of GRD’s. @(z,y) represents the
total length of all projections of vector (z,y) to the normal of each side of the n-gon. We use the notation
of AGRD; and AOFF; as the cost of GRD to serve the i-th request and that of OFF, respectively, and
®; as the value of ®(z,y) immediately after processing the i-th request. We can obtain a competitive
ratio as a positive constant of ¢ such that

for 2 <4 < m. If OFF does not move the server for the i-th request (that is P,_; = P;), GRD’s server goes
closer to P; by traveling no more than (®,_1; — ®;). Thus (3) holds if AOFF; = 0. As for AOFF; > 0,
without loss of generality, we assume that OFF stops the server immediately after reaching region D;.
One can see that the value of F is maximized to

2 cos? 2n

AGRD; + \/AOFF2 AGRD? - ¢- AOFF, (1)

when GRD moves the server from P;_; to A; that is on the same side as P; by a vertical movement,
with the side. Note that (4) is derived from ®(Az, A\y) = |A| - ®(z,y) and ®(1,0) = ZZ;; ‘sinz—’f}l =

n—1
nt 2 cos? . .
2%y, 2, sin 2k —C?s Zz . Besides, for such a GRD’s action, (4) is maximized to
k=1 n sin 7

(1— 21— ,§W>'AGRD1- (5)
Sim- 53—

2n

when AGRD; : AOFF; = \/c2 — (2cos? £ /sin %)2 : ¢. (5) is non-positive if ¢ > 1/sin ;- (If ¢ =
1/sin &=, E is maximized to zero when ZA;_1P;A; = J- as shown in Figure 1.)

For an even n we make a similar analysis applying ®'(z,y) = Zfo ! |w sin 22 2’“’ +ycos 2'“—”| as a
potential function instead of ®. ®' represents the total length of projections of vector (z,y) to the
normal of each side as well. However, it is sufficient to sum up half of projections since there are § pairs
of parallel sides in an even n-gon. As a result, it is obtained that the competitive ratio is at most 1/sin £
for even n. O

In particular for n = 4, the lemma below implies that GRD is an optimal online algorithm.

Lemma 2 ([6]). There exists no online algorithm whose competitive ratio is smaller than /2 for any
convez region on R2.

Although GRD may not be optimal for other polygons, we show that the analysis in Lemma 1 is tight.

Lemma 3. For a regular n-gon (n = 3 orn > 5) the competitive ratio of GRD is at least 1/sin 5= for
odd n and 1/sin I for even n.



Table 1: Competitive ratio of GRD for regular n-gons.
n 3 4 5 6 7 8 9 10
Competitive ratio | 2.00 | 1.41 | 3.24 | 2.00 | 449 | 2.61 | 5.76 | 3.24

Sketch of proof. For odd n, consider input sequence o consisting of R, (%
@(1~COS’/2 Iy, -
a < ; sin Z. It is seen that the server of GRD moves drawing a zigzag between two sides and approaches
P(i+ 25 ,O) {see Figure 2.) On the other hand, the optimal offline algorithm moves the server directly

sin =
n

=) for odd i’s and R, (% +
o _a)for0 <

tan

27 2tan

so— + % tan Z) for even ¢’s and the server’s initial location Si1(5-—

to P. The reason why the lower polygon slightly slides is to maximize the cost ratio. Consequently, we
have GRD(01) = 2a {1+ cos & +cos® Z +---) = 2a/(1 — cos Z) and OPT(al) =a/sin Z. For even n,

consider the input sequence o} of R; (2, e Ttan T ) for odd s and Ri(1 4+ 2= (1 — cos/2 ), —2sm =) for
even i's and the server’s initial location S} (1 — W’ —a/)for0<a' < LsinZt |

Theorem 1. For the online chasing problem the tight competitive ratio of the greedy algorithm is 1/ sin o
for odd n and 1/sinZ for even n, if the request region is a regular n-gon (n > 3). Especially for the case
of a square, the greedy algorithm is an optimal online algorithm.

3 Work Function Algorithms

We showed that the competitive ratio of GRD is O(n) for a regular n-gon. In this section we attempt
to improve the performance by applying the work function algorithm, which plays a significant role for
server location problems [5, 1] as well as for metrical task systems (MTS) [4]. For the online chasing
problem the work function w;(X) is defined as the length of the aptimal tour that terminates at X € D;
for request 4, that is, the minimum cost of serving all requests 1,2,...,4 — 1, and i finally reaching the
position X. Formally, given X € D,,

i—1
wl(X) = B ED]I%1£]<1 L SB; + X; Bj_lBj + B;_1X]|. (6)
j=

For a given o > 0, the work function algorithm is defined as follows.
Algorithm wrA,: For each request ¢, (i) if the server’s previous position A;_; is not in D;, then move
the server to X € D; such that minimizes A; 1 X + o - w;(X). (ii) Otherwise, do not move the server.

Note that the case of a = 0 is equivalent to GRD. Also we define the retrospective-greedy algorithm,
which is so called in [3]. One can see that the behavior of Wra, approaches that of this algorithm as
a — 0.

Algorithm RTR: For each request ¢, (i) if the server’s previous position A;_; is not in D;, then move
the server to X € D; such that minimizes w;(X). (ii) Otherwise, do not move the server.

We consider the following input sequences o3 and o3 (and also oy for even n) for wra, with different
settings of the parameter a. Intuitively speaking, WFA, with a large a is weak against o9 since the end
point of the optimal tour jumps far for each request. For the sequence o3, WFA, with a small & performs
badly. Note that o3 is almost the same as o1 in the proof of Lemma 3, except that the lower polygon
does not slide.

e Input sequence oo: R; l—}-i_l 1,C0527r - +’ sin Z) for odd i’s and R; ——cos~+
? 2tan n 2

£1 (1 — cos 1) +isinT ) for even i’s. The server’s initial location S (—i cos )

2 n ’Qtan" . 2 2tan T 2tan% :

e Input sequence o3 for odd n: R; (2, Toon 54— ) for odd #’s and R; (2, m) for even i’s. The server’s

initial location S3(3 — ,—a) for 0 < a<sinZ.

_a
tan =
n



Figure 3: wra, for a,. Figure 4: wra, for a request in 3.

o Input sequence o} for even n: R;(%, =~ +) for odd ¢’s and R;(1, —-—1 ) for even i’s. The server’s
3 2% 2tan S ) 2sin S

faies : e! o At ' s 27
initial location S3(5 — T T a') for 0 < a’ < sin Z*.

Proposition 1. Let n > 5 and the server start from S = Sa. Then, the cost ratio %% approaches

/1T-a2sin2 = 2
1—a?sin® T 0§a<cosn.

T asin2 T 1 1l alsnz )’ sin 2. 7
cos - —asin "(acosn+ 1—a?sin n) n (7)
27

1 cos < S .

T in -
sin o sin -

Proof. Without loss of generality we denote the server’s position immediately after serving the i-th
request by A;(%5* - (1 —cos ZZ) — t;cos 22, Sl sin T — ¢;sin 27 for odd i’s and A (1—cosZ) —
cos 27" + i, % sin 7) for even i’s (see Figure 3). Nutz that 0 < ¢; < 1 holds for all ¢ since the length of a
side is one. For any € > 0, there exist ig and {W;} such that for all ¢ > 19,

LT . 3
Wii1 +zsin — < w;(X) < W;_y + zsin T4 =, (8)
n n a

where X is the position given by substituting x for ¢; in A;. Suppose that WFA,, just completes processing
the (i —1)-th request. By definition, WFA, chooses the next position X that minimizes A;_; X +a-w;(X).
We have f(z,t;-1) < A1 X+ a-wi(X) < f(z,ti-1) + ¢, where

2
flz,t) := \/:1:2 +(1-1)2-2z(1-1¢)- COS% +a- (Wi‘l + z -sin %) . (9)
(See Figure 4.) In what follows we also use

z—(1-1) -cos

\/x2+(1~t)2—2x(1—t)~c0527”

glz,t) := %f(x, t) = + asin%. (10)

Suppose that 0 < o < cos 22 /sin T. Consider the sequence {s;} (i > ig) defined by s;, = t;, and s;
is the value of = € [0, 1] that minimizes f(z,s;_1) for ¢ > i + 1. We write it as s; = h(s;_1). Let v
denote the unique root of the equation g(v,v) = 0 in (0,1/(cos? Z)]. Firstly, we show that s; converges
to 7. Since g(z,t) is a monotonically increasing function with respect to z, the unique x that minimizes
fx,8i-1) is the root of g(x,s; 1) = 0 in (0,1/(cos? Z)]. The condition 0 < & < cos 2% /sin T guarantees
the existence. Suppose that s;_; < 7. The mean value theorem implies that there exists 8 € (s;_1,7)
such that s; — v = h(si—1) — h(y) = K'(B) (si—1 — ). Since 0 = d%g(h(s),s) = g—%h'(s) + %i’, we have
h(s) = _%/% = ~%§. It turns out that k(s)/(1 — s) < cos 2 since h(s) is chosen so as to minimize
f(z,s). (Othcrwise the both terms in f(z, s) become larger.) We have |s; — | < cos 27” “|si—1 — |- Also
for the case of s;_.1 > v the same statement holds. Therefore, s; — v as 1 — co.



Figure 6: wra, for o3.

Figure 5: RTR achieves a constant compet-
itive ratio for o3.

Secondly, we prove that {t;} approaches {s;} as i = co. We can choose ¢ > 0 such that f(z,t) —
f(v,t) < e for all z satisfying [z — | < & and all ¢. Therefore |t;,41 — Si+1| < J. Since |%| <3Ir<l1,
we have |tjj12 — si42| < 6 + 76 by a similar discussion as above. Thus for any ¢ > 4o, |t; — 8| <
S4+ré+r264-- <6 1.

Finally, we calculate AWF A, and AOPT when ¢ — oo, i.e. the costs per one request, whose ratio
approaches the ratio of the whole cost ratio WF A, (02)/OPT(c2). By formally substituting v for both

t;and £, 1 in AWFA, = A;_1A; = \/tf + (1 —t;1)% —2t;(1 — t;_1) - cos 27", we have

sin£4/1 — a? sin®

AWFA, — . (11)
cos T — asin? z (acos% +4/1— a?sin? %)

On the other hand AOPT converges to sin L since the optimal algorithm moves from S directly to
Pi(5% - (1 — cosZZ), 5Esin ) for odd i or Pi(35t - (1 — cos %) — cos 27, 1sinZ) for even i. The
proposition is thus proved for 0 < a < cos 27”/ sin 7.

The remaining is the case that o > cos 27” /sin Z. We focus on ¢ > ig such that (8) holds and apply a
similar analysis. Since g(0,t) > 0 and g(z,¢) is a monotonically increasing function, f(z,t) turns out to
be a non-decreasing function with respect to . Therefore f(z,t) attains minimum at z = 0. By choosing
& > 0 such that f(z,t) — f(0,t) < ¢ for all  satisfying 0 < z < § and all ¢, we have 0 < #; < ¢ for all
1 > ig. Therefore AWFA, = A,_1A; — 1, which derives the proposition for o > cos 27"/ sin Z. O

E
n

Proposition 2. Suppose that n > 5, a = k- cos 27"/ sinZ, and 0 < k < 1. Then,

1/1—a2sin2§ 1
< .
. . T /1 _ k2
COS%—CMSIHQ%((ICOS%+\/1—O{281H2%> cos 21—k

Proof. A simple calculation by applying 0 < sinf <@ and1—-6%/2 <cosf <1lforall0 <@ <w/5 [

(12)

Proposition 3. For odd n > 3, consider the input sequence o3 and the server’s initial location S = S3.

For even n > 6, consider the inpul sequence o and the server’s initial location S = S}. The cost ratios
g?ﬁgzg and SJT,?EZZ; are no larger than %.

Proof. We discuss odd n. Let {[;} be the family of lines I;: y = —tan i=br (z — ;). The location of

n
RTR’s server immediately after serving the i-th request (i < 25!} is obtained as A;(3 — PH;,0) for odd ¢



and A;(} — PH; cos T, —PH,; sin ) for even i, where P is P(3,0) and H; is the foot of the perpendicular
from S to line {;. The reason is as follows: Note that RTR moves the server to the terminal point of
the (thus far) optimal tour to process the i-th request. Consider reflections of the plane through lines
Iy (1 <k <i—1) on the tour from S to H. One can observe that each H; represents the image of A;
(see Figure 5). Thus RTR’s server travels a distance of H; H; = a for each request until the (®;1)-th
request, since every H; is on the circle whose diameter is SP. Finally, the server arrives on P for the
(2F1)-th request by traveling a distance of a - cos ("T*I -Z) /sin Z. The optimal offline cost is a/ sin T
after the ("‘H) th request. We have the cost ratio

RTR(U3)_(H—1+COS%'%) T w
n

OPT(0s)  \ 2 smzr ) R <% (13)
%, whereas the

PRl
optimal offline cost is a/ sin & 2” after the ()-th request. An upper bound of 7 holds for ng’gg ; as

well.

for all odd n. As for even n and o3 and S}, RTR’s server moves a total distance of a -

Proposition 4. For odd n > 5, consider the input sequence o3 and the server’s initial location S = Ss.

For even n > 6, consider the input sequence of and the server’s initial location S = S. For any a > 0

WEAu(o3) (00 WEAa (o)

the cost ratios OPT () " opT(sy) @€ N0 larger than 1+ é

Proof. We focus on odd n since the case of even n can be shown by a similar discussion. Consider the
optimal tour S,B;,Bg,...,B;_1,X that finally reaches X after serving requests 1,2,...,7 — 1. Suppose
that 4 is odd and X is somewhere on A;P (see Figure 6). Y is the foot of the perpendicular from X to
line SP. By applying the discussion in the proof of Proposition 3, one can observe that there exists i;
such that By = B3 =--- =B,.o =X and B, =By =--- = B;_; = Y for all ¢ > ;. Hence, the work
function is written as

3 .
wi(X):'87+(i~1)-W:\/a2+< wu) +(i—1)-u-sin%, (14)

tan T
n

where v is XP and a is SA;. WFA,, chooses the next position X as A; that minimizes

_ 2
flw)=A, 1 X+a w(X)= \/u2 + b2 — 2ubcos % + o - w;i(X), (15)

where b is A;_1P. We have

u — beos 2° T U
F(u) = n —a- ok +a-(z‘—1).sinf—L. (16)

2m 2
\/u2+b2—2ubc057 a2+( a”_u)

tan 7

Since f'(u) increases monotonically, f(u) is a non-decreasing function if f/(0) > 0, for which it suffices
that 4 > 1 + (14 «)/(atan Z) =:4y. f(u) achieves minimum at v = 0 and therefore A; = P for i > is.
Thus WFA.(03) < a- (iz — 1). On the other hand OPT = a/sin Z and it concludes the proof. O

Proposition 5. For odd n > 3, consider the input sequence o3 and the server’s initial location S = Ss.
For even n > 6, consider the input sequence o; and the server’s initial location S = S}. The cost ratios

gg?g; nd gﬁ?((a?)) approach 1/tan 5= and 1/tan %, respectively.

Proof. Apply a similar analysis to the proof of Lemma 3. O

The performance results of WFA, are summarized in Table 2. Proposition 2 implies that the cost
ratio has an upper bound for o when 0 < a < cos—/s1n~ We conjecture that by setting 0 <
a < cos & T /sin £, WFA,, achieves a constant competitive ratio. However, the analysis for general input
sequences seems much more difficult.



Table 2: Competitive ratio of Wra, for some input sequences.
| o2 | os | general
a =0 (i.e. GRD) o) {On) | O
0<a<cosZ/sinZ | O(1) | O(Q1) ?
@>cos 2 /sinZ O(n) | 0(1) | Qn)
o = 0o (1.e. RTR) On) | O1) | Qn)

4 Concluding Remarks

Apparently many problems remain to be attacked, including (i) more formal analysis of Wra, for general
inputs and (ii) investigation of other shapes than regular polygons, especially a circle and some simple
shape which is not convex.
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