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Abstract: Protein structure analysis is a very important research topic in the molec-
ular biology of the post-genomic era. The RMSD (root mean square deviation) is the
most frequently used measure for comparing two protein 3-D structures. In this paper,
we deal with two fundamental problems related to the RMSD. We first deal with a prob-
lem called the ‘range RMSD query’ problem. Given an aligned pair of structures, the
problem is to compute the RMSD between two aligned substructures of them without
gaps. This problem has many applications in protein structure analysis. We propose
a linear-time preprocessing algorithm that enables constant-time RMSD computation.
Next, we consider a problem called the ‘substructure RMSD query’ problem, which is a
generalization of the above range RMSD query problem. It is a problem to compute the
RMSD between any substructures of two unaligned structures without gaps. Based on
the algorithm for the range RMSD problem, we propose an O(nm) preprocessing algo-
rithm that enables constant-time RMSD computation, where n and m are the lengths
of the given structures. Moreover, we propose O(nmlogr/r)-time and O(nm/r)-space
preprocessing algorithm that enables O(r) query, where 7 is an arbitrary integer such
that 1 < r < min(n, m). We also show that our strategy also works for another measure
called the URMSD (unit-vector root mean square deviation), which is a variant of the
RMSD.



1 Introduction

In the post-genomic molecular biology,
analysis of protein 3-D structures becomes
more and more important. Recently,
enormous amount of protein 3-D struc-
tures are solved and the number of them
are still increasing, as seen in the PDB
database [Berman et al. 2000]. As a result,
faster algorithms to deal with such struc-
tures are seriously needed. Two proteins
are said to have similar functions if their 3-
D structures are similar to each other, and
structure comparison is one of the keys to
the protein function analysis. There are
many structure comparison algorithms for
proteins [Eidhammer et al. 2000]. Many of
these algorithms are dedicated to align the
structures by inserting gaps so as to min-
imize some score, as in the cases of ordi-
nary sequence alignment algorithms. But
the alignment is not the goal of the pro-
tein analysis. For example, we must search
for specific domains like conserved substruc-
tures or hinge-mediated domains from the
aligned result.

The most famous similarity measure
for protein structures is the RMSD (root
mean square deviation) [Arun et al. 1987,
Eggert et al. 1997, Kabsch 1976,
Kabsch 1978, Schawrtz et al. 1987]. There
are several variations of the RMSD mea-
sure. ~ The URMSD (unit-vector root
mean square deviation) [Chew et al. 1999,
Kedem et al. 1999] is an example. To an-
alyze the aligned protein structures, we
often need to compute local RMSDs (or
URMSDs) of aligned substructures. For
example, in [Huang et al. 1993], they com-
pute all the RMSDs between all the possible
aligned substructures in the aligned pair of
structures to find hinge-mediated domains.
Similar techniques are used also in many
others [Nigham et al. 2007, Shibuya 2007].
Hence, we consider the following problem
in this paper.

Problem 1 Given a pair of aligned* pro-
tein structures represented by lists of points:
P = P[1..n] and Q = Q[1..n], the problem
is to compute the RMSD between P[i..j] and
Qi..7] for a query pair of integers i and j
1<i<j<n)
We call this problem the “Range RMSD
Query Problem”. Without any preprocess-
ing, we need O(k) time to compute it, where
k = j—1 (see section 2 for details). We pro-
pose an algorithm that answers the above
problem in constant time, with linear-time
preprocessing. Note that naive preprocess-
ing algorithm would require O(n?) time or
more, as there are O(n?) possible aligned
substructures. Moreover, we will show that
the same strategy works for the URMSD.
We next consider the following problem,
which is a generalization of the above range
RMSD query problem.

Problem 2 Given two protein structures
P = P[l.n] and Q = Q[l..m}, the prob-
lem is to compute the RMSD (without con-
sidering gaps) between Pli.i + £ — 1] and
Qlj..7 + £ — 1] for a query set of integers
i, jand £ (1 < i < i+£¢—-1 < n,
1<j<j+l-1<m).
We call this problem the “Substructure
RMSD Query Problem”. By straightfor-
wardly using our range RMSD query algo-
rithm, we can solve this problem in constant
time after O(nm)-time preprocessing. Note
that we would require O(nm min(n,m))
time or more for preprocessing if we do
it naively.  For this problem, we also
propose O(nmlogr/r)-time and O(nm/r)-
space preprocessing algorithm that enables
O(r) query, where 7 is an arbitrary integer
such that 1 <7 < min(n,m).

The substructure RMSD query problem
is more general than the range RMSD query
problem, and must have many applications

'We mean by ‘aligned’ that we do not consider
gaps, i.e., P[i] corresponds to Qfi].



in protein structure analysis. This prob-
lem appears everywhere, e.g., as a subrou-
tine for alignment algorithms. Most protein
alignment algorithms take very large time
and is sometimes requires more than O(nm)
time. Thus we assume our algorithm can be
very valuable for designing such alignment
algorithms.

The organization of this paper is as fol-
lows. In section 2, we present the def-
initions of the RMSD and the URMSD.
Then, we present an algorithm for the range
RMSD query problem in section 3, and
we present algorithms for the substructure
RMSD query problem in section 4. Finally
in section 5, we conclude our results.

2 Preliminaries

2.1 RMSD: The Root Mean
Square Deviation

A protein is a chain of amino acids. Each
amino acid has one unique carbon atom
named C,, and the coordinates of the C,
atom is often used as the representative po-
sition of the amino acid. The set of C, atom
positions in a protein is called the back-
bone of the protein. The backbone struc-
tures are topologically linear, which can be
represented by just a list of points in 3-D
space, regardless of how complex the struc-
tures are. In this paper, we deal with this
coordinates list, as in the most structural
research on proteins.

The similarity between two back-
bone structures is often measured by
the RMSD (root mean square devia-

tion) [Arun et al. 1987, Eggert et al. 1997,
Kabsch 1976, Kabsch 1978,
Schawrtz et al. 1987].2 Let the two sets of

2To do so, we need to know the correspondence
between atoms of the two structures. There are
many cases that we know it, such as the cases of
structures formed by the same flexible protein. If
we do not know the correspondence, we must use

points (i.e., protein structures) to be com-
pared be P = {f1,72,...,Pn} and Q =
{G\, @, .-, }, where 7; and ¢, are coordi-
nates of the i-th C, atoms of P and Q. We
here consider p; corresponds to ¢; for each
t. Then the RMSD between P and Q is
defined as the minimum value of

dra(P,Q) = J%Z I = (R G+ ) (1)

over all the possible rotation matrices R and
translation vectors ¥, where ||-|| denotes the
norm. Let R(P, Q) and 1:1'(P, Q) denote the
R and ¢ that minimize the value.

Let R-X denote the structure X rotated
by the rotation matrix E. If the rotation
matrix R is fixed, dgs(P, Q) is known to
be minimized when the centroid of R - Q
is translated to the centroid of P by the
translation vector ¥, regardless of what the
rotation matrix R is. Thus, the following
equation holds:

- RP,Q)-q). (2

1

S|

U(P,Q) =

n
Hence, if both P and Q are translated so
that their centroids are moved to the ori-
gin of the coordinates, the RMSD prob-
lem is reduced to a problem of finding R
(i.e., R(P,Q)) that minimizes the following
value:

fn(P,Q) = an RGP ®

We can find R(P,Q) in linear time
by using the singular value decomposi-
tion (SVD) [Arun et al. 1987, Kabsch 1976,
Kabsch 1978] as follows. Let H =

» Di- @', where U means the transpose

some structural alignment algorithms to find the
correspondence, and remove the atoms with no cor-
responding atoms. In this paper, we do not deal
with alighment algorithms.



of #. Clearly, H can be computed in O(n)
time. Then fr(P, Q) can be described as

n

> (Gi'Pi+ &'G) —trace(R-H),  (4)

i=1
and trace(RH) is maximized when R =
VUT, where UAV is the SVD of H and
AT means the transpose of matrix A. Thus
R(P,Q) can be obtained from H in con-
stant time, as H is a 3 X 3 matrix and the
SVD can be computed in O(d?) time for
a d x d matrix [Golub et al. 1996]. Note
that there are rare degenerate cases where
det(VUT) = —1, which means that VU7 is
a reflection matrix. We ignore the degener-
ate cases in this paper. We can compute the
RMSD value in linear time once we have ob-
tained R(P,Q). In total, we can compute
the RMSD value in O(n) time.

2.2 URMSD: The Unit-Vector
Root Mean Square Devia-
tion

The URMSD (unit-vector root mean square

devia-

tion) [Chew et al. 1999, Kedem et al. 1999]

is a variation of the RMSD. The RMSD

is sometimes influenced badly by very dis-
tant pairs of points, and the URMSD is de-
signed to avoid such influence. Let p} =

(D1 — P)/|Pigr — Bill and & = (G —

@) /ll@G+1 — @|l. Then the URMSD is the

minimum value of

14(P.Q) = J LA O

over possible rotation matrices R. Let
R(P, Q) denote R that minimizes the value.
The URMSD can also be computed in the
same way as the RMSD, which can be easily
imagined from the fact that the equation of
d%(P, Q) resembles that of fr(P,Q) very
much.

Let H' = Y0 ) - (€)' Then di(P, Q)
can be described as (fR(P,Q)/(n — 1))¥/2,

where fp(P,Q) = Y ('8 +d'q) -
trace(R- H'). Thus, d%(P, Q) is minimized
when R = V'UT where U’AV’ is the SVD
of H'2 1t is obvious that we can compute
the URMSD value from R(P,Q) in linear
time. Hence the total computation time for

the URMSD is also linear.

3 Preprocessing for the
Range RMSD Query
Problem

In this section, we show an algorithm for
the range RMSD query problem introduced
in section 1. Let the two given aligned
structures be P = {9,052, ...,Pn} and Q =
{q1, %, --,q,}. Let P[i..j] denote the sub-
structure {pj, pii1,.. .05}, and Qi..j] de-
note the substructure {g, @41, ...¢;}, Then
the range RMSD query problem is a prob-
lem to compute the RMSD between PJ[i..5]
and Q[i..j] for any ¢ and j (i < j), without
considering gaps.

Let ¢(X) denote the centroid of struc-
ture X. Then, &P, j]) = X4 .5/ (j — i +

1), and &(Qli, 5]) = Xj=; Ge/ (7 — i +1). Let

P = P —(P[i..5]), and g = g —(Q[i..j])-
Note that g is the coordinates of the atom
P translated so that the centroid of P{i..j]
is at the origin of the coordinates, and
so is the ;. According to the equations
of fr(P,Q) in section 2.1, the RMSD be-
tween P[i..j] and Qi..j] can be obtained
in constant time if we are given the value
g(z',j) = {c:i (ﬁktﬁ@ + (_fkt(f]i) and the 3 x 3
matrix H(i,7) = Y35, Pk - G

Let hp(i,j) = Si_, Fr, and h3(i,5) =
S, Pe'Pe. Similarly, let hq(i,j) =
Sl G, and R4 (6, ) = Y @'k Add to
them, let G(i,7) = 3i_;Bx@:’. Note that
hx(i,j) is a vector of length 3, h%(4,7) is

3Like in the case of the RMSD computation,
there are rare degenerate cases where V'U'T be-
comes a reflection matrix, but we do not deal with
these cases in this paper.



a numerical value, and G(¢,7) is a 3 x 3
matrix. Then, the following two equations
hold:

9(i,5) = hp(d,4) + h(i, 7)
h i, th , (4, )th (3,9)
p(]])l-{—l; i) _ ka JJ H?u (6)
. kp(i,)ha(i, )
fi(,7) = GG ) — 2Dl g

joi+1

These equations suggest that the RMSD
value can be obtained in constant time
if we are given hp(i,5), hq(i,7), hb(4),
h(i,5), and G(i, 7). Note that similar tech-
niques are used in [Shibuya 2006] for incre-
mental RMSD computation.

ﬁx('i,j) can be computed in constant
time, if we are given hx (1, k) for all k (1 <
k< n),as hx(i,j) = hx(1,5) = hx(L,i—1)
for either case of X = P or X = Q4 It
is obvious that hx(1,k) can be computed
for all k in linear time. h%(i,7) can also
be computed in constant time, if we are
given h%(1,k) for all £ (1 < k < n), as
Wi (i,5) = h%(L,7) — & (1,7 — 1). Here, it
is also obvious that hx(l,%) can be com-
puted for all k£ in linear time. The same
technique also works for G(i,7). G(7,7) can
be computed in constant time, if we are
given G(1,k) for all ¥ (1 < k < n), as
G(i,j) = G(1,j) — G(1,i — 1). G(1,7) can
also be computed for all & in linear time.

Hence we can compute the RMSD be-
tween P[i..j] and Qi..j] in constant time,
if we are given hp(1,k), hq(1, k), h3(1,k),
hg(1, k), and G(1,k) for all k (1 < k < n),
all of which can be computed in linear time
before the query. Note that the correspond-
ing optimal rotation matrix and the trans-
lation vector can be obtained at the same
time.

4To ease discussion, we let hix(i,j) = 0 (zero
vector) if i > j. Similarly, we let h% (i,5) = 0 and
G(i,7) = O (zero matrix) if ¢ > j.

The same strategy also works for the
URMSD. This case is much easier because
we do not have to consider the transla-
tion vector. According to the equation of
fr(P,Q), we can compute the URMSD be-
tween P[i..j] and Q[i..j] in constant time,
if we are given H'(i.j) = SI257, - (4L)!
and Y171 (9,9} + .'d,). Furthermore, we
can compute them if we are given H'(1,k),
h’%,(l,k) and W (1,k), letting h'%(i,j) =
Z{c:iﬁktﬁlk) and hlé(%]) = ch:z q;ctq;c As
7, and gj, can be easily computed from p,
Pr+1, Gk, and 41 in constant time, we con-
clude that the URMSD can also be com-
puted in constant time after linear-time pre-
processing.

4 Preprocessing for the

Substructure RMSD

Query Problem

In this section, we propose algorithms for
the substructure RMSD query problem in-
troduced in section 1. Given two struc-
tures P = {pi,0s,...,0n) and Q =
{31, @, -+, Gn},° the range RMSD query
problem is a problem to compute the RMSD
between Pli..i + ¢ — 1] and Q[j..j + £ — 1]
forany i, jand £ (0 < i <i+£—1 < n,
0<j<j+l-1<m)
we let 7 < j without loss of generality.®
Then, by preprocessing (as discussed in sec-
tion 3) straightforwardly for all the range
RMSD query problems between P[1..n'} and
Qlk.k+n =1 for all £ (1 < k < m)
where n' = min(n, m — k + 1), we can solve
the substructure RMSD query problem in
constant time. This straightforward prepro-
cessing algorithm requires O(nm) time and
space in total. From now on, we discuss how
to reduce the preprocessing time and space,

From now on,

5In this section, the length of Q can be different
from that of P.

6In the case of ¢ > j, we can do the same dis-
cussion by changing P and Q.



permitting larger query time, as the O(nm)
time/space can sometimes be too large.

According to the discussion in section 3,
we can compute the RMSD between P[i..i+
¢—1] and Qj..j + £ — 1] in constant time,
if we are given the followings:

i4+4—1
hp(i,i+0—1) Zpk (8)
-1
ho(,i+€-1)= 3 & (9)
k=i
i+f—1
Rp(ii+€—1) = Zpk pe (10)
-1
h(hj+E-1)=

> @@ (1)
k=j

£
E(i,j,¢ Z Pivk-1" Geaa’ (12)

Note that (4,7, £) is the G(¢,i + ¢ — 1)
for the range RMSD query problem be-
tween P[1..n"] and Q[j — ¢+ 1.n" +j — 4],
where n” = min(n,m — j + 4). As for
hp(i,i+l—1), hq(j, j+€—1), hp (5, i+0—1)
and hy(j,j + £ — 1), they can be computed
in constant time after linear time prepro-
cessing by the same technique discussed in
section 3, i.e., we need to compute ﬁp(l, k),
hq(1, k), h3(1,k) and hj (1, k) for all k be-
fore the query. As for E(i,7, ), if we com-
pute E(1, 7, £) for all possible j and ¢ before-
hand, we can compute it in constant time,
as E(i,j,0) = E(1,j,6) — E(1,i—1,0) if i >
1. This preprocessing requires O(nm) time
and space. But if we permit O(r) time (1 <
r < min(n, m)) to compute the E(3, j, £), we
can reduce them to O(nmlogr/r) time and
O(nm/r) space as follows.

Let r be an integer such that 1 < r <
min(n,m). To ease discussion, we consider

that both n and m are multiples of . Then
we can divide P into n/r substructures of
length r. Let them be Py, Ps, ..., Py,
Note that P, = P[(r- (p — 1) + 1)..7 - p].
Likewise, Q can be divided into m/r sub-
structures of length r, and let them be
Q1,Qs,...,Qpyr. For Py, Q,, and k such
that —r < k < r, consider the following
value:”

Z 5] Qqs+k] (k>0)
Epq(k) =1 *=1
R Qls A (£ <0)

For each pair of p and ¢, we can
compute E, (k) for all k£ in O(rlogr)
time, by the convolution technique based
on the FFT (fast Fourier transform) (see
[Cooley et al. 1965] for details). Thus we
need O(nmlogr/r) time to compute them
for all the O(nm/r?) pairs of p and ¢. Next,
we consider the following Fy(k) for all the
setof p,qand k(1 <p<n/fr,1 <g<m/r,
p<yq,—r<k<r).

p,q Z Ett p+q (13)

Obviously, Fp,q(k) can be computed in
O(nm/7) time for all the O(nm/r) sets of
p, ¢ and k, if we are given all the E, ,(k)
values.

Recall that E(i,7,) = E(1,5,4) —
E(1,i—1,€) (i > 1). Thus, if we can com-
pute E(1,7,¢) in O(r) time, we can also
compute E(i, 7, £€) in O(r) time for any 14, j
and £. Thus, hereinafter, we discuss how to
compute E(L, 7, £) in O(r) time by using the
F, q(k) values. Let a = |£/r] and b = [j/r].
To ease discussion, we let Fp (k) = 0 if
p=0ork>r and E(3,7,() =0if £ < 0.
Then, E(1, j, ) can be described as follows:

Flaja+b—-1,j+7r—b-7—-1)
+F(a,a+bb-r—j+1) (14)
+E(a-r+1,j+a-r,l—a-1)
"Pp[s] is same as i (p—1)4,- Similarly, Qs + k]
is same as §r(g—1)+s+&




Notice that 0 < £ —a-7r < 7r, and
E(@a-r+1,5+a-r{—a-r) can be com-
puted in O(r) time. Thus, we conclude that
E(1,7,¢) can be computed in O(r) time, af-
ter O(nmlogr/r) time preprocessing time
in total. The space required for the prepro-
cess is O(nm/r).

Consequently, we conclude that we can
compute the RMSD in O(r) time after
O(nmlogr/r) time and O(nm/r) space pre-
processing. It is trivial that the same tech-
niques can be applied to the substructure
URMSD query problem, and it can also be
computed in O(r) time after O(nmlogr/r)
time and O(nm/r) space preprocessing.

5 Conclusions

In this paper, we dealt with two fundamen-
tal problems called the ‘range RMSD query
problem’ and the ‘substructure RMSD
query problem’, both of which are very im-
portant for protein structure analysis. For
the range RMSD query problem, we pro-
posed a constant-time query algorithm af-
ter linear-time preprocessing. Based on the
algorithm, we showed that we can solve the
substructure RMSD query problem in con-
stant time after O(nm) time preprocessing,
where n and m are the lengths of the struc-
tures to be compared. Moreover, for the
latter problem, we also developed an O(r)
query algorithm after O(nmlogr/r) time
and (nm/r) space preprocessing, where r
is an arbitrary integer such that 1 < r <
min(n, m).

Our algorithms can be used in various
scenes in protein structure research. Actu-
ally, we have developed a hinge detection
algorithm for flexible protein 3-D structures
based on our algorithm [Shibuya 2007]. De-
velopment of faster query algorithms, or
more flexible query algorithms remains as
future work.
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