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Abstract A rectangular drawing is a plane drawing of a graph in which every inner face is a rectangle.
In this paper, we consider the problem of counting the number of rectangular drawings with n faces, denoted
by R(n), and show the following : (i) There is an algorithm for counting R(n) in time O(poly(n)-2") which
enables us to determine exact values of R(n) for n < 30, and (ii) There is a limit cg = lim, o R(n)¥/™
such that 11.56 < cp < 28.3.

1 Introduction

A rectangular drawing is a plane drawing in which every face is a rectangle. Since rectangular drawings
play an important role in e.g., floorplanning, there are a number of researches on a good (i.e., compact and
easy to manipulate) representation of a various types of rectangular drawings or floorplans in the VLSI
community (see e.g., [1, 6, 9, 13]). In this paper, we focus on the problem of counting the number of
rectangular drawings. For instance, there are six rectangular drawings with three faces as shown in right
of Fig. 1.

Nakano (8] gave an algorithm to enumerate all rectangular drawings with n faces in O(1) time per
drawing. By implementing this algorithm, exact number of rectangular drawings with n faces, denoted by
R(n), for up to 13 have been reported [14]. In this paper, we give a faster algorithm for counting R(n),
which runs in time O(poly(n) - 2™). Although the running time of our algorithm is still exponential in the
number of faces, it is considerably faster than the known algorithm based on enumerating. This is because
the running time of such an enumeration-based algorithm is. inherently Q(R(n)) and we will show in the
paper that R(n) = Q(11.56™) = Q(233"). By implementing this algorithm, we compute the exact number
of rectangular drawings with n faces for up to n = 30. It turns out that R(30) ~ 6.68 x 10%°.

In this paper, we also consider an asymptotic behavior of the values of R(n), since it is not known
whether R(n) has a closed form of expression. Yamanaka and Nakano [12, 13| gave two different methods
for encoding rectangular drawings with n faces using 5n bits. This immediately implies that the number
of rectangular drawings with n faces is at most 257 = 32". To the best of our knowledge, this is the best
known upper bound on R(n). One of the main motivation of our work is to see whether their encoding is
best possible in terms of its length.

In our problem, we treat two drawings in left of Fig. 1 as distinct drawings, since we consider not only
partitions but also adjacency between faces. If we are only interested in partitions and hence we treat these
two drawings as identical one, the objects we will count are known as mosaic floorplans (see e.g., [1] or [10]
for a formal definition).
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Figure 1: Left: Rectangular drawings with three faces. Right: Two rectangular drawings with four faces.

There are many researches on the number of mosaic floorplans with n faces (see e.g., [1, 6, 9, 10]). The
number is shown to be equal to the Baxter number B(n), which is,

n+ I\ 1\ TP 1\ a1\ [ntl 8"
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Since it is obvious that R(n) > B(n), the number of rectangular drawings with n faces satisfies R(n) >
Q8" /n*). In this paper, we improve both upper and lower bounds on R(n) to Q(11.56") < R(n) <
0(28.3™). This implies that every binary encoding for rectangular drawings needs log, 11.56™ > 3.53n bits.
The proof for the lower bound includes an analysis of the first eigenvalue of a huge (~ 1.2 - 107 x 1.2-107)
matrix with the aid of a computer, and that for the upper bound is based on analyzing the entropy of
rectangular drawings. We also show that there is a one-to-one correspondence between rectangular drawings
and “general” floorplans of a certain type [1, 9] in which an empty room is allowed to exist. Our bounds
on R(n) also improve the best known upper and lower bounds on the number of such “general” floorplans
which has been discussed in e.g., [1, 9, 11].

The organization of the paper is as follows. In Section 2, we give some notations and definitions. In
Section 3, we give an algorithm for counting the number of rectangular drawings. In Section 4, we show
lower and upper bounds on the number of rectangular drawings and a one-to-one correspondence to general
floorplans. Finally, in Section 5, we describe some open problems relating to this work.

2 Preliminaries

Below we give the formal definition of the objects that we will count. We follow the definition of Nakano
[8] (see also [13]). A drawing of a graph is plane if it has no two edges intersect geometrically except at a
vertex to which they are both incident. A plane drawing divides the plane into connected regions called
faces. A rectangular drawing is a plane drawing that divides a rectangular into smaller ones such that each
face is a rectangle. The number of faces of a rectangular drawing is defined to be the number of inner
faces of it. In this paper, we only consider a rectangular drawing which has no vertex shared by four (or
more) rectangles. A based rectangular drawing is a rectangular drawing with one designated base line on
the boundary of the drawing, and we always draw the base as the lowermost horizontal line segment of the
drawing. Two faces Fy and F» are ns-adjacent if they share a horizontal line segment. Two faces F; and
F are ew-adjacent if they share a vertical line segment.

For two based rectangular drawings P; and P, we say that P, and P, are isomorphic if P; and P,
have a one-to-one correspondence between their faces preserving ns- and ew-adjacency, in which each base
corresponding to the other. Here and hereafter, we usually drop the word “based” since we only consider
based rectangular drawings. All rectangular drawings with at most four faces are shown in the left figure
in Fig. 3. Note that two rectangular drawings in left of Fig. 1 are not isomorphic, since the adjacencies
between the central vertical line are different.

If we don’t care the adjacencies between faces, i.e., consider two rectangular drawings in left of Fig. 1
as an identical one, the objects we will count are known as mosaic floorplans (e.g., [1, 10]). Note that the
number of rectangular drawings with four faces is 24 whereas that of mosaic floorplans with four faces is
22.

3 Exact Counting

Let R(n) denote the number of rectangular drawings with n faces. In this section, we give an algorithm
to compute R(n) in time O(poly(n) - 2™).
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Figure 2: An example of a rectangular drawing with five faces of configuration (1,2,0,0,1), and its childs.

The idea of our algorithm is as follows : We consider a generating tree T (see the left figure in Fig. 3) for
rectangular drawings introduced by Nakano [8] as a starting point of our algorithm. Each vertex in the tree
7T at depth n is labeled by a rectangular drawing with n faces, and every rectangular drawing with n faces
is labeled to some vertex at depth n. Here the depth of the root of the tree is considered to be 1. The trec
7 is obtained by defining a certain relation between a rectangular drawing with n — 1 faces and that with
n faces based on a sweeping sequence. See [8] for the details. Since the number of rectangular drawings
with n faces R(n) is given by the number of vertices at depth n in 7, we can count R(n) by traversing
the tree 7. However this algorithm apparently needs Q(R(n)) time, which seems to be intractable for e.g.,
n > 20. If we only have to count R(n) (not have to enumerate all drawings) we can merge two vertices u
and v in 7 when we know that u and v have subtrees of an identical structure. This reduces the “width”
of 7 considerably, and hence reduces the running time of the algorithm for counting R(n).

In order to give a criterion to mergeability, we introduce the notion of a configuration of a rectangular
drawing.

Definition 1 A configuration of a rectangular drawing P is a sequence of mon-negative integers
(V.H,li,...,lv,r1,...,rH) defined as follows: Let V be the number of inner vertical line segments touch-
ing to the upper outer face, and let H be the number of inner horizontal line segments touching to the left
outer face. In other words, P has V + 1 inner faces sharing the uppermost horizontal line segment and
H + 1 inner faces sharing the leftmost vertical line segment. For i =10,...,V, define l; as follows : Let
Fy, Iy, ..., Fy be the inner faces sharing the uppermost horizontal line, where they appear from right to
left in this order. Let l; be the number of (possibly outer) faces sharing the right boundary of F; decreased
by one (which equals to the number of junctions of the shape ‘+” on the right boundary of F;). Note that
we always have ly = 0 and so we don’t include ly in a configuration. Similarly, let r; (1 =0,...,H) be
the number of (possibly outer) faces sharing the bottom boundary of F; decreased by one (which equals to
the number of junctions of the shape “T” on the bottom boundary of F;) where F§, F{,..., Fy; be the inner
faces sharing the leftmost vertical line appearing from bottom to top. We don’t include v in a configuration
since o is always 0. See Fig. 2 for an example. |

The following theorem is implicitly in [8].

Theorem 1 Suppose that P is a rectangular drawing in the generating tree T whose configuration is
(V,H,li,...,ly,7m1,...,78). For convenience, we putly = ro = 0. Then P has Zz‘;o L+ 1)+Zino (ri +1)
childs and their configurations are, for each v € {0,...,V} and for each U}, € {0,...,1,},

(W, H+1,h,..., L1, 71,0, mH, V — ),
and, for each h € {0,...,H} and for each v}, € {0,...,73}
V+1,h0,...,lv,H—h,r1,...,Th—1,7h) O
For example, the configurations of the childs of a drawing of configuration (1,2,0,0,1) (see Fig. 2) are
(0,3,0,1,1),(1,3,0,0,1,0),(2,0,0,2),(2,1,0,1,0),(2,2,0,0,0,0), (2,2,0,0,0,1).

The above theorem says that the structure of the tree 7 is completely determined by configurations of
drawings. If a configuration v is a child of u, we say that u yields v. The following fact shows that the
width of our “generating graph” is ©(n2").

Fact 1 The number of possible configurations of rectangular drawings with n faces is (n-+1)-2""2—2n+3.
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Figure 3: Left: A generating tree 7 for rectangular drawings with their configurations. Right: A graph G#

obtained from 7 by merging vertices having same configuration (taking into account a mirror symmetry).

Proof Tt is not hard to verify that a sequence of non-negative integers (V, H,l1,...,ly,r1,...,7H) is a
configuration of some rectangular drawing with n faces if and only if it satisfies (i) 1 <V+ H <n-1,
and (i) Iy + - +ly +71 4+ +7g <n—1—(V+ H), and doesn’t satisfy (ili) V =0,1< H <n— 2 and
rp=--=rg=0,0r(iv)1<V<n-2 H=0and | =--- =1y =0.

First we count the number of sequences that satisfies (i) and (ii). Suppose V = v and H = h, the number
of sequences that satisfies (ii) is (7 +h) Hence the number of sequences satisfying (i) and (ii) is

> (Z;;) z((kﬂ)(nkl)) —(n+1)-2"% 1.

»,h>0

1<v+h<n—1
Since the number of sequences satisfying (iii) or (iv) is 2(n — 2), the number of possible configurations is
given by

(n+1)-272-1-2(n—2)=(n+1)-2"2 - 2n+3.
This completes the proof of the fact. O

The following observation further reduces the number of configurations needed to consider by about a
half : For a configuration C = (V, H,li,...,ly,71,...,7H), the mirror of C, denoted by Mir(C), is defined
as Mir(C) = (H,V,r1,...,7a,l1,...,ly). Since a subtree in 7 whose root is C' and that whose root is
Mir(C) have same structure, we can also merge C and Mir(C) in 7.

Let C,, be the set of all possible configurations of rectangular drawings with n faces. The representative
for a configuration C is the lexicographically smaller element in {C,Mir(C)}. Let CE be the set of all
representatives of C € C,. The multiplicity of a configuration C' for n is the number of rectangular
drawings with n faces such that the representative of its configuration is C. If there is no fear of confusion,
we simply call this the multiplicity of C.

The above argument naturally defines a directed multigraph GF each of whose vertices is labeled by a
configuration of a rectangular drawing together with its multiplicity (Fig. 3, right). The graph G® has a
layered structure, where the k-th layer consists of vertices corresponding to Cf*. Here and hereafter, we
identify a vertex in G® with a configuration attaching to it. If a configuration u € C{ yields a configuration
vE C,ﬁl, then we place a directed edge from u to v. The right figure in Fig. 3 shows the first four layers
of G obtained from 7.

The algorithm for counting R(n) is now obvious. Let CF = {(0,0)} and the multiplicity of the configu-
ration (0,0) is set to 1. Then, for k = 2,...,n do the followings : Compute CF and the multiplicities of
configurations therein from CF | using Theorem 1. Finally, output the sum of the multiplicities over all
configurations in . From Theorem 1, we have |CF| = ©(k2*). Since the outdegree of a vertex in the k-th
layer of G is at most k + 1, the running time of the algorithm is obviously O(poly(n) - 27)



By implementing this algorithm, we compute exact number of rectangular drawings with n faces for up
to n = 30.

n R(n) n R(n)

1 16 533, 530,004, 810

2 17 4,970, 471, 875, 914

3 6 18 47,169,234, 466, 788

4 24 19 455,170, 730, 152, 340

5 116 20 4,459, 456, 443, 328, 824

6 642 21 44, 300, 299, 824, 885, 392

7 3,938 22 445,703, 524, 836, 260, 400

8 26,194 23 4,536, 891, 586, 511, 660, 256

9 186,042 24 46,682, 404, 846, 719, 083, 048

10 1,395,008 25 485,158, 560, 873, 624, 409, 904

11 10,948,768 |26 5,089,002, 437,784,870, 584, 576
12 89, 346, 128 27 53,845,049, 871, 942, 333, 501, 408
13 754,062, 288 28 574,315,446, 827,677,760, 726, 480
14 6,553,042,722 | 29 6,172, 046,042, 022, 742, 439, 905, 880
15 58,457,558,394 | 30 66,800,176,075, 969, 887,041, 459, 650

A simple calculation verifies that R(n)/R(n — 1) is monotonically increasing with n for n < 30. We
conjecture that this is true for every n, which immediately implies R(n) = €(10.82") since R(30)/R(29) ~
10.823. We will show a better lower bound on R(n) in the next section.

4 Upper and Lower Bounds

In this section, we analyze an asymptotic behavior of R(n).

Let m,n > 1 be arbitrary fixed integers. For a rectangular drawing P with m faces and @Q with n faces,
let P | Q be an arbitrary rectangular drawing with m + n faces obtained by overlapping the rightmost
line segment of P and the leftmost line segment of (). For two drawings P, and P, with m faces and two
drawings (1 and Q2 with n faces, if P # P, or Q1 # Q2 then P | Qy # P> | Q2. This implies that R(n)
is super-multiplicative, i.e., R(n +m) > R(n) - R(m), and hence the limit lim,,_,o, R(n)/™ exists. Let cg
be this limit. Below we give an upper and lower bound on cg.

4.1 Lower Bound

Theorem 2 cp > 11.56.

Proof Let G be a graph defined in the last section. The number of rectangular drawings with n faces is
equal to the number of paths of length n — 1 in GF. The difficulties on estimating R(n) come from the fact
that the width of the graph G is increasing exponentially with the depth of the graph. Below we consider
a subgraph of G® with a limited width and estimate the number of paths in the subgraph to show a lower
bound on the number of paths in the original graph.

Recall that Cf is the set of all possible representative configurations of rectangular drawings with k faces.
Let Cx, be a subset of CF defined as Cy = CF\{(i,k —1—4,0,...,0) | 0 < i < |k/2|}. In other words, Cj is
a set of configurations obtained from CF by removing (V, H,0,...,0) with V + H = k — 1. The reason why
we define Gy, as above is to guarantee the irreducibility of a matrix Ay which we will define later. Remark
that, for every m > k, Cx C Cﬁ holds.

Let Hy, be a subgraph of GF obtained by removing all the vertices in the first k — 1 layers, and removing
all the vertices whose configuration is not in Cj, for the k/’-th layer for each k' > k. Note that each two
adjacent layers in Hj, is an isomorphic bipartite graph on the vertex set C U Cy. We denote this bipartite
graph by H7. The number of paths of length n — 1 in G%, which is equal to R(n), is lower bounded by the
number of paths of length n — k in the graph Hj.



Table 1: The values of A.

Eox |k % kX
1 |8 65792|13 9.4936 |18 10.9136
21304 | 9 7.3569 | 14 9.8575 |19 11.1059
3.4134 | 10 8.0202 | 15 10.1747 | 20 11.2775
46116 | 11 8.5873 | 16 10.4525 | 21 11.4312
5.6686 | 12 9.0739 | 17 10.6972 | 22 11.5695

=~ O Ut o W F

Define |Cx| x |C| matrix A as follows : Each row and column of Ay, is indexed by a configuration in Cy.
The (u,v)-entry of Ay is the number of paths from v to u in the graph Hz. Let 1 be the |Cr|-dimensional
column vector whose entries are all 1. Then the number of paths of length n in Hy, is given by 17 A71.

Since we can show that Ay is irreducible in a sense that for some integer 1, all entries of A? is strictly pos-
itive! we can apply Perron-Frobenius theorem to show that Ay has a dominant eigenvalue Ag of multiplicity
one, and all entries of corresponding eigenvector is positive. This implies

lim (17 A21)Y™ = A,
n—oo

which intuitively says that the growth rate of the number of paths in Hj is given by the first eigenvalue
of the matrix Ax. Similar technique is recently used e.g., to obtain a lower bound on the number of
permutations having a certain property [2], or the number of cycles in a planar graph [4].

Let k = 22. The matrix A; has |ézz| = 12059104 rows and columns. Since Ay is very sparse, i.e., the
number of non-zero entries of each columns is at most k + 1 = 23, it is not so hard to compute the first
eigenvalues of Ay with the aid of a computer. In fact, the number of edges in H,% is about 240 million, and
hence Aj, can be stored using 2.4 x 10® x 8 bytes ~ 2 Gbytes of memory. Since the multiplicity of the first
eigenvalue \g2 is shown to be one, this can easily be calculated by applying the power method to Ay (see
e.g., [5, p.149)).

Let v be a column vector such that the first entry of v is 1 and all other entries are 0. Then compute v :=
Apv/||Agv|| iteratively until the vector v sufficiently converges. An approximation of the first eigenvalue
is then given by ||Axv||. It should be noted that the irreducibility of Ay is used only for guaranteeing the
convergence of this procedure in this proof and is not needed for the lower bound.

By implementing the above procedure on a computer, we have Aga ~ 11.5695 together with an approxi-
mate eigenvector ¥ such that ||7]] = 1. A direct computation shows that Axv' > (11.56)¥ and every entries
of ¥ is non-negative. Hence we have

17471 > 17475 > 17 (11.56™)9 = Q(11.56™),
which completes the proof of the theorem. O

Apparently, it is possible to obtain a better lower bound by considering Ay with & > 23. However, we
should note that the dimension of As; is about 1.2 - 107 and it will roughly double for each additional k.
We present the table of the values of the dominant eigenvalues Ay for k < 22 (Table 1). It is almost surely
that the limit A\ := limg oo A < cr exceeds 12. We guess that this limit lies between 13 and 15.

4.2 Upper Bound
Theorem 3 cr < 28.3.

Due to the space constraint, we can only give a rough sketch of the proof for the upper bound. For a
detailed proof, see [3].

It is well-known that the number of mosaic floorplans with n faces is equal to the number of Baxter
permutations on [n] (see e.g., [1]).

1The proof is omitted due to the space restriction.
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Figure 4: A generation of BP2FP(r|y) for = = (3,2,1,5,4).

Definition 2 For positive integer n, let [n] denote the set {1,...,n}. A permutation 7 : [n] — [n] is a
Bazter permutation, if there are no four indices 1 < i < j < k <l < n such that (i) n(k) < w(i) +1 =
(1) < w(j), or (i) w(j) < w({) + 1 = (i) < w(k). O

Several bijections between mosaic floorplans and Baxter permutations have been proposed (see the in-
troduction of [1] for a short history). Among them, we use the mapping BP2FP presented by Ackerman et
al. [1] to show the upper bound. The mapping BP2FP is defined by an algorithm, which takes a Baxter
permutation on [n] as an input and outputs a mosaic floorplan with n faces [1].

A single mosaic floorplan is usually corresponding to a number of rectangular drawings.

Definition 3 For o permutation © on [n] and k < n, let w|y denote the permutation on [k] such that
7k = (7(i1), 7(32), . . ., w(ix)) where 1y < iy < --- < iy and w(i;) < k for every j.

Let w = (01,...,0r) be a Bazter permutation on [n]. Define the multiplicity of m, denoted by Mul(r), as
follows : Let P(r) be a mosaic floorplan obtained by algorithm BP2FP with input w. Let hy, ..., hn_1 be line
segments of P(r) where hy is a line segment introduced in generating from BP2FP(x|;,) to BP2FP(|r+1)
(see Fig 4). If h; is a vertical line segment, let I; be the number of the junctions of the shape 1’ on h;
(which equals to the number of horizontal lines whose right end is on h;) and r; be the number of junctions
of the shape +’ on h; (which equals to the number of horizontal lines whose left end is on h;). Similarly,
if hi is a horizontal line segment, let ; be the number of the junctions of the shape ‘L’ on h; (which equals
to the number of vertical lines whose bottom end is on h;) and r; be the number of junctions of the shape
“T7 on hy (which equals to the number of vertical lines whose top end is on h;). Then,

n—1 L 4
Mul(r) := H (l I ').
i=1 @
We define the parameter of h; by (L;, 7). d

For example, in the rightmost drawing in Fig 4, the parameter for hg is (2,1) and is (0,0) for A, ha and
h4, and the multiplicity of the drawing is 3.

Based on the above definition, the number of rectangular drawings with n faces is given by the sum of
Mul(x)’s over all Baxter permutations 7 on [n]. Since the number of Baxter permutations on {n] is known
to be at most 23" and Mul(r) < 22" for every m (this can easily be proved using the fact 3=, (l; + ;) < 2n),
we have R(n) < 25", This equals to the bound obtained from the fact that there is a method for encoding
rectangular drawings with n faces using 5n bits [12, 13].

It seems to be natural to expect that this bound can be improved by a deeper analysis of Mul(w). In
fact, we can show the following lemma which says that the fraction of Baxter permutations 7 such that
Mul(r) is large is small.

Lemma 1 The number of Baxter permutations 7 on [n] such that Mul(m) = Q(2°™) is at most 0(20+Am)
for B =1.822. O

The proof of Lemma 1 is done by a careful analysis of Mul(w) including some numerical examinations.
See [3] for the proof. If we can establish Lemma 1, then the number of rectangular drawings with n faces
is upper bounded by

0(22.822n) . 2217, + 2371 . 0(2182271) — 0(24,822n) — 0(28371)’

which is as desired.



4.3 Correspondence between Rectangular Drawings and General Floorplans

When we consider a problem to find a floorplan that minimizes criteria such as area or wire-length, it
is well known that an optimal floorplan might contain empty rooms. Young et al. [11] showed that when
searching for an optimal floorplan, it is enough to consider floorplans in which every empty room is at the
center of pin-wheel structure and has no room-to-room neighbor. ‘They call such floorplans as “general”
floorplans (although Ackerman et al. [1] call these as “potentially optimal floorplans” ). Shen and Chu [9]
then showed that the number of such “general” floorplans is equal to the sum of Mul(7)’s over all Baxter
permutations 7 on [n] ([9, Sect. V]). By combining this with the fact that that Mul(r) = O(22"/\/n), they
showed the number of “general” floorplans is between (23" /nt) and O(25" /n*®).

In the argument of the proof of the upper bound on R(n), we show that R(n) is the sum of Mul(r)’s over
all Baxter permutation 7 on [n], which is identical to the quantity described above. As a byproduct, our
bounds of Q(11.56%) ~ Q(23-537) and 0(28.3") ~ O(2483") give the current best upper and lower bounds
on the number of “general” floorplans which has been investigated in e.g., [1, 9, 11].

5 Open Problems

In this paper, we give an algorithm that computes the number of rectangular drawings with n faces in
time O(poly(n)-2™), and show that the growth rate of R(n) is between 11.56 and 28.3. To narrow the gap
between the upper and lower bounds is apparently an interesting open problem. We believe that the lower
bound is closer to the truth; we guess that the value is around 14.

Some other open problems are listed below.

e Is there a procedure that computes R(n) whose running time is a polynomial in n?
e What is the value of the limit Ao := limy, o0 An? Is Ao = Cr?

o Is there a natural class of permutations that has a bijection to the set of rectangular drawings?
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