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[Abstract] The 3-vertex-connectivity augmentation problem of a graph with degree constraints, 3VCA-DC, is
defined as follows: “Given an undirected graph G = (V, E), and an upper bound g(v) € Z* U {oo} on vertex-degree
increase for each v € V, find a smallest set £’ of edges such that (V, E U E’) is 3-vertex-connected and such that
vertex-degree increase of each v € V by the addition of E’ to G is at most g(v), where Z* is the set of nonnegative
integers.” In this paper we show that checking the existence of a feasible solution and finding an optimum solution
to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E]) time.

1 Introduction

The connectivity augmentation problem of a graph asks for
finding a smallest (or minimum-cost) set of edges whose ad-
dition to a given graph results in a graph satisfying some pre-
scribed connectivity properties. This paper considers the 3-
vertex-connectivity augmentation problem of a graph with de-
gree constraints.

Given an undirected graph G = (V, E) and a subset § C
V, G is said to be k-vertex-connected with respect to S (or
k-connected with respect to §) if and only if G has at least
k internally-disjoint paths between any pair of vertices in S,
where if § = V then “with respect to §” is neglected. In
particular, we say that G which is k-connected with respect
to § is bi-connected (tri-connected) with respectto S if k = 2
(k = 3, respectively).

The k-vertex-connectivity augmentation problem for a
specified set of vertices of a graph with degree constraints,
kVCA-SV-DC, is defined as follows: “Given a positive inte-
ger k, an undirected graph G = (V,E), a specified set § € V
and an upper bound g(v) € Z* U {00} on vertex-degree increase
for each v € V, find a smallest set E’ of edges such that G + E”
is k-connected with respect to S and such that vertex-degree
increase of each v € V by the addition of E’ to G is at most
g(v), where G + E' = (V,E U E’) and Z* is the set of non-
negative integers.” We call any set F of edges a solution to
kVCA-SV-DC if G + F is k-connected with respect to S, and
we say that any set F” of edges is feasible (or more precisely
g-feasible) if F' includes at most g(v) edges incident to v for
each v € V. Any feasible solution of minimum cardinality is
called an optimum solution to kNCA-SV-DC. kVCA-SV-DC
has application to designing communication networks. kVCA-
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{oo}, of 3VCA-DC, where G is bi-connected and the num-
ber beside each vertex v € V denotes g(v). The edge set
{(b,]), (d, g), (f, h)} shown by bold dotted lines is an optimum
solution. Notice that if g(b) = O then there is no feasible solu-
tion becaunse g({a, b}) = g(a) + g(b) = 0.

Figure 1: An instance, G =

SV-DC with § = V is denoted as kVCA-DC. kVCA-SV-DC
with g(v) = oo for all v € V is denoted as kVCA-SV. kVCA-SV
with § = V is denoted as kVCA. Figure 1 shows an instance
of 3VCA-DC.

We summarize known results on kVCA-SV-DC. For 2VCA,
a polynomial time algorithm was proposed by Eswaran and
Tarjan {1], and a linear time algorithm was proposed Rosen-
thal and Goldner [11] and Hsu and Ramachandran [5]. For
3VCA, a polynomial time algorithm was devised by Watanabe
and Nakamura [14], and a linear time algorithm was proposed
by Hsu and Ramachandran [4]. For 4VCA, Hsu [3] devised
an O(IV|log V| + |E]) time algorithm. For any fixed k, Jackson
and Jord4n [6] first devised a polynomial time algorithm for
kVCA. Concerning kVCA-SYV, it was shown that kVCA-SV
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can be solved in linear time by reducing it to kVCA by Watan-
abe, Higashi, and Nakamura [13] if £ = 2 and by Mashima
and Watanabe (10] if & = 3. For 2VCA-SV-DC, we proposed
a linear time algorithm [9].

In this paper we show that checking the existence of a fea-
sible solution and finding an optimum solution to 3VCA-DC
for any bi-connected graph G can be done in O(|V| +|E]) time.

The paper is organized as follows. Section 2 provides some
definitions and notations. Section 3 shows a necessary and
sufficient condition for the existence of a feasible solution to
3VCA-DC. Section 4 presents a linear time algorithm for find-
ing an optimum solution to 3VCA-DC. The concluding re-
marks are given in Sect. 5.

2 Preliminaries
2.1 Basic Definitions

A singleton set {x} may be written as x. The notation “C”
means inclusion, and “c” does proper inclusion. For a real
number x, let [ x] (|x], respectively) denote the smallest integer
not less than x (the largest integer not more than x).

An undirected graph G = (V(G), E(G)) consists of a finite
and nonempty set V(G) of vertices and a finite set E(G) of
undirected edges. V(G) and E(G) are often denoted as V and
E, respectively. We assume that graphs have neither multiple
edges nor self-loops unless otherwise stated. An edge whose
endvertices are u and v is denoted by (u,v). The degree of a
vertex v in G, dg(v), is the number of edges incident to v in
G. For a set E’ of edges with E' N E = 0, G + E’ denotes the
graph (V,EU E’). ForasetX C V UE, G - X denotes the
graph obtained from G by deleting X, where any edge incident
to v € X is also removed. A subgraph of G is any graph H such
that V(H) C V(G)and E(H) C E(G). For X S V, let I'(X; G) =
(v e V-X| (v) € EG) forsomeu € X} and &X;G) =
V- X UT'(X;(G)). B G is clear from the context, T'(X; G) and
&(X; G) may be denoted as I'(X) and £(X), respectively. Let
V(E") = {u,v € V | (u,v) € E’) for any set E’ of edges. For
any function f : V — Z* U {oo} and any set X C V, we use the
notation f(X) = 3 ,cx f(v).

A path between u and v, or a (u,v)-path, is an alternating
sequence of vertices and edges u = vy, €1,V1,..., Up_1, €y, Uy =
v (n 2 0) such that if n > 1 then vy, ...,v, are all distinct
and ¢; = (vi-1,v;) foreach i, 1 < i < n. If n > 2 then the
vertices vy, vy, - - , v,y are called the inner verrices of the path.
A set of paths is said to be internally-disjoint if no two of them
have an inner vertex in common. A cycle is a (vg, v,)-path,
n > 2, together with the edge (vg,v,). An undirected graph
G is connected if G has a path between any pair of vertices
in G; otherwise G is disconnected. Any maximal connected
subgraph of G is called a connected component or simply a
component of G. G is acyclic if G contains no cycles. A forest
is an acyclic undirected graph, and a tree is a connected forest,
A leaf of a tree is a vertex with only one edge incident to it.

Let G be a connected graph. Any subset R of V' is called a
separator of G if and only if G — R is disconnected. Any sepa-
rator of minimum cardinality is called a minimum separator of
G. The vertex-connectivity k(G) of G is the cardinality of any
minimum separator of G, where if G is a complete graph then
«(G) is defined to be |V| ~ 1. If «((G) > k for a positive inte-
ger k then G is said to be k-vertex-connected (or k-connected);
in particular, if «(G) 2 2 («(G) = 3) then G is said to be bi-
connected (tri-connected, respectively). Note that «(G) > k
holds if and only if G has at least & internally-disjoint paths

Figure 2: Tri-components of the graph G in Fig. 1. Edges
represented as broken lines are virtual edges.
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Figure 3: 3-blk(G) of the graph G in Fig. 1.

between any pair of vertices in V.

Let G be a bi-connected graph. For any pair of vertices
u,v € V, {u,v} is called a separation pair of G if and only if
{u,v} is a separator of G. Let SP(G) denote the class of all
separation pairs of G, where the part “(G)” is often omitted
for simplicity unless any confusion arises. Let K € SP(G).
Any component of G ~ K is called a K-component of G. The
separating degree of K in G is the number of K-components
of G, and it is denoted by dg(K) or simply d(K). In this paper,
we often identify a K-component (or a component) with its
vertex set.

2.2 Tri-Components and 3-Block Graph

Let G be a bi-connected graph. Tri-connected components (tri-
components for short) [2,12] of G are constructed from G by
the two operations “split” and “merge”. Tri-components can
be partitions into three classes: tri-connected graphs, poly-
gons and bonds, where a bond is a graph consisting of two
vertices and at least three multiple edges between them. For
the details of tri-components, refer to [2, 12). Figure 2 shows
tri-components of the graph G in Fig. 1. Any separation pair
shared by at least two tri-components, each being either a tri-
connected graph or a polygon, is called a separation pair of
adjacent type, and any separation pair consisting of nonadja-
cent vertices in a polygon is called a separation pair of nonad-
Jacent type. Note that any separation pair is either of adjacent
type or of nonadjacent type. Let SPA(G) = (K € SPG) | K is
of adjacent type} and SPx(G) = SP(G) — SPA(G), where the
part “(G)” is often omitted for simplicity unless any confusion
arises.

Remark 2.1 d;(K) = 2 for any K € SPN(G). ]

The 3-block graph [4], 3-blk(G), of a bi-connected graph
G is constructed as follows. The vertex set of 3-blk(G) con-
sists of three kinds of vertices called o-vertices, m-vertices or
B-vertices: we create a o-vertex for each separation pair of
adjacent type, a m-vertex for each polygon, and a B-vertex for
each tri-component that is a tri-connected graph. Then distinct



vertices u, v created above are connected by an edge if and only
if either (1) or (2) holds: (1) {u, v} is a pair of a o-vertex and
a f-vertex, and the separation pair represented by the o-vertex
is contained in the tri-connected graph represented by the 8-
vertex; (2) {u,v} is a pair of a o-vertex and a n-vertex, and the
separation pair represented by the o-vertex is contained in the
polygon represented by the 7-vertex. Moreover, for each each
vertex w € V(G) with dg(w) = 2, do the following: create a
B-vertex u for {w}, and a o-vertex v for I'(w; G); connect u and
v by an edge; connect by an edge the vertex v and the n-vertex
representing the polygon to which w belongs. The resulting
graph is 3-blk(G). Figure 3 shows 3-blk(G) of the graph G in
Fig. 1. 3-blk(G) of a bi-connected graph G is a tree and it can
be constructed in O(|V|+|E|[) time by using the algorithm in [2]
for finding tri-components of G.

Letv € V(3-blk(G)). The degree of v in 3-blk(G) is denoted
by d3.pik(G)(v) or simply d(v) unless any confusion arises. 1f
d(v) = 1 then v is called a leaf of 3-blk(G). Note that any leaf
of 3-blk(G) is a B-vertex.

Let V,(3-blk(G)) denote the set of all o-vertices of 3-
blk(G). Any subset K C V represented by a o-vertex of 3-
blk(G) is called a o~-pair of G. Let SI(G) or simply SI denote
the class of all o-pairs of G.

Remark 2.2 Let G be a bi-connected graph with |V| > 4.

(1) The following conditions are equivalent: (a) K(G) > 3, (b)
SP(G) = 0; (c) SI(G) = 0; (d) V,(3-bl(G)) = 0.

(2) SI(G) € SP(G).

(3) Let K € SIG) and V,(K) = (v € V, (3-bI(G)) | v
represents K). Then, there is a o-vertex v € V,(K) with
d(v) = dg(K), and any v’ € V(K) — {v} satisfies dv') = 2.

(4) Let K’ € SP(G) — SI(G). Then, K’ € SPy(G), and, there-
fore, d;(K') = 2 by Remark 2.1. m]

Any graph represented by a S-vertex of 3-blk(G) is called a
3-block of G. Any 3-block B of G is called a singleron 3-
block if B consists of a single vertex of G; otherwise B is a
tri-connected 3-block. Any singleton 3-block consists of one
vertex whose degree in G is two, and there is exactly one poly-
gon containing it. For any 3-block B of G, let dg(B) or simply
d(B) denote the number of separation pairs K € SP(G) with
K € V(B), where we set dg(B) = 1 for any singleton 3-block
B. For any polygon P of G, let dg(P) or simply d(P) denote
the sum of the number of separation pairs K € SPA(G) with
K C V(P) and the number of singleton 3-blocks inctuded in P.
For any v € V(3-blk(G)), let K, B, or P, denote the o--pair, the
3-block or the polygon represented by v, respectively. Note
that d(v) = dg(B,) for any S-vertex v and that d(u) = dg(P,)
for any m-vertex u.

Let « and v be distinct two leaves of 3-blk(G), and assume
that the (i, v)-path in 3-blk(G) passes through a n-vertex w. Let
01, 0o, ..., Qi be a sequence of separation pairs of adjacent
type and singleton 3-blocks, each included in P, appearing in
this order on P,,, where distinct separation pairs may share one
vertex. Let Q; and Q;, 1 < i < j < d(w), be two members of
{O1, ..., Qum}, each represented by some vertex in the (i, v)-
path. Then the (i, v)-path is said to be adjacent onwif j—i =1
or j—i =d(w) - 1; otherwise nonadjacent on w.

Any separation pair K of G is said to be a primary sepa-
ration pair if either d(K) > 3 or K C V(B) for some 3-block
B with d(B) = 3. Note that any primary separation pair is of
adjacent type. For any v € V with d(v) = 2, let Pg(v) or simply
P(p) denote the polygon of G containing v. Let T or simply
T denote the set {v € V | d(v) = 2,d(P(v)) = 3}.

2.3 Lower Bounds

Let G be a bi-connected graph with |V| > 4. Let v be any
leaf of 3-blk(G) and let u be the o-vertex adjacent to v in 3-
blk(G). Then the subset V(B,) — K, C V is called a leaf of
G or the leaf of G represented by v. Any singleton 3-block
is a leaf of G. For any leaf v of 3-blk(G), let X, denote the
leaf of G represented by v. Let £(G) denote the class of all
leaves of G, and let {(G) denote the number of leaves of G
(or equivalently the number of leaves of 3-blk(G)). Note that
X NX' = @ for any distinct X, X’ € L(G). Let d(G) denote
the maximum separating degree of all separation pairs of G
(or equivalently the maximum degree of all o-vertices in 3-
blk(G) by Remark 2.2).

Example 2.3 For G in Fig. 1, £(G) = {{a,b}, {f}, {g}, {h},
{i.j}}, {G) = 5, and d(G) = 3. o

Let F be any feasible solution to 3VCA-DC for G and g.
For any X € L(G), F contains at least one edge connecting a
vertex in X with a vertex in £(X). Since L(G) is pairwise dis-
joint, we have |F| > [I(G)/2], meaning that g(V) > 2[I(G)/21
and g(X) > | for any X € L(G). Also, forany K € SP, F
contains at least d(K) — 1 edges so that adding them to G — K
results in a connected graph. Therefore |[F| > d(G) — 1 and
g(V = K) > 2(d(K) - 1) for any K € SP. Hence we have the
following lemmas.

Lemma 2.4 For any feasible solution F 10 3VCA-DC for G
and g, |F| > max{d(G) — 1,[KG)/2}}. O

Lemma 2.5 If there is a feasible solution to 3VCA-DC for G
and g then the following (1) and (2) hold.

(1) 9(X) > 1 for any X € L(G), and if (G) is odd then g(V) >
IG) + 1.

(2) g(V - K) =2 2(d(K) —- 1) for any K € SP. O

Next we investigate the situations where there is a o-vertex
v € V,(3-blk(()) with d(v) - 1 > [KG)/2].

Lemma 2.6 Let u,v € V,(3-blk(G)) be distinct o-vertices
with d(u)—1 2 [I(G)/2] < d(v)— 1. Then the following (1)—(3)
hold:

() dw) -1 =d@) -1 =[UG)/21;

(2) I(G) is even;

(3) d(x) € {1,2} for any x € V(3-blk(G)) — {u, v}.

Proof: Since KG) is the number of leaves of 3-blk(G),
I(G) =z (dw) - 1)+ (dw) - 1) 2 2[(G)/2] = KG).

Since the formula above must hold with equality, we have the
lemma. =

Lemma 2.7 For any v € V (3-blk(()), the following (1) and
(2} hold.
(1) If d(v) — 1 > [UG)/2] then d(u) — 1 < [I(G)/2] for any
u € Vo (3-blk(G)) — (v} and d(v) = d(G).
(2) Suppose that d(v) — 1 = [G)/2). Then d(v) = d(G), and
the following (i) and (ii) hold.
(i) If d(v) = 3 then there are at most two o-vertices u €
Vo (3-blk(G)) with d(u) = d(G), and moreover if there are
two such o-vertices then I(G) is even.
(ii) If d(v) = 2 then (G) = 2 and d(u) = 2 for any u €
Vo (3-blk(G)) — {v}.



Figure 4: An instance for which there is no feasible solution to
3VCA-DC, where /(G) = d(G) = 5 and the condition (2) does
not hold. {b,d} is the separation pair K with d(K) = d(G).
Since g(V — K) = 5, there is no feasible solution.

Proof: We prove (1). If d(u) — 1 > [I(G)/2] for some u €
V- (3-blk((3)) ~ {v}, then we have a contradiction d(v) -1 =
[i(G)/2] by Lemma 2.6 (1). Therefore d(u) - 1 < [I(G)/2] for
any u € V. (3-blk(G)) — {v}. Since d(v) is the maximum degree
of all o-vertices in 3-blk(G), d(v) = d(G) holds.

We prove (2). By Lemma 2.6 (1) (or (1) of this lemma),
d(u) — 1 < [iG)/2] for any u € V,(3-bIK(G)) — {v}. Therefore
d(v) = d(G). Let V¢ = (u € V,(3-blk(G)) | d(w) = d(G)).
Suppose by contradiction that d(v) > 3 and |V} > 3. Then,
it follows from Lemma 2.6 (3) that d(v) = 2, a contradiction.
Hence if d(v) > 3 then [V¢| < 2, and if |VY| = 2 then IG) is
even by Lemma 2.6 (2), showing (2)(i). Suppose that d(v) = 2.
Then I(G) = 2 follows from [{G)/2] = 1. And, for any u €
V,(3-blk(G)) — {v}, we have d(u) = 2 since d(v) > d(u) > 2,
showing (2)(ii). [m}

By Lemma 2.7, we have the next corollary.

Corollary 2.8 If either (d(G) — 1 > [HG)/2]) or (d(G) - 1 =
[I(G)/21 and UG) is odd) then there is the unique o-vertex
v € V,(3-bIG)) with d(v) = d(G), furthermore, K, is the
unique separation pair K € SP(G) with d(K) = d(G).

Proof: Lemma 2.7 shows the first part. Since d(v) > 3, K, is a
separation pair of adjacent type, and, therefore, d(K,) = d(v) =
d(G). Hence the second part follows. [}

3 The Existence Condition for Feasible Solutions

From this section, we assume that G is bi-connected with V| >
4 unless otherwise stated. In this section we show a necessary
and sufficient condition for the existence of a feasible solution
to 3VCA-DC.

Theorem 3.1 (The existence condition for feasible solu-
tions) There is a feasible solution to 3VCA-DC for a bi-
connected graph G with degree constraints by g if and only
if the following (1)~(3) hold.
(1) g(X) > 1 for any leaf X € L(G).
(2) If either (d(G) — 1 > [KG){2]) or (d(G) -1 = [I(G)/2) and
I(G) is odd) then g(V — K) > 2(d(G) — 1) for the separation
pair K with d(K) = d(G). (See Fig. 4.)
(3) If (d(G) — 1 <[KG)/2] and K(G) is 0dd) then the following
(a)—(c) hold.
(a) g(V) = U(G) + 1.
(b) If no polygon P with d(P) > 3 exists and one vertex
u € V is shared by all primary separation pairs of G, then
g(V —u) 2 I[(G) + 1. (See Fig. 5.)
(c) If (G) = 3, there is a polygon P with d(P) = 3, and
P includes at least one singleton 3-block, then g(V ~T) >
HG) + 1 —|T|. (See Fig. 6.) [m]

Figure 5: An instance for which there is no feasible solution
to 3VCA-DC, where ((G) = 5, d(G) = 3, and the condition
(3)(b) does not hold. Vertex b is shared by all members of {K €
SP(G) | d(K) > 3} = {{b, f}, {b,h}} and {K € SP(G) | K C V(B)
for some 3-block B with d(B) = 3} = {{b,c},{b,d},{b,{}}.
Since g(V —b) = 5, there is no feasible solution.

Figure 6: An instance for which there is no feasible solution
to 3VCA-DC, where [(G) = 3, d(G) = 2, and the condition
(3)(c) does not hold. Polygon P with V(P) = (b, c,e,f, g} has
diP) =3, and T = {v € V(P) | dg(v) = 2} = {f}. Since
gV —T) = 2 <4 —|T), there is no feasible solution.

We call the set of the conditions (1)-(3) given in Theo-
rem 3.1 the existence condition for feasible solutions. Note
that, in the condition (2), X is unique by Corollary 2.8. We
call any graph satisfying all the assumptions of the condition
(3)b) or (3)(c) a graph of type I or of type 2, respectively,
and the vertex u in the condition (3)(b) is called the center of
a graph of type 1, where we usually denote the center by u
unless any confusion arises.

Lemma 3.2 Let G be a graph of type 1 with center u. If g(V —
u) < l(G) + 1 then there is no feasible solution.

Proof: Suppose that there is a feasible solution F. It suffices
to consider the case where g(X) = 1 for each X € L£(G), g(V —
u) = I(G), and g(u) = oo. Let X be any leaf of G. Since there
is no polygon P with d(P) > 3, there is a primary separation
pair K of G such that some K-component H of G satisfies
XCHand X’ NH =0 forany X' € £(G) — {X}. (Such K
can be found easily by searching 3-blk(G) from the leaf which
represents X. The first visited o-vertex s satisfying d(s) > 3
or being adjacent to a S-vertex b with d(b) > 3 represents the
desired separation pair K.) Since 4 € K and K ¢ SP(G + F),
F must contain an edge connecting a vertex in X with a vertex
in some X’ € £(G) — {X}. Therefore, every leaf of G would
be connected by an edge in F to another leaf of G, implying
g(V —u) = {G) + 1, a contradiction. m]

Lemma 3.3 Let G be a graph of type 2. If (V — T) < UG) +
1 —|T| then there is no feasible solution.

Proof: Suppose that there is a feasible solution F. It suffices
to consider the case where g(X) = 1 for each X € £(G) - {{v} |



veT}l,g(V-T)=KG)-|T|, and g(x) = oo foreachx € T.
F contains at least one edge connecting a vertex vin T with a
vertex v in some X € L(G) — {{v} | v € T}. Suppose that such
an edge (v,v") is added to G. Then, a new leaf X’ containing
X but not containing v appears in the resulting graph, and no
more edge can be added to X’ because g(X’) = g(X) = 1, a
contradiction. i

The necessity of the conditions (1)—(3) follows from Lem-
mas 2.5, 3.2 and 3.3, and the sufficiency is shown by the al-
gorithm Solve 3VCA-DC_aug2to3 which will be prese\hted in
the next section.

Given G and g, we can check whether or not the exis-
tence condition for feasible solutions holds in O(|V|+|E]) time.
Hence we have the following theorem.

Theorem 3.4 Checking the existence of a feasible solution
to 3VCA-DC for any bi-connected graph G can be done in
O(lV| + |E]) time. D

4 A Linear Time Algorithm

In this section, we assume that a bi-connected graph G with
degree constraints by g satisfies the existence condition for
feasible solutions, and we present a linear time algorithm
Solve 3VCA-DC_aug2to3 for finding an optimum solution to
3VCA-DC for G and g.

We partition the problem into the following three cases:

Case 1: (d(G) -~ 1 > [UG)/2]) or

(d(GY — 1 = [(G)/2] and I(G) is odd);
Case 2: (d(G) — 1 £ TU(G)/2] and UG) is even);
Case 3: (d(G) — 1 <[KG)/2] and KG) is odd).

And we present three algorithms, Algorithm 1 for Case 1, Al-
gorithm 2 for Case 2, Algorithm 3 for Case 3, for finding an
optimum solution. Solve 3VCA-DC_aug2t03 uses these algo-
rithms and is formally described as follows.

Algorithm Solve 3VCA-DC_aug2to3

Input: A bi-connected graph G = (V, E) with degree con-
straints by g : V — Z* U {oo}, satisfying the existence con-
dition for feasible solutions.

Output: An optimum solution £” to 3VCA-DC for G and g.

1. Find an optimum solution E* by using Algorithm 1, Algo-
rithm 2 or Algorithm 3 according to the case to which the
problem belongs, and output £*.

Before describing three algorithms, we summary the known
results on 3VCA for bi-connected graphs G. Any vertex v € V
is said to be a leaf-vertex of G if v € X for some X € L(G);
otherwise non-leaf-vertex of G.

Lemma 4.1 (14,7,141) Any optimum solution F 1o 3VCA for
a bi-connected graph G satisfies (1)—(3):

(D If(dG) - 1> [UGY/2) or (d(G) -~ 1 = [UG)/2] and KG)
is odd) then F consists of d(G) — 1 edges whose addition con-
nects d(G) components of G —~ K, where K is the separation
pair with d(K) = d(G), and every leaf of G coniains at least
one vertex incident to some edge in F.

(2) If (d(G) - 1 < [KG)/2] and (G) is even) then F consists of
U(G)/2 edges each of which connects two leaf-vertices belong-
ing to distinct leaves of G.

(3) If (d(G) — 1 < TKG)/2] and IG) is odd) then F consists
of LG)/2] edges each of which connects two leaf-vertices be-
longing to distinct leaves of G plus one edge connecting a leaf-

vertex of G with a vertex which is not necessarily a leaf-vertex
of G. a]

4.1 Algorithm 1 and Algorithm 2

In Cases 1 and 2, we can directly use the results shown in
Lemma 4.1 to find an optimum solution. The difference is that
we have to take into account g-feasibility. The following Al-
gorithms ] and 2 solve Cases 1 and 2, respectively. Algorithm
1 is based on the algorithm in [7], and Algorithm 2 uses an
algorithm for 3VCA.

Algorithm 1 /* for Case 1 ¥/

1. Find the separation pair X of G with d(K) = d(G).

2. k « d(G). Let Cy,...,C; be the k components of G —
K,and let £; (i = 1,...,k) be the number of leaves of G
contained in C;.

3. Letay, ..., a be k integers satisfying ¥, a; = 2(k — 1)
and £; < g; < g(C))foreachi=1,....k.

4. Construct atree T with V(T) = {v; | 1 < i < k} satisfying
dr(v;) = a; for each v; € V(T).

5. E* « 0. For each (v;,v;) € E(T), add an edge which
connects a vertex in C; with a vertex in C; into E* so that
E” finally satisfies that every leaf of G contains a vertex in
V(E") as well as g-feasibility of E*. Output E*.

Lemma 4.2 Algorithm 1 finds an optimum solution to 3VCA-
DC in Case I and can run in O(|V| + |E}) time.

Proof’ Since the conditions (1) and (2) hold, the algorithm is
executable. We assume by contradiction that G + E* is not
tri-connected. Then SP(G + E*) # @, and let K’ be any sep-
aration pair of G + E*. We have K’ € SP(G) and K’ # K
for the separation pair X with dg(K) = d(G). Therefore,
K’ ¢ KU H for some K-component H of G,and K C K’ UH’
for some K’-component A’ of G. Furthermore, H’ includes all
K-components except H, while H includes all K’-components
except H'. Every K’-component C’ with C' # H' includes a
leaf X of G, and, therefore, C’ and H’ is connected by an edge
e € E* which connects a vertex in X with a vertex in some
K-component in A’. This means G + E* ~ K’ is connected,
contradicting K’ € SP(G+ E*). Hence G + E* is tri-connected.
Since |E*| = d(G)-1, E” is an optimum solution by Lemma 2.4
(or Lemma 4.1 (1)).

Concerning time-complexity, Steps 1, 2 and 3 can be exe-
cuted in O(V] + |E|) time using 3-blk(G) which can be com-
puted in O({V| + |E)) time. In Step 4 we use the algorithm (8,
Problem 7.47] for constructing a tree from a prescribed de-
gree sequence, which runs in O(|V|) time. Step S can be done
in O(|V]) time. The total time-complexity of Algorithm 1 is
O(lV| + |E)). =

Algorithm 2 /* for Case 2 */

1. Find an optimum solution F for 3VCA for G.

/* |F| = KG)/2, and each edge of F connects two leaf-
vertices belonging to distinct leaves of G. */

2. E* « O. For each (u4,v) € F, do the following: find two
leaves X(u), X(v) € L(G) containing u, v, respectively; se-
lecta vertex u’ € X(u) withg(u’) > 1 and a vertex v’ € X(v)
with g(v') > 1; and add an edge («/,v') into E*. Output E*.

Lemma 4.3 Algorithm 2 finds an optimum solution to 3VCA-
DC in Case 2 and can run in O(\V| + |E}) time.



Proof: The correctness is obvious. Using a linear time algo-
rithm [4] for 3VCA, Step 1 can be done in O(|V] + |E|) time.
Step 2 takes O(]V]) time. Hence the lemma follows. ]

4.2 Algorithm 3

In Case 3, we use the strategy of reducing the problem to Case
1 or Case 2 by adding several number of edges which can be
a subset of an optimum solution. In Algorithm 3, at most two
edges are added before the reduction. In the following we
introduce two types of edge addition, called Edge-Addition A
and Edge-Addition B, and show some properties of them. Then
we present Algorithm 3.

4.2.1 Edge-Addition A

Edge-Addition A is to add an edge connecting two leaf-
vertices of G so that the number of leaves is decreased by two
if possible. Suppose that /(G) > 5. Let u be any leaf of 3-
blk(G) with g(X,)) = 2, where X, is the leaf of G represented
by u. Select a leaf v of 3-blk(G) satisfying one of the following
(a)—(c) [4]: (a) The (u,v)-path contains at least one B-vertex
with degree at least four; (b) The («,v)-path contains at least
two vertices with degree at least three; (c) The (i, v)-path is
nonadjacent on some n-vertex. Select a vertex #’ € X, with
g(u')> 1 and a vertex v’ € X, with g(¢’) > 1, and add an edge
(’',v")to G. If I{(G) = 3 then let u be any leaf of 3-blk(G) with
g9(X,) = 2and B, ¢ {{v} | v € Tg) (i.e. B, is not a singleton
3-block in some polygon P with d(P) > 3), let v be any leaf of
3-blk(G) withv # u, and add an edge connecting u’ € X,, with
v’ € X, t0G, where g(¢') > 1 and g(v') > 1.

Let G4 denote the graph obtained from G by executing
Edge-Addition A (ie. G4 = G + {(¢/,v')}) and let v* be a
vertex in X, € L(G) satisfying g(v*) > 1 and, moreover, if
v* = u’ then g(v*) > 2. Note that if G) = 3 then v* ¢ T;. We
update g by g(u') < g(u’) — 1 and g(v") « g(v’) - L.

Remark 4.4 g(v*) = 1 for updated g (even if v* = u’). m]

Lemma 4.5 ([4]) (1) If KG) 2 5 then {(G4) = LG) - 2;
(2) If G) =3 then G4) = 2. 5

Corollary 4.6 (1) If (G) = 5 then L(G,) = L(G) - {X,.X,},
v* is a non-leaf-vertex of G4, d(Gx) — 1 < [I(G,)/2] and KG,)
is odd.

(2) IfUG) = 3 then G4 has anew leaf X' € L(G,)~ L(G), and
d(Ga) = 1 =[UG)/2] = 1. 0

Remark 4.7 9(X) > 1 for any X € L(G4) N L(G). u]
For the case v* ¢ T; we have the next lemma.

Lemma 4.8 Ifv* ¢ T then G, has a tri-connected 3-block B
with v* € V(B) and has no K € SP(G,) withv* € K.

Proof: B, is a tri-connected 3-block or a singleton 3-block con-
taining v If B, is a singleton 3-block then there is the triangle
P(v*) with d(P(v*)) = 2. By adding («’,v’), B, (or P(v*)} and
v’ are included in a tri-connected 3-block of G,. Also G has
no K € SP(G) with v* € K and so does Gy4. ]

The next lemma shows that if I(G) = 3 then Case 3 can be
reduced to Case 2 after Edge-Addition A.

Lemma 4.9 If i(G) = 3 then v* is in the new leaf of G,.

Proof: By Lemmas 4.5 (2) and 4.8, we have d;;, (B) = 1 for the
tri-connected 3-block B with v* € V(B). Since v* ¢ K for any
K € SP(G,), v* is in the new leaf of G,. ul

For the case v* € T; we have the next lemma.

Lemma 4.10 Suppose that v' € Tg. Then any K € SP(G,)
withv* € K has dg,(K) = 2. If G4 has a tri-connected 3-block
B with dg,(B) > 3 and v* € V(B) then B includes a separation
pair K € SP(Gy) withv* ¢ K.

Proof: In this case, v* = «’. Any K € SP(G) with v* € K
consists of v* and any vertex x € V(P(v*)) not adjacent to v*
in P(v*), that is, K € SPN(G). Therefore, for any K € SP(G,)
withv” € K, we have K € SPx(G) and hence dg, (K) = 2. By
adding (¢, v"), at most two separation pairs K € SPy(G) with
v* € K are included in B. Since dg,(B) > 3, B includes some
K € SP(G,) with v* ¢ K. u

The next lemma shows that if (d(G,) — 1 = [{G,)/2] and
U(G,) is odd) then Case 3 can be reduce to Case 1 after Edge-
Addition A.

Lemma 4.11 If(d(G,) -1 =[l(G4)/2] and (G ) is odd) then
g(V = K) 2 2d(G,) — 1) for the separation pair K € SPG,)
with dg,(K) = d(Gy).

Proof: Since dg;, (K) > 3, we have v* ¢ K by Lemmas 4.8 and
4.10. Hence g(V — K) 2 Txepi 9(X) +90*) 2 (G + 1 =
2[UGA)/21) = 2Adg,(K) - 1) m]

Moreover, the next lemma concerning graphs of type 1 or
of type 2 follows from Lemmas 4.8 and 4.10.

Lemma 4.12 Ifi(G,) = 3 then (1) and (2) hold.
(1) If G4 is a graph of type 1 then v* is not the center of G,.
(2)If Gy is a graph of type 2 thenv* ¢ T, .

Proof: We prove (1). Suppose that v* is the center of G,. If
v* ¢ Tg then v* ¢ K for any K € SP(G,) by Lemma 4.8,
contradicting that »* is the center of G4. Therefore we have
v € Tg. By Lemma 4.10, any K € SP(G,) with v* € K has
dg,(K) = 2. This shows that G4 has a tri-connected 3-block
B with dg;,(B) > 3 and v* € V(B). Again by Lemma 4.10, B
includes a separation pair K € SP(G,) withv* ¢ K, contradict-
ing that G, is of type 1. Hence (1) follows.

Since v is a non-leaf-vertex of Gy, (2) holds. a]

From the results mentioned above, we obtain the following
corollary.

Corollary 4.13 (1) The existence condition for feasible solu-
tions holds for G4 and updared g.

(2) If UG) = 5 ({G,) = 3) then G4 has a non-leaf-vertex v*
with g(v*) > 1 and v* # u if G4 is a graph of type 1. [u]

If (d(G4) — 1 < [l(G4)/2] and {G,) is odd) then we can
execute Edge-Addition B by using v* in Corollary 4.13 (2) as
a non-leaf-vertex to which a new edge is added.

4.2.2 Edge-Addition B

Edge-Addition B is to add an edge connecting a non-leaf-
vertex with a leaf-vertex of G so that the number of leaves
is decreased by one. Let v* be a non-leaf-vertex of G with
g(v*) > 1, where we assume that v* is not the center of G if G
is a graph of type 1. We consider two cases.



Figure 7: Edge-Addition B in Case Bl, showing the case
01,0, € SPA(Gyand v* € H.

Figure 8: Edge-Addition B in Case B2, where d(K) > 3.

(Case B1) There is a polygon P with d(P) > 3. In this
case, P includes a separation pair K = {u), us} € SPA(G) with
v* € HUK, where H is a K-component not containing V(P) —
K. See Fig. 7. Let Q,, O, be a separation pair of adjacent
type or a singleton 3-block included in P such that Oy, K, 0>
appear in this order consecutively on P. If Q; € SPA(G) then
let L} € L(G) be any leaf in a Q;-component not containing
V(P) — Qy; if Q) is a singleton 3-block (which is a leaf) then
let L, = Qy. For Q,, let L, be a leaf of G defined similarly. If
v* € HU {u,) then select a vertex v € L; with g(v”) > 1; if
v* = u; then select a vertex v” € L, with g(v”’) > 1. And add
an edge (v*,v”) to G.

Example 4.14 For G in Fig. 1, d(G) — 1 < [KG)/2] and I(G)
is odd. G has a non-leaf-vertex v = d with g(v*) > |1 and a
polygon P with V(P) = {c,d,e,f,g} and d(P) > 3. For K =
{c,d} € SPA(G) and a K-component H = {a,b}, v* € HUK
holds. Then an edge (d, g) is added to G. O

(Case B2) There is no polygon P with d(P) > 3. Then
there is a primary separation pair K of G with v* ¢ K (even
if G is a graph of type 1). If d(K) > 3 then let L; € £(G) be
any leaf in a K-component not containing v*, select a vertex
v” € Ly with g(v”) > 1 and add an edge (v*,v”) to G (Fig. 8).
If d(K) = 2 then do the following. Let B be a 3-block with
K C V(B) and d(B) 2 3. Let Lg € £(G) be any leaf in the K-
component not containing V(B) — K. Let K; € SP(G) - {K} be
any separation pair in V(B), and let L; € £(G) be any leaf in a
K, -component not containing V(B)— K. If v* and V(B)-K are
in a K-component then select a vertex v’ € Lg with g(v”) > 1
(Fig. 9); otherwise select a vertex v’ € L; withg(v”’) > 1. And
add an edge (v*,v”)to G.

Let G denote the graph obtained from G by executing
Edge-Addition B (i.e. Gg = G +{(v*,v”")}). For any 3-block
or any leaf Y of G (or Gg), let 8(Y) denote the B-vertex repre-
senting Y in 3-blk(G) (or in 3-blk(Gy)).

Lemma 4.15 (Gy) = (G) - 1.

Proof: (Case B1) Suppose that v* € H (Fig. 7). Then G has a
3-block B; containing {v*,uy,u,} U L;. Let Lg € £(G) be any

— 1

Figure 9: Edge-Addition B in Case B2, where d(K) = 2 and
K C V(B) for a 3-block B with d(B) > 3, showing the case
where v* and V(B) - K are in a K-component.

leaf in H. Then Lk, L, € £(Gg), and there are two paths in 3-
blk(Gp), one from B(B;) to (L) and one from 8(B;) to B(L,).
Hence (B,) is not a leaf of 3-blk(Gp), and (Gp) = {G) — 1.

Suppose that v* = uy. If Q1 € SPA(G) then Gy has a 3-
block B containing {v*} U Q; U L,, and, in 3-blk(Gp), the
path between B(Lx) and B(L,) passes through B(B}), show-
ing {Gg) = IG) — 1. If Q, is a singleton 3-block then
Ly = Q) = {v"}), and {v",v""} € SPA(Gp). Since v” is no longer
a leaf-vertex in Gy, Gg) = {G) — 1. In the case v* = uy, a
similar discussion shows I(Gp) = I(G) — 1.

(Case B2) Suppose that d(K) > 3 (Fig. 8). Gp has a 3-
block B, containing K U {v*,v”}. Let L, € £(G) be any leaf
in the K-component containing v*. Let L; € £(G) be any
leaf in a K-component containing neither ¢ nor v*. Then, in
3-blk(Gg), the path between S(L;) and B(L;) passes through
B(B,), showing I(Gg) = KG) — 1.

Suppose that d(K) = 2 and K ¢ V(B) for a 3-block B with
d(B) > 3. Gp has a 3-block B}, containing BU{v*,v”}. Let K, €
SP(G) — (K, K} be any separation pair in V(B), and let L, €
L(G) be any leaf in a K,-component not containing V(B)— K.
If v* and V(B) — K are contained in a K-component then, in
3-blk(Gp), the path between B(L,) and B(L;)) passes through
B(B;). Otherwise, in 3-blk(Gy), the path between S(Lx) and
B(L,)) passes through B(B,). B(B,) is not a leaf of 3-blk(Gg).
Hence I(Gg) = HG) - 1. ]

4.2.3 Description of Algorithm 3

Now we describe Algorithm 3. Figure 10 shows overview of
Algorithm 3.

Algorithm 3  /* for Case 3 */

1. (L) E* « 0.

(1.2) If there is a non-leaf-vertex v* with g(v*) > 1 such
that if G is a graph of type 1 then v* is not the center of G,
select such a vertex v* and go to Step 3.

(1.3) Otherwise go to Step 2.

. (2.1) Add an edge («',v’) to G by Edge-Addition A as
described in Sec. 4.2.1; E* « E* U {(W,v)}); G «
G+{, )} g') « g') - Tand g(t') « g(v') - 1.
(2.2) If the problem for new G and g is in Case 1 or 2 then
find an optimum solution A by Algorithm 1 or 2, respec-
tively; E* « E* U A; and output E* and halt.

(2.3) Otherwise select a non-leaf-vertex v* with g(v*) > 1
such that if G is a graph of type 1 then v* is not the center
of G; and go to Step 3.

. (3.1) Add an edge (v*,v”) by Edge-Addition B as de-

scribed in Sec. 4.2.2; E* « E*U{W,v")}); G « G +



Algorithm 2

Algorithm 1 Edge Addition B

Figure 10: Overview of Algorithm 3, where the negative inte-
ger beside each arrow shows decrease of the number of leaves.

@', vk gv*) < g(v") - 1 and g(v”) & g@") ~ 1.
(3.2) Find a optimum solution A for new G and g by Al-
gorithm 2; E* < E* U A; and output E*.

Lemma 4.16 Algorithm 3 finds an optimum solution io
3VCA-DC in Case 3 and can run in O(|V| + |El) time.

Proof: We show the correctness of Algorithm 3. Suppose that
a non-leaf-vertex v* is selected in Step 1. By Lemma 4.15,
I(Gg) = (G) - 1, which is even. Therefore, the problem is re-
duced to Case 2 and we can apply Algorithm 2 for Gz. The op-
timum solution obtained by Algerithm 2 with the edge added
by Edge-Addition B is an optimum solution whose number of
edges is [HG)/2].

Next we consider the case Step 2 is executed. After Edge-
Addition A in Step 2, the existence condition for feasible so-
lutions holds by Corollary 4.13 (1). Therefore, if the problem
is reduced to Case 1 or Case 2 then we can execute algorithm
1 or Algorithm 2, respectively. If the problem is in Case 3,
there is a desired non-leaf-vertex v* by Corollary 4.13 (2), so
we can execute Edge-Addition B in Step 3, and we find an op-
timum solution A to G by Algorithm 2. In each case we have
|E*| = [{G)/2] for E* output by Algorithm 3. Hence it is an
optimum solution.

Since all of Edge-Addition A, Edge-Addition B, Algorithm
1, Algorithm 2 can be executed in O(JV|+|E|) time, Algorithm
3 can run in O(|V| + |E}) time. ]

From Lemmas 4.2, 4.3 and 4.16, Solve _3VCA-DC.aug2to3
finds an optimum solution and runs in O(|V| + |E[) time. We
obtain the following theorem.

Theorem 4.17 If a bi-connected graph G with degree con-
straints by g satisfies the existence condition for feasible solu-
tions then finding an optimum solution to 3VCA-DC for G and
g can be done in O(|V| + |E|) time and the cardinality of the
optimum solution equals max{d(G) - 1,[{G)/21}. O

5 Concluding Remarks

We have shown that checking the existence of a feasible so-
tution and finding an optimum solution to 3VCA-DC for any
bi-connected graph G = (V, E) can be done in O(|V|+|E]) time,
where if there is a feasible solution then the optimum value to
3VCA-DC is equal to the optimum one to 3VCA. Devising a
polynomial time algorithm for 3VCA-DC for not bi-connected
graph is left for future research.
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