点次数の増加上限制約を持つ2点連結グラフに対する 線形時間3点連結化アルゴリズム

間島 利也 +, 田岡 智志 +, 渡邉 敏正 + † 広島国際大学 工学部 ‡ 広島大学大学院 工学研究科

Email: mashima@it.hirokoku-u.ac.jp, {taoka,watanabe}@infonets.hiroshima-u.ac.jp

[概要] 無向グラフ G = (V, E) と各点 v ∈ V の次数増加上限 g(v) ∈ Z⁺ ∪ {∞} が与えられたときに,次数増加 上限制約を満たしつつGに最小本数の辺を付加して3点連結グラフを構成する問題(3VCA-DC)を考える. 本稿では、Gが2点連結である場合に本問題が線形時間で解けることを示す.

A Linear Time Algorithm for Tri-connectivity Augmentation of Bi-connected Graphs with Upper Bounds on Vertex-Degree Increase

Toshiya Mashima[†], Satoshi Taoka[‡], Toshimasa Watanabe[‡] † Faculty of Engineering, Hiroshima International University ‡ Graduate School of Engineering, Hiroshima University Email: mashima@it.hirokoku-u.ac.jp, {taoka,watanabe}@infonets.hiroshima-u.ac.jp

[Abstract] The 3-vertex-connectivity augmentation problem of a graph with degree constraints, 3VCA-DC, is defined as follows: "Given an undirected graph G = (V, E), and an upper bound $g(v) \in Z^+ \cup \{\infty\}$ on vertex-degree increase for each $v \in V$, find a smallest set E' of edges such that $(V, E \cup E')$ is 3-vertex-connected and such that vertex-degree increase of each $v \in V$ by the addition of E' to G is at most q(v), where Z^+ is the set of nonnegative integers." In this paper we show that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time.

1 Introduction

The connectivity augmentation problem of a graph asks for finding a smallest (or minimum-cost) set of edges whose addition to a given graph results in a graph satisfying some prescribed connectivity properties. This paper considers the 3vertex-connectivity augmentation problem of a graph with degree constraints.

Given an undirected graph G = (V, E) and a subset $S \subset$ V, G is said to be k-vertex-connected with respect to S (or k-connected with respect to S) if and only if G has at least k internally-disjoint paths between any pair of vertices in S, where if S = V then "with respect to S" is neglected. In particular, we say that G which is k-connected with respect to S is bi-connected (tri-connected) with respect to S if k = 2(k = 3, respectively).

The k-vertex-connectivity augmentation problem for a specified set of vertices of a graph with degree constraints, kVCA-SV-DC, is defined as follows: "Given a positive integer k, an undirected graph G = (V, E), a specified set $S \subseteq V$ and an upper bound $g(v) \in Z^+ \cup \{\infty\}$ on vertex-degree increase for each $v \in V$, find a smallest set E' of edges such that G + E'is k-connected with respect to S and such that vertex-degree increase of each $v \in V$ by the addition of E' to G is at most g(v), where $G + E' = (V, E \cup E')$ and Z^+ is the set of nonnegative integers." We call any set F of edges a solution to kVCA-SV-DC if G + F is k-connected with respect to S, and we say that any set F' of edges is *feasible* (or more precisely g-feasible) if F' includes at most g(v) edges incident to v for each $v \in V$. Any feasible solution of minimum cardinality is called an optimum solution to kVCA-SV-DC. kVCA-SV-DC has application to designing communication networks. kVCA- kVCA. Concerning kVCA-SV, it was shown that kVCA-SV

Figure 1: An instance, G = (V, E) and $g : V \rightarrow Z^+ \cup$ $\{\infty\}$, of 3VCA-DC, where G is bi-connected and the number beside each vertex $v \in V$ denotes g(v). The edge set {(b, j), (d, g), (f, h)} shown by bold dotted lines is an optimum solution. Notice that if q(b) = 0 then there is no feasible solution because $g({a,b}) = g(a) + g(b) = 0$.

SV-DC with S = V is denoted as kVCA-DC, kVCA-SV-DC with $g(v) = \infty$ for all $v \in V$ is denoted as kVCA-SV. kVCA-SV with S = V is denoted as kVCA. Figure 1 shows an instance of 3VCA-DC.

We summarize known results on kVCA-SV-DC. For 2VCA, a polynomial time algorithm was proposed by Eswaran and Tarjan [1], and a linear time algorithm was proposed Rosenthal and Goldner [11] and Hsu and Ramachandran [5]. For 3VCA, a polynomial time algorithm was devised by Watanabe and Nakamura [14], and a linear time algorithm was proposed by Hsu and Ramachandran [4]. For 4VCA, Hsu [3] devised an $O(|V| \log |V| + |E|)$ time algorithm. For any fixed k, Jackson and Jordán [6] first devised a polynomial time algorithm for

can be solved in linear time by reducing it to kVCA by Watanabe, Higashi, and Nakamura [13] if k = 2 and by Mashima and Watanabe [10] if k = 3. For 2VCA-SV-DC, we proposed a linear time algorithm [9].

In this paper we show that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time.

The paper is organized as follows. Section 2 provides some definitions and notations. Section 3 shows a necessary and sufficient condition for the existence of a feasible solution to 3VCA-DC. Section 4 presents a linear time algorithm for finding an optimum solution to 3VCA-DC. The concluding remarks are given in Sect. 5.

2 Preliminaries

2.1 Basic Definitions

A singleton set $\{x\}$ may be written as x. The notation " \subseteq " means inclusion, and " \subset " does proper inclusion. For a real number x, let $\lceil x \rceil (\lfloor x \rfloor$, respectively) denote the smallest integer not less than x (the largest integer not more than x).

An undirected graph G = (V(G), E(G)) consists of a finite and nonempty set V(G) of vertices and a finite set E(G) of undirected edges. V(G) and E(G) are often denoted as V and E, respectively. We assume that graphs have neither multiple edges nor self-loops unless otherwise stated. An edge whose endvertices are u and v is denoted by (u, v). The degree of a vertex v in G, $d_G(v)$, is the number of edges incident to v in G. For a set E' of edges with $E' \cap E = \emptyset$, G + E' denotes the graph $(V, E \cup E')$. For a set $X \subseteq V \cup E$, G - X denotes the graph obtained from G by deleting X, where any edge incident to $v \in X$ is also removed. A *subgraph* of G is any graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For $X \subseteq V$, let $\Gamma(X;G) =$ $\{v \in V - X \mid (u,v) \in E(G) \text{ for some } u \in X\} \text{ and } \xi(X;G) =$ $V - (X \cup \Gamma(X; G))$. If G is clear from the context, $\Gamma(X; G)$ and $\xi(X;G)$ may be denoted as $\Gamma(X)$ and $\xi(X)$, respectively. Let $V(E') = \{u, v \in V \mid (u, v) \in E'\}$ for any set E' of edges. For any function $f: V \to Z^+ \cup \{\infty\}$ and any set $X \subseteq V$, we use the notation $f(X) = \sum_{v \in X} f(v)$.

A path between u and v, or a (u,v)-path, is an alternating sequence of vertices and edges $u=v_0,e_1,v_1,\ldots,v_{n-1},e_n,v_n=v$ $(n\geq 0)$ such that if $n\geq 1$ then v_0,\ldots,v_n are all distinct and $e_i=(v_{i-1},v_i)$ for each $i,1\leq i\leq n$. If $n\geq 2$ then the vertices v_1,v_2,\cdots,v_{n-1} are called the *inner vertices* of the path. A set of paths is said to be *internally-disjoint* if no two of them have an inner vertex in common. A *cycle* is a (v_0,v_n) -path, $n\geq 2$, together with the edge (v_0,v_n) . An undirected graph G is *connected* if G has a path between any pair of vertices on G; otherwise G is *disconnected*. Any maximal connected subgraph of G is called a *connected component* or simply a *component* of G. G is acyclic if G contains no cycles. A *forest* is an acyclic undirected graph, and a *tree* is a connected forest. A *leaf* of a tree is a vertex with only one edge incident to it.

Let G be a connected graph. Any subset R of V is called a *separator of G* if and only if G-R is disconnected. Any separator of minimum cardinality is called a *minimum separator of G*. The *vertex-connectivity* $\kappa(G)$ of G is the cardinality of any minimum separator of G, where if G is a complete graph then $\kappa(G)$ is defined to be |V|-1. If $\kappa(G) \geq k$ for a positive integer k then G is said to be k-vertex-connected (or k-connected); in particular, if $\kappa(G) \geq 2$ ($\kappa(G) \geq 3$) then G is said to be k-connected (tri-connected, respectively). Note that $\kappa(G) \geq k$ holds if and only if G has at least k internally-disjoint paths

Figure 2: Tri-components of the graph G in Fig. 1. Edges represented as broken lines are virtual edges.

Figure 3: 3-blk(G) of the graph G in Fig. 1.

between any pair of vertices in V.

Let G be a bi-connected graph. For any pair of vertices $u,v \in V$, $\{u,v\}$ is called a *separation pair of G* if and only if $\{u,v\}$ is a separator of G. Let SP(G) denote the class of all separation pairs of G, where the part "(G)" is often omitted for simplicity unless any confusion arises. Let $K \in SP(G)$. Any component of G - K is called a K-component of G. The *separating degree* of K in G is the number of G-components of G, and it is denoted by $d_G(K)$ or simply d(K). In this paper, we often identify a G-component (or a component) with its vertex set.

2.2 Tri-Components and 3-Block Graph

Let G be a bi-connected graph. Tri-connected components (tricomponents for short) [2, 12] of G are constructed from G by the two operations "split" and "merge". Tri-components can be partitions into three classes: tri-connected graphs, polygons and bonds, where a bond is a graph consisting of two vertices and at least three multiple edges between them. For the details of tri-components, refer to [2, 12]. Figure 2 shows tri-components of the graph G in Fig. 1. Any separation pair shared by at least two tri-components, each being either a triconnected graph or a polygon, is called a separation pair of adjacent type, and any separation pair consisting of nonadjacent vertices in a polygon is called a separation pair of nonadjacent type. Note that any separation pair is either of adjacent type or of nonadjacent type. Let $SP_A(G) = \{K \in SP(G) \mid K \text{ is } \}$ of adjacent type and $SP_N(G) = SP(G) - SP_A(G)$, where the part "(G)" is often omitted for simplicity unless any confusion arises.

Remark 2.1
$$d_G(K) = 2$$
 for any $K \in SP_N(G)$.

The 3-block graph [4], 3-blk(G), of a bi-connected graph G is constructed as follows. The vertex set of 3-blk(G) consists of three kinds of vertices called σ -vertices, π -vertices or β -vertices: we create a σ -vertex for each separation pair of adjacent type, a π -vertex for each polygon, and a β -vertex for each tri-component that is a tri-connected graph. Then distinct

vertices u,v created above are connected by an edge if and only if either (1) or (2) holds: (1) $\{u,v\}$ is a pair of a σ -vertex and a β -vertex, and the separation pair represented by the σ -vertex is contained in the tri-connected graph represented by the β -vertex; (2) $\{u,v\}$ is a pair of a σ -vertex and a π -vertex, and the separation pair represented by the σ -vertex is contained in the polygon represented by the π -vertex. Moreover, for each each vertex $w \in V(G)$ with $d_G(w) = 2$, do the following: create a β -vertex u for $\{w\}$, and a σ -vertex v for $\Gamma(w;G)$; connect u and v by an edge; connect by an edge the vertex v and the π -vertex representing the polygon to which v belongs. The resulting graph is 3-blkv figure v shows v shows v for v the graph v in Fig. 1. v shows v for v is a tree and it can be constructed in O(|V|+|E|) time by using the algorithm in [2] for finding tri-components of v.

Let $v \in V(3-\text{blk}(G))$. The degree of v in 3-blk(G) is denoted by $d_{3-\text{blk}(G)}(v)$ or simply d(v) unless any confusion arises. If d(v) = 1 then v is called a *leaf* of 3-blk(G). Note that any leaf of 3-blk(G) is a B-vertex.

Let $V_{\sigma}(3\text{-blk}(G))$ denote the set of all σ -vertices of 3-blk(G). Any subset $K\subseteq V$ represented by a σ -vertex of 3-blk(G) is called a σ -pair of G. Let $\mathrm{SI}(G)$ or simply SI denote the class of all σ -pairs of G.

Remark 2.2 Let G be a bi-connected graph with $|V| \ge 4$. (1) The following conditions are equivalent: (a) $\kappa(G) \ge 3$; (b) $SP(G) = \emptyset$; (c) $SI(G) = \emptyset$; (d) $V_{\sigma}(3\text{-}blk(G)) = \emptyset$. (2) $SI(G) \subseteq SP(G)$.

(3) Let $K \in SI(G)$ and $V_{\sigma}(K) = \{v \in V_{\sigma}(3-blk(G)) \mid v \text{ represents } K\}$. Then, there is a σ -vertex $v \in V_{\sigma}(K)$ with $d(v) = d_G(K)$, and any $v' \in V_{\sigma}(K) - \{v\}$ satisfies d(v') = 2. (4) Let $K' \in SP(G) - SI(G)$. Then, $K' \in SP_N(G)$, and, therefore, $d_G(K') = 2$ by Remark 2.1.

Any graph represented by a β -vertex of 3-blk(G) is called a 3-block of G. Any 3-block B of G is called a singleton 3-block if B consists of a single vertex of G; otherwise B is a tri-connected 3-block. Any singleton 3-block consists of one vertex whose degree in G is two, and there is exactly one polygon containing it. For any 3-block B of G, let $d_G(B)$ or simply d(B) denote the number of separation pairs $K \in SP(G)$ with $K \subseteq V(B)$, where we set $d_G(B) = 1$ for any singleton 3-block B. For any polygon P of G, let $d_G(P)$ or simply d(P) denote the sum of the number of separation pairs $K \in SP_A(G)$ with $K \subseteq V(P)$ and the number of singleton 3-blocks included in P. For any $v \in V(3$ -blk(G)), let K_v , B_v or P_v denote the σ -pair, the 3-block or the polygon represented by v, respectively. Note that $d(v) = d_G(B_v)$ for any β -vertex v and that $d(u) = d_G(P_u)$ for any π -vertex v.

Let u and v be distinct two leaves of 3-blk(G), and assume that the (u,v)-path in 3-blk(G) passes through a π -vertex w. Let $Q_1,Q_2,\ldots,Q_{d(w)}$ be a sequence of separation pairs of adjacent type and singleton 3-blocks, each included in P_w , appearing in this order on P_w , where distinct separation pairs may share one vertex. Let Q_i and Q_j , $1 \le i < j \le d(w)$, be two members of $\{Q_1,\ldots,Q_{d(w)}\}$, each represented by some vertex in the (u,v)-path. Then the (u,v)-path is said to be adjacent on w if j-i=1 or j-i=d(w)-1; otherwise nonadjacent on w.

Any separation pair K of G is said to be a *primary separation pair* if either $d(K) \ge 3$ or $K \subseteq V(B)$ for some 3-block B with $d(B) \ge 3$. Note that any primary separation pair is of adjacent type. For any $v \in V$ with d(v) = 2, let $P_G(v)$ or simply P(v) denote the polygon of G containing v. Let T_G or simply T denote the set $\{v \in V \mid d(v) = 2, d(P(v)) \ge 3\}$.

2.3 Lower Bounds

Let G be a bi-connected graph with $|V| \geq 4$. Let v be any leaf of 3-blk(G) and let u be the σ -vertex adjacent to v in 3-blk(G). Then the subset $V(B_v) - K_u \subseteq V$ is called a *leaf of* G or the leaf of G represented by v. Any singleton 3-block is a leaf of G. For any leaf v of 3-blk(G), let X_v denote the leaf of G represented by v. Let $\mathcal{L}(G)$ denote the class of all leaves of G, and let l(G) denote the number of leaves of G (or equivalently the number of leaves of G). Note that $X \cap X' = \emptyset$ for any distinct $X, X' \in \mathcal{L}(G)$. Let d(G) denote the maximum separating degree of all separation pairs of G (or equivalently the maximum degree of all σ -vertices in G-blk(G) by Remark 2.2).

Example 2.3 For G in Fig. 1, $\mathcal{L}(G) = \{\{a,b\}, \{f\}, \{g\}, \{h\}, \{i,j\}\}, l(G) = 5, and d(G) = 3.$

Let F be any feasible solution to 3VCA-DC for G and g. For any $X \in \mathcal{L}(G)$, F contains at least one edge connecting a vertex in X with a vertex in $\mathcal{E}(X)$. Since $\mathcal{L}(G)$ is pairwise disjoint, we have $|F| \geq \lceil l(G)/2 \rceil$, meaning that $g(V) \geq 2\lceil l(G)/2 \rceil$ and $g(X) \geq 1$ for any $X \in \mathcal{L}(G)$. Also, for any $K \in \mathrm{SP}$, F contains at least d(K) - 1 edges so that adding them to G - K results in a connected graph. Therefore $|F| \geq d(G) - 1$ and $g(V - K) \geq 2(d(K) - 1)$ for any $K \in \mathrm{SP}$. Hence we have the following lemmas.

Lemma 2.4 For any feasible solution F to 3VCA-DC for G and g, $|F| \ge \max\{d(G) - 1, \lceil l(G)/2 \rceil\}$.

Lemma 2.5 If there is a feasible solution to 3VCA-DC for G and g then the following (1) and (2) hold.

(1) $g(X) \ge 1$ for any $X \in \mathcal{L}(G)$, and if l(G) is odd then $g(V) \ge l(G) + 1$.

$$(2) g(V - K) \ge 2(d(K) - 1) for any K \in SP.$$

Next we investigate the situations where there is a σ -vertex $v \in V_{\sigma}(3\text{-blk}(G))$ with $d(v) - 1 \ge \lceil l(G)/2 \rceil$.

Lemma 2.6 Let $u, v \in V_{\sigma}(3\text{-}blk(G))$ be distinct σ -vertices with $d(u) - 1 \ge \lceil l(G)/2 \rceil \le d(v) - 1$. Then the following (1)–(3) hold:

(1) $d(u) - 1 = d(v) - 1 = \lceil l(G)/2 \rceil$;

(2) l(G) is even;

(3) $d(x) \in \{1, 2\}$ for any $x \in V(3-blk(G)) - \{u, v\}$.

Proof: Since l(G) is the number of leaves of 3-blk(G),

$$l(G) \geq (d(u)-1) + (d(v)-1) \geq 2\lceil l(G)/2\rceil \geq l(G).$$

Since the formula above must hold with equality, we have the lemma.

Lemma 2.7 For any $v \in V_{\sigma}(3\text{-}blk(G))$, the following (1) and (2) hold.

(1) If $d(v) - 1 > \lceil l(G)/2 \rceil$ then $d(u) - 1 < \lceil l(G)/2 \rceil$ for any $u \in V_{\sigma}(3-blk(G)) - \{v\}$ and d(v) = d(G).

(2) Suppose that $d(v) - 1 = \lceil l(G)/2 \rceil$. Then d(v) = d(G), and the following (i) and (ii) hold.

(i) If $d(v) \ge 3$ then there are at most two σ -vertices $u \in V_{\sigma}(3\text{-blk}(G))$ with d(u) = d(G), and moreover if there are two such σ -vertices then l(G) is even.

(ii) If d(v) = 2 then l(G) = 2 and d(u) = 2 for any $u \in V_{\sigma}(3-blk(G)) - \{v\}$.

Figure 4: An instance for which there is no feasible solution to 3VCA-DC, where l(G) = d(G) = 5 and the condition (2) does not hold. {b, d} is the separation pair K with d(K) = d(G). Since g(V - K) = 5, there is no feasible solution.

Proof: We prove (1). If $d(u) - 1 \ge \lceil l(G)/2 \rceil$ for some $u \in V_{\sigma}(3\text{-blk}(G)) - \{v\}$, then we have a contradiction $d(v) - 1 = \lceil l(G)/2 \rceil$ by Lemma 2.6 (1). Therefore $d(u) - 1 < \lceil l(G)/2 \rceil$ for any $u \in V_{\sigma}(3\text{-blk}(G)) - \{v\}$. Since d(v) is the maximum degree of all σ -vertices in 3-blk(G), d(v) = d(G) holds.

We prove (2). By Lemma 2.6 (1) (or (1) of this lemma), $d(u)-1 \leq \lceil l(G)/2 \rceil$ for any $u \in V_{\sigma}(3-\mathrm{blk}(G)) - \{v\}$. Therefore d(v)=d(G). Let $V_{\sigma}^d=\{u \in V_{\sigma}(3-\mathrm{blk}(G)) \mid d(u)=d(G)\}$. Suppose by contradiction that $d(v)\geq 3$ and $|V_{\sigma}^d|\geq 3$. Then, it follows from Lemma 2.6 (3) that d(v)=2, a contradiction. Hence if $d(v)\geq 3$ then $|V_{\sigma}^d|\leq 2$, and if $|V_{\sigma}^d|=2$ then l(G) is even by Lemma 2.6 (2), showing (2)(i). Suppose that d(v)=2. Then l(G)=2 follows from $\lceil l(G)/2 \rceil=1$. And, for any $u\in V_{\sigma}(3-\mathrm{blk}(G))-\{v\}$, we have d(u)=2 since $d(v)\geq d(u)\geq 2$, showing (2)(ii).

By Lemma 2.7, we have the next corollary.

Corollary 2.8 If either $(d(G) - 1 > \lceil l(G)/2 \rceil)$ or $(d(G) - 1 = \lceil l(G)/2 \rceil)$ and l(G) is odd) then there is the unique σ -vertex $v \in V_{\sigma}(3\text{-}blk(G))$ with d(v) = d(G); furthermore, K_v is the unique separation pair $K \in SP(G)$ with d(K) = d(G).

Proof: Lemma 2.7 shows the first part. Since $d(v) \ge 3$, K_v is a separation pair of adjacent type, and, therefore, $d(K_v) = d(v) = d(G)$. Hence the second part follows.

3 The Existence Condition for Feasible Solutions

From this section, we assume that G is bi-connected with $|V| \ge 4$ unless otherwise stated. In this section we show a necessary and sufficient condition for the existence of a feasible solution to 3VCA-DC.

Theorem 3.1 (The existence condition for feasible solutions) There is a feasible solution to 3VCA-DC for a biconnected graph G with degree constraints by g if and only if the following (1)–(3) hold.

- (1) $g(X) \ge 1$ for any leaf $X \in \mathcal{L}(G)$.
- (2) If either $(d(G)-1) = \lceil l(G)/2 \rceil$ and l(G) is odd) then $g(V-K) \ge 2(d(G)-1)$ for the separation pair K with d(K) = d(G). (See Fig. 4.)
- (3) If $(d(G) 1 < \lceil l(G)/2 \rceil)$ and l(G) is odd) then the following (a)–(c) hold.
 - (a) $g(V) \ge l(G) + 1$.
 - (b) If no polygon P with $d(P) \ge 3$ exists and one vertex $u \in V$ is shared by all primary separation pairs of G, then $g(V-u) \ge l(G) + 1$. (See Fig. 5.)
 - (c) If l(G) = 3, there is a polygon P with d(P) = 3, and P includes at least one singleton 3-block, then $g(V T) \ge l(G) + 1 |T|$. (See Fig. 6.)

Figure 5: An instance for which there is no feasible solution to 3VCA-DC, where l(G) = 5, d(G) = 3, and the condition (3)(b) does not hold. Vertex b is shared by all members of $\{K \in SP(G) \mid d(K) \ge 3\} = \{\{b, f\}, \{b, h\}\} \text{ and } \{K \in SP(G) \mid K \subseteq V(B) \text{ for some } 3\text{-block } B \text{ with } d(B) \ge 3\} = \{\{b, c\}, \{b, d\}, \{b, f\}\}.$ Since g(V - b) = 5, there is no feasible solution.

Figure 6: An instance for which there is no feasible solution to 3VCA-DC, where l(G) = 3, d(G) = 2, and the condition (3)(c) does not hold. Polygon P with $V(P) = \{b, c, e, f, g\}$ has d(P) = 3, and $T = \{v \in V(P) \mid d_G(v) = 2\} = \{f\}$. Since g(V - T) = 2 < 4 - |T|, there is no feasible solution.

We call the set of the conditions (1)–(3) given in Theorem 3.1 the existence condition for feasible solutions. Note that, in the condition (2), K is unique by Corollary 2.8. We call any graph satisfying all the assumptions of the condition (3)(b) or (3)(c) a graph of type 1 or of type 2, respectively, and the vertex u in the condition (3)(b) is called the center of a graph of type 1, where we usually denote the center by u unless any confusion arises.

Lemma 3.2 Let G be a graph of type 1 with center u. If g(V - u) < l(G) + 1 then there is no feasible solution.

Proof: Suppose that there is a feasible solution F. It suffices to consider the case where g(X)=1 for each $X\in\mathcal{L}(G), g(V-u)=l(G)$, and $g(u)=\infty$. Let X be any leaf of G. Since there is no polygon P with $d(P)\geq 3$, there is a primary separation pair K of G such that some K-component H of G satisfies $X\subseteq H$ and $X'\cap H=\emptyset$ for any $X'\in\mathcal{L}(G)-\{X\}$. (Such K can be found easily by searching 3-blk(G) from the leaf which represents X. The first visited G-vertex G satisfying G or being adjacent to a G-vertex G with G being adjacent to a G-vertex G and G being adjacent to a G-vertex G and G being adjacent to a G-vertex G and G being adjacent to a G-vertex G being a vertex in G with a vertex in some G being adjacent to a G-vertex G being a vertex in G being adjacent to a G-vertex G being a vertex in G-vertex G-

Lemma 3.3 Let G be a graph of type 2. If g(V - T) < l(G) + 1 - |T| then there is no feasible solution.

Proof: Suppose that there is a feasible solution F. It suffices to consider the case where g(X) = 1 for each $X \in \mathcal{L}(G) - \{\{v\}\}$

 $v \in T$, g(V - T) = l(G) - |T|, and $g(x) = \infty$ for each $x \in T$. F contains at least one edge connecting a vertex v in T with a vertex v' in some $X \in \mathcal{L}(G) - \{\{v\} \mid v \in T\}$. Suppose that such an edge (v, v') is added to G. Then, a new leaf X' containing X but not containing v appears in the resulting graph, and no more edge can be added to X' because g(X') = g(X) = 1, a contradiction.

The necessity of the conditions (1)–(3) follows from Lemmas 2.5, 3.2 and 3.3, and the sufficiency is shown by the algorithm *Solve_3VCA-DC_aug2to3* which will be presented in the next section.

Given G and g, we can check whether or not the existence condition for feasible solutions holds in O(|V| + |E|) time. Hence we have the following theorem.

Theorem 3.4 Checking the existence of a feasible solution to 3VCA-DC for any bi-connected graph G can be done in O(|V| + |E|) time.

4 A Linear Time Algorithm

In this section, we assume that a bi-connected graph G with degree constraints by g satisfies the existence condition for feasible solutions, and we present a linear time algorithm $Solve_3VCA-DC_aug2to3$ for finding an optimum solution to 3VCA-DC for G and g.

We partition the problem into the following three cases:

Case 1: $(d(G) - 1 > \lceil l(G)/2 \rceil)$ or $(d(G) - 1 = \lceil l(G)/2 \rceil)$ and l(G) is odd); Case 2: $(d(G) - 1 \le \lceil l(G)/2 \rceil)$ and l(G) is even); Case 3: $(d(G) - 1 < \lceil l(G)/2 \rceil)$ and l(G) is odd).

And we present three algorithms, Algorithm 1 for Case 1, Algorithm 2 for Case 2, Algorithm 3 for Case 3, for finding an optimum solution. Solve_3VCA-DC_aug2to3 uses these algorithms and is formally described as follows.

Algorithm Solve_3VCA-DC_aug2to3

Input: A bi-connected graph G=(V,E) with degree constraints by $g:V\to Z^+\cup\{\infty\}$, satisfying the existence condition for feasible solutions.

Output: An optimum solution E^* to 3VCA-DC for G and g.

Find an optimum solution E* by using Algorithm 1, Algorithm 2 or Algorithm 3 according to the case to which the problem belongs, and output E*.

Before describing three algorithms, we summary the known results on 3VCA for bi-connected graphs G. Any vertex $v \in V$ is said to be a *leaf-vertex of* G if $v \in X$ for some $X \in \mathcal{L}(G)$; otherwise *non-leaf-vertex of* G.

Lemma 4.1 ([4,7,14]) Any optimum solution F to 3VCA for a bi-connected graph G satisfies (1)–(3):

(1) If $(d(G) - 1 > \lceil l(G)/2 \rceil)$ or $(d(G) - 1 = \lceil l(G)/2 \rceil)$ and l(G) is odd) then F consists of d(G) - 1 edges whose addition connects d(G) components of G - K, where K is the separation pair with d(K) = d(G), and every leaf of G contains at least one vertex incident to some edge in F.

(2) If $(d(G) - 1 \le \lceil l(G)/2 \rceil)$ and l(G) is even) then F consists of l(G)/2 edges each of which connects two leaf-vertices belonging to distinct leaves of G.

(3) If $(d(G) - 1 < \lceil l(G)/2 \rceil)$ and l(G) is odd) then F consists of $\lfloor l(G)/2 \rfloor$ edges each of which connects two leaf-vertices belonging to distinct leaves of G plus one edge connecting a leaf-

vertex of G with a vertex which is not necessarily a leaf-vertex of G.

4.1 Algorithm 1 and Algorithm 2

In Cases 1 and 2, we can directly use the results shown in Lemma 4.1 to find an optimum solution. The difference is that we have to take into account *g*-feasibility. The following Algorithms 1 and 2 solve Cases 1 and 2, respectively. Algorithm 1 is based on the algorithm in [7], and Algorithm 2 uses an algorithm for 3VCA.

Algorithm 1 /* for Case 1 */

- 1. Find the separation pair K of G with d(K) = d(G).
- k ← d(G). Let C₁,..., C_k be the k components of G − K, and let ℓ_i (i = 1,...,k) be the number of leaves of G contained in C_i.
- 3. Let a_1, \ldots, a_k be k integers satisfying $\sum_{i=1}^k a_i = 2(k-1)$ and $\ell_i \le a_i \le q(C_i)$ for each $i = 1, \ldots, k$.
- 4. Construct a tree T with $V(T) = \{v_i \mid 1 \le i \le k\}$ satisfying $d_T(v_i) = a_i$ for each $v_i \in V(T)$.
- 5. E* ← Ø. For each (v_i, v_j) ∈ E(T), add an edge which connects a vertex in C_i with a vertex in C_j into E* so that E* finally satisfies that every leaf of G contains a vertex in V(E*) as well as g-feasibility of E*. Output E*.

Lemma 4.2 Algorithm 1 finds an optimum solution to 3VCA-DC in Case 1 and can run in O(|V| + |E|) time.

Proof: Since the conditions (1) and (2) hold, the algorithm is executable. We assume by contradiction that $G+E^*$ is not tri-connected. Then $SP(G+E^*) \neq \emptyset$, and let K' be any separation pair of $G+E^*$. We have $K' \in SP(G)$ and $K' \neq K$ for the separation pair K with $K' \in SP(G)$ and $K' \neq K$ for the separation pair K with $K' \in K \cup K$ for some $K \cup K$ fo

Concerning time-complexity, Steps 1, 2 and 3 can be executed in O(|V| + |E|) time using 3-blk(G) which can be computed in O(|V| + |E|) time. In Step 4 we use the algorithm [8, Problem 7.47] for constructing a tree from a prescribed degree sequence, which runs in O(|V|) time. Step 5 can be done in O(|V|) time. The total time-complexity of Algorithm 1 is O(|V| + |E|).

Algorithm 2 /* for Case 2 */

- Find an optimum solution F for 3VCA for G.
 |F| = l(G)/2, and each edge of F connects two leaf-vertices belonging to distinct leaves of G. */
- E* ← Ø. For each (u, v) ∈ F, do the following: find two leaves X(u), X(v) ∈ L(G) containing u, v, respectively; select a vertex u' ∈ X(u) with g(u') ≥ 1 and a vertex v' ∈ X(v) with g(v') ≥ 1; and add an edge (u', v') into E*. Output E*.

Lemma 4.3 Algorithm 2 finds an optimum solution to 3VCA-DC in Case 2 and can run in O(|V| + |E|) time.

Proof: The correctness is obvious. Using a linear time algorithm [4] for 3VCA, Step 1 can be done in O(|V| + |E|) time. Step 2 takes O(|V|) time. Hence the lemma follows.

4.2 Algorithm 3

In Case 3, we use the strategy of reducing the problem to Case 1 or Case 2 by adding several number of edges which can be a subset of an optimum solution. In Algorithm 3, at most two edges are added before the reduction. In the following we introduce two types of edge addition, called *Edge-Addition A* and *Edge-Addition B*, and show some properties of them. Then we present Algorithm 3.

4.2.1 Edge-Addition A

Edge-Addition A is to add an edge connecting two leaf-vertices of G so that the number of leaves is decreased by two if possible. Suppose that $l(G) \geq 5$. Let u be any leaf of 3-blk(G) with $g(X_u) \geq 2$, where X_u is the leaf of G represented by u. Select a leaf v of 3-blk(G) satisfying one of the following (a)—(c) [4]: (a) The (u,v)-path contains at least one β -vertex with degree at least four; (b) The (u,v)-path contains at least two vertices with degree at least three; (c) The (u,v)-path is nonadjacent on some π -vertex. Select a vertex $u' \in X_u$ with $g(u') \geq 1$ and a vertex $v' \in X_v$ with $g(v') \geq 1$, and add an edge (u',v') to G. If l(G)=3 then let u be any leaf of 3-blk(G) with $g(X_u) \geq 2$ and $g(X_u) \leq 2$ and $g(X_u) \leq 2$ and $g(X_u) \leq 3$, let u be any leaf of 3-blk(u0 with u0. The u1 sum of 3-blk(u2 with u3 with u4 with u5 and add an edge connecting $u' \in X_u$ 6 with u5 and u6 with u7 and add an edge connecting $u' \in X_u$ 8 with u9 and u9 with u9 and add an edge connecting $u' \in X_u$ 9 with u9 and u9

Let G_A denote the graph obtained from G by executing Edge-Addition A (i.e. $G_A = G + \{(u',v')\}$) and let v^* be a vertex in $X_u \in \mathcal{L}(G)$ satisfying $g(v^*) \geq 1$ and, moreover, if $v^* = u'$ then $g(v^*) \geq 2$. Note that if l(G) = 3 then $v^* \notin T_G$. We update g by $g(u') \leftarrow g(u') - 1$ and $g(v') \leftarrow g(v') - 1$.

Remark 4.4 $g(v^*) \ge 1$ for updated g (even if $v^* = u'$).

Lemma 4.5 ([4]) (1) If
$$l(G) \ge 5$$
 then $l(G_A) = l(G) - 2$; (2) If $l(G) = 3$ then $l(G_A) = 2$.

Corollary 4.6 (1) If $l(G) \ge 5$ then $\mathcal{L}(G_A) = \mathcal{L}(G) - \{X_u, X_v\}$, v^* is a non-leaf-vertex of G_A , $d(G_A) - 1 \le \lceil l(G_A)/2 \rceil$ and $l(G_A)$ is odd.

(2) If l(G) = 3 then G_A has a new leaf $X' \in \mathcal{L}(G_A) - \mathcal{L}(G)$, and $d(G_A) - 1 = \lceil l(G_A)/2 \rceil = 1$.

Remark 4.7 $g(X) \ge 1$ for any $X \in \mathcal{L}(G_A) \cap \mathcal{L}(G)$.

For the case $v^* \notin T_G$ we have the next lemma.

Lemma 4.8 If $v^* \notin T_G$ then G_A has a tri-connected 3-block B with $v^* \in V(B)$ and has no $K \in SP(G_A)$ with $v^* \in K$.

Proof: B_u is a tri-connected 3-block or a singleton 3-block containing v^* . If B_u is a singleton 3-block then there is the triangle $P(v^*)$ with $d(P(v^*)) = 2$. By adding (u', v'), B_u (or $P(v^*)$) and v' are included in a tri-connected 3-block of G_A . Also G has no $K \in SP(G)$ with $v^* \in K$ and so does G_A .

The next lemma shows that if l(G) = 3 then Case 3 can be reduced to Case 2 after Edge-Addition A.

Lemma 4.9 If l(G) = 3 then v^* is in the new leaf of G_A .

Proof: By Lemmas 4.5 (2) and 4.8, we have $d_{G_A}(B) = 1$ for the tri-connected 3-block B with $v^* \in V(B)$. Since $v^* \notin K$ for any $K \in SP(G_A)$, v^* is in the new leaf of G_A .

For the case $v^* \in T_G$ we have the next lemma.

Lemma 4.10 Suppose that $v^* \in T_G$. Then any $K \in SP(G_A)$ with $v^* \in K$ has $d_{G_A}(K) = 2$. If G_A has a tri-connected 3-block B with $d_{G_A}(B) \ge 3$ and $v^* \in V(B)$ then B includes a separation pair $K \in SP(G_A)$ with $v^* \notin K$.

Proof: In this case, $v^* = u'$. Any $K \in SP(G)$ with $v^* \in K$ consists of v^* and any vertex $x \in V(P(v^*))$ not adjacent to v^* in $P(v^*)$, that is, $K \in SP_N(G)$. Therefore, for any $K \in SP(G_A)$ with $v^* \in K$, we have $K \in SP_N(G)$ and hence $d_{G_A}(K) = 2$. By adding (u', v'), at most two separation pairs $K \in SP_N(G)$ with $v^* \in K$ are included in B. Since $d_{G_A}(B) \ge 3$, B includes some $K \in SP(G_A)$ with $v^* \notin K$.

The next lemma shows that if $(d(G_A) - 1 = \lceil l(G_A)/2 \rceil)$ and $l(G_A)$ is odd) then Case 3 can be reduce to Case 1 after Edge-Addition A.

Lemma 4.11 If $(d(G_A)-1=\lceil l(G_A)/2\rceil$ and $l(G_A)$ is odd) then $g(V-K) \geq 2(d(G_A)-1)$ for the separation pair $K \in SP(G_A)$ with $d_{G_A}(K)=d(G_A)$.

Proof: Since $d_{G_A}(K) \ge 3$, we have $v^* \notin K$ by Lemmas 4.8 and 4.10. Hence $g(V - K) \ge \sum_{X \in \mathcal{L}(G_A)} g(X) + g(v^*) \ge l(G_A) + 1 = 2([l(G_A)/2]) = 2(d_{G_A}(K) - 1).$

Moreover, the next lemma concerning graphs of type 1 or of type 2 follows from Lemmas 4.8 and 4.10.

Lemma 4.12 If $l(G_A) \ge 3$ then (1) and (2) hold. (1) If G_A is a graph of type 1 then v^* is not the center of G_A . (2) If G_A is a graph of type 2 then $v^* \notin T_{G_A}$.

Proof: We prove (1). Suppose that v^* is the center of G_A . If $v^* \notin T_G$ then $v^* \notin K$ for any $K \in SP(G_A)$ by Lemma 4.8, contradicting that v^* is the center of G_A . Therefore we have $v^* \in T_G$. By Lemma 4.10, any $K \in SP(G_A)$ with $v^* \in K$ has $d_{G_A}(K) = 2$. This shows that G_A has a tri-connected 3-block G_A with G_A with G_A with G_A has a tri-connected 3-block G_A with G_A with G_A is of type 1. Hence (1) follows.

Since v^* is a non-leaf-vertex of G_A , (2) holds.

From the results mentioned above, we obtain the following corollary.

Corollary 4.13 (1) The existence condition for feasible solutions holds for G_A and updated g.

(2) If $l(G) \ge 5$ ($l(G_A) \ge 3$) then G_A has a non-leaf-vertex v^* with $g(v^*) \ge 1$ and $v^* \ne u$ if G_A is a graph of type I.

If $(d(G_A) - 1 < \lceil l(G_A)/2 \rceil)$ and $l(G_A)$ is odd) then we can execute Edge-Addition B by using v^* in Corollary 4.13 (2) as a non-leaf-vertex to which a new edge is added.

4.2.2 Edge-Addition B

Edge-Addition B is to add an edge connecting a non-leafvertex with a leaf-vertex of G so that the number of leaves is decreased by one. Let v^* be a non-leaf-vertex of G with $g(v^*) \geq 1$, where we assume that v^* is not the center of G if Gis a graph of type 1. We consider two cases.

Figure 7: Edge-Addition B in Case B1, showing the case $Q_1, Q_2 \in SP_A(G)$ and $v^* \in H$.

Figure 8: Edge-Addition B in Case B2, where $d(K) \ge 3$.

(Case B1) There is a polygon P with $d(P) \geq 3$. In this case, P includes a separation pair $K = \{u_1, u_2\} \in \operatorname{SP}_A(G)$ with $v^* \in H \cup K$, where H is a K-component not containing V(P) - K. See Fig. 7. Let Q_1, Q_2 be a separation pair of adjacent type or a singleton 3-block included in P such that Q_1, K, Q_2 appear in this order consecutively on P. If $Q_1 \in \operatorname{SP}_A(G)$ then let $L_1 \in \mathcal{L}(G)$ be any leaf in a Q_1 -component not containing $V(P) - Q_1$; if Q_1 is a singleton 3-block (which is a leaf) then let $L_1 = Q_1$. For Q_2 , let L_2 be a leaf of G defined similarly. If $v^* \in H \cup \{u_2\}$ then select a vertex $v'' \in L_1$ with $g(v'') \geq 1$; if $v^* = u_1$ then select a vertex $v'' \in L_2$ with $g(v'') \geq 1$. And add an edge (v^*, v'') to G.

Example 4.14 For G in Fig. 1, $d(G) - 1 < \lceil l(G)/2 \rceil$ and l(G) is odd. G has a non-leaf-vertex $v^* = d$ with $g(v^*) \ge 1$ and a polygon P with $V(P) = \{c, d, e, f, g\}$ and $d(P) \ge 3$. For $K = \{c, d\} \in SP_A(G)$ and a K-component $H = \{a, b\}$, $v^* \in H \cup K$ holds. Then an edge (d, g) is added to G.

(Case B2) There is no polygon P with $d(P) \geq 3$. Then there is a primary separation pair K of G with $v^* \notin K$ (even if G is a graph of type 1). If $d(K) \geq 3$ then let $L_1 \in \mathcal{L}(G)$ be any leaf in a K-component not containing v^* , select a vertex $v'' \in L_1$ with $g(v'') \geq 1$ and add an edge (v^*, v'') to G (Fig. 8). If d(K) = 2 then do the following. Let B be a 3-block with $K \subseteq V(B)$ and $d(B) \geq 3$. Let $L_K \in \mathcal{L}(G)$ be any leaf in the K-component not containing V(B) - K. Let $K_1 \in SP(G) - \{K\}$ be any separation pair in V(B), and let $L_1 \in \mathcal{L}(G)$ be any leaf in a K_1 -component not containing $V(B) - K_1$. If v^* and V(B) - K are in a K-component then select a vertex $v'' \in L_K$ with $g(v'') \geq 1$ (Fig. 9); otherwise select a vertex $v'' \in L_1$ with $g(v'') \geq 1$. And add an edge (v^*, v'') to G.

Let G_B denote the graph obtained from G by executing Edge-Addition B (i.e. $G_B = G + \{(v^*, v'')\}$). For any 3-block or any leaf Y of G (or G_B), let $\beta(Y)$ denote the β -vertex representing Y in 3-blk(G) (or in 3-blk(G_B)).

Lemma 4.15 $l(G_B) = l(G) - 1$.

Proof: (Case B1) Suppose that $v^* \in H$ (Fig. 7). Then G_B has a 3-block B_1 containing $\{v^*, u_1, u_2\} \cup L_1$. Let $L_K \in \mathcal{L}(G)$ be any

Figure 9: Edge-Addition B in Case B2, where d(K) = 2 and $K \subseteq V(B)$ for a 3-block B with $d(B) \ge 3$, showing the case where v^* and V(B) - K are in a K-component.

leaf in H. Then L_K , $L_2 \in \mathcal{L}(G_B)$, and there are two paths in 3-blk (G_B) , one from $\beta(B_1)$ to $\beta(L_K)$ and one from $\beta(B_1)$ to $\beta(L_2)$. Hence $\beta(B_1)$ is not a leaf of 3-blk (G_B) , and $l(G_B) = l(G) - 1$.

Suppose that $v^* = u_2$. If $Q_1 \in \operatorname{SP}_A(G)$ then G_B has a 3-block B_1' containing $\{v^*\} \cup Q_1 \cup L_1$, and, in 3-blk (G_B) , the path between $\beta(L_K)$ and $\beta(L_2)$ passes through $\beta(B_1')$, showing $\ell(G_B) = \ell(G) - 1$. If Q_1 is a singleton 3-block then $L_1 = Q_1 = \{v''\}$, and $\{v^*, v''\} \in \operatorname{SP}_A(G_B)$. Since v'' is no longer a leaf-vertex in G_B , $\ell(G_B) = \ell(G) - 1$. In the case $v^* = u_1$, a similar discussion shows $\ell(G_B) = \ell(G) - 1$.

(Case B2) Suppose that $d(K) \geq 3$ (Fig. 8). G_B has a 3-block B_2 containing $K \cup \{v^*, v''\}$. Let $L_2 \in \mathcal{L}(G)$ be any leaf in the K-component containing v^* . Let $L_3 \in \mathcal{L}(G)$ be any leaf in a K-component containing neither v'' nor v^* . Then, in 3-blk(G_B), the path between $\beta(L_2)$ and $\beta(L_3)$ passes through $\beta(B_2)$, showing $l(G_B) = l(G) - 1$.

Suppose that d(K) = 2 and $K \subseteq V(B)$ for a 3-block B with $d(B) \ge 3$. G_B has a 3-block B'_2 containing $B \cup \{v^*, v''\}$. Let $K_2 \in SP(G) - \{K, K_1\}$ be any separation pair in V(B), and let $L_2 \in \mathcal{L}(G)$ be any leaf in a K_2 -component not containing $V(B) - K_2$. If v^* and V(B) - K are contained in a K-component then, in 3-blk(G_B), the path between $\beta(L_1)$ and $\beta(L_2)$) passes through $\beta(B'_2)$. Otherwise, in 3-blk(G_B), the path between $\beta(L_K)$ and $\beta(L_2)$) passes through $\beta(B'_2)$. $\beta(B'_2)$ is not a leaf of 3-blk(G_B). Hence $\beta(G_B) = \beta(G) - 1$.

4.2.3 Description of Algorithm 3

Now we describe Algorithm 3. Figure 10 shows overview of Algorithm 3.

Algorithm 3 /* for Case 3 */

- 1. (1.1) $E^* \leftarrow \emptyset$.
- (1.2) If there is a non-leaf-vertex v^* with $g(v^*) \ge 1$ such that if G is a graph of type 1 then v^* is not the center of G, select such a vertex v^* and go to Step 3.
- (1.3) Otherwise go to Step 2.
- 2. (2.1) Add an edge (u',v') to G by Edge-Addition A as described in Sec. 4.2.1; $E^* \leftarrow E^* \cup \{(u',v')\}; G \leftarrow G + \{(u',v')\}; g(u') \leftarrow g(u') 1 \text{ and } g(v') \leftarrow g(v') 1.$
 - (2.2) If the problem for new G and g is in Case 1 or 2 then find an optimum solution A by Algorithm 1 or 2, respectively; $E^* \leftarrow E^* \cup A$; and output E^* and halt.
 - (2.3) Otherwise select a non-leaf-vertex v^* with $g(v^*) \ge 1$ such that if G is a graph of type 1 then v^* is not the center of G; and go to Step 3.
- 3. (3.1) Add an edge (v^*, v'') by Edge-Addition B as described in Sec. 4.2.2; $E^* \leftarrow E^* \cup \{(v^*, v'')\}; G \leftarrow G +$

Figure 10: Overview of Algorithm 3, where the negative integer beside each arrow shows decrease of the number of leaves.

 $\{(v^*, v^{\prime\prime})\}; g(v^*) \leftarrow g(v^*) - 1 \text{ and } g(v^{\prime\prime}) \leftarrow g(v^{\prime\prime}) - 1.$ (3.2) Find a optimum solution A for new G and g by Algorithm 2; $E^* \leftarrow E^* \cup A$; and output E^* .

Lemma 4.16 Algorithm 3 finds an optimum solution to 3VCA-DC in Case 3 and can run in O(|V| + |E|) time.

Proof: We show the correctness of Algorithm 3. Suppose that a non-leaf-vertex v^* is selected in Step 1. By Lemma 4.15, $l(G_B) = l(G) - 1$, which is even. Therefore, the problem is reduced to Case 2 and we can apply Algorithm 2 for G_B . The optimum solution obtained by Algorithm 2 with the edge added by Edge-Addition B is an optimum solution whose number of edges is $\lceil l(G)/2 \rceil$.

Next we consider the case Step 2 is executed. After Edge-Addition A in Step 2, the existence condition for feasible solutions holds by Corollary 4.13 (1). Therefore, if the problem is reduced to Case 1 or Case 2 then we can execute algorithm 1 or Algorithm 2, respectively. If the problem is in Case 3, there is a desired non-leaf-vertex v^* by Corollary 4.13 (2), so we can execute Edge-Addition B in Step 3, and we find an optimum solution A to G_B by Algorithm 2. In each case we have $|E^*| = \lceil l(G)/2 \rceil$ for E^* output by Algorithm 3. Hence it is an optimum solution.

Since all of Edge-Addition A, Edge-Addition B, Algorithm 1, Algorithm 2 can be executed in O(|V| + |E|) time, Algorithm 3 can run in O(|V| + |E|) time.

From Lemmas 4.2, 4.3 and 4.16, $Solve_3VCA-DC_aug2to3$ finds an optimum solution and runs in O(|V| + |E|) time. We obtain the following theorem.

Theorem 4.17 If a bi-connected graph G with degree constraints by g satisfies the existence condition for feasible solutions then finding an optimum solution to 3VCA-DC for G and g can be done in O(|V| + |E|) time and the cardinality of the optimum solution equals $\max\{d(G) - 1, \lceil l(G)/2 \rceil \}$.

5 Concluding Remarks

We have shown that checking the existence of a feasible solution and finding an optimum solution to 3VCA-DC for any bi-connected graph G = (V, E) can be done in O(|V| + |E|) time, where if there is a feasible solution then the optimum value to 3VCA-DC is equal to the optimum one to 3VCA. Devising a polynomial time algorithm for 3VCA-DC for not bi-connected graph is left for future research.

References

- K. P. Eswaran and R. E. Tarjan, "Augmentation problems," SIAM J. Comput., Vol. 5, No. 4, pp. 653–665, December 1976.
- [2] J. E. Hopcroft and R. E. Tarjan, "Dividing a graph into triconnected components," *SIAM J. Comput.*, Vol. 2, pp. 135–158, 1973.
- [3] T.-S. Hsu, "Undirected vertex-connectivity structure and smallest four-vertex-connectivity augmentation," in Proc. 6th Intl. Symp. on Algorithms and Computation. Lecture Notes in Computer Science 1004, pp. 274–283, Springer-Verlag, 1995.
- [4] T.-S. Hsu and V. Ramachandran, "A linear time algorithm for triconnectivity augmentation," in *Proc. 32th Ann. IEEE Symp. on Found. of Comp. Sci.*, pp. 548–559, 1991
- [5] T.-S. Hsu and V. Ramachandran, "Finding a smallest augmentation to biconnect a graph," SIAM J. Comput., Vol. 22, pp. 889–912, 1993.
- [6] B. Jackson and T. Jordán, "Independence free graphs and vertex connectivity augmentation," in Proc. 8th Intl. Integer Programming and Combinatorial Optimization Conference. Lecture Notes in Computer Science 2081, pp. 264–279, Springer-Verlag, 2001.
- [7] T. Jordán, "On the optimal vertex-connectivity augmentation," J. Combinatorial Theory, Series B, Vol. 63, pp. 8–20, 1995.
- [8] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
- [9] T. Mashima, T. Fukuoka, S. Taoka, and T. Watanabe, "Bi-connectivity augmentation for specified verteces of a graph with upper bounds on vertex-degree increase," *IE-ICE Trans. Inf. & Syst.*, Vol. E89-D, No. 2, pp. 751–762, February 2006.
- [10] T. Mashima and T. Watanabe, "A linear time algorithm for minimum augmentation to 3-connect specified vertices of a graph," in *Proc. 1997 IEEE Intl. Symp. on Circuits and Systems*, pp. 1013–1016, 1997.
- [11] A. Rosenthal and A. Goldner, "Smallest augmentations to biconnect a graph," SIAM J. Comput., Vol. 6, pp. 55– 66, 1977.
- [12] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, 1966.
- [13] T. Watanabe, Y. Higashi, and A. Nakamura, "Constructing robust networks by means of graph augmentation problems," *IEICE Trans. Fundamentals (Japanese Edition)*, Vol. J73-A, No. 7, pp. 1242–1254, 1990, Also see Electronics and Communications in Japan, Part 3, Vol. 74, No. 2, pp. 79–96 (1991).
- [14] T. Watanabe and A. Nakamura, "A minimum 3-connectivity augmentation of a graph," *J. Computer and System Sciences*, Vol. 46, No. 1, pp. 91–128, February 1993.