FEFEN SR
IPSJ SIG Technical Report

o 2008—AL—116

200871723

(6)

A new competitive strategy for exploring unknown polygons

Xuehou TAN
Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. We present a new, on-line strategy for a mobile robot to explore an unknown simple
polygon, starting at a boundary point s, which outputs a so-called watchman route such that every
interior point of P is visible from at least one point along the route. The length of the robot’s route
is guaranteed to be at most 4v/2 + 1 < 6.7 times that of the shortest watchman route that could
be computed off-line. This gives a significant improvement upon the previous 26.5-competitive
strategy, which was presented by Hoffmann et al. [7].

A novelty of our competitive strategy is a recursive procedure that reduces the polygon exploration
problem to the subproblems of exploring two different types of reflex vertices. Moreover, our
analysis of the competitive factor for a subproblem is based on the off-line v/2-approximation
algorithm for the watchman route problem [?] and a geometric structure called the angle hull [?].

1 Introduction

In the last decade, visibility-based problems of
guarding, surveying or searching have received
much attention in the commumities of compu-
tatonal geometry and on-line algorithms. Find-
ing stational positions of guarding a polygonal
region P is the well-known art gallery problem.
The watchman route problem asks for a short-
est route along which a mobile robot can see the
whole region [?, 7, ?, 7, ?]. If the shape of the
region P is not known to the robot in advance, it
introduces the on-line watchman route problem
or the polygon ezploration problem [7, 7,7, 7].
For the watchman route problem, an O(n?)
time algorithm was first presented to solve the
restricted version in which a starting boundary
point s is given [?]. An O(n®) time algorithm
was developed to remove the condition of a given
starting point [?]. Recently, these results have
been improved to O(n®logn) and O(n*logn),
respectively [?]. On the other hand, a linear-time
approximation solution to the watchman route
problem with a given starting point s, which
reports a watchman route guaranteed to be at
most /2 times longer than the shortest watch-
man route through s, has been proposed in [?].
For the general problem without giving any start-
ing point, the approximation factor is two [?].
In the polygon exploration problem, a start-
ing point s on the boundary of P is given. A
robot with a vision system that continuously pro-

vides the visibility of its current position walks to
see the whole shape of P, starting from s. Once
a corner of the polygon P is seen, it is memo-
rized forever. When each point of P has at least
once been visible, the robot returns to s. We
are interested in a competitive exploration strat-
egy that guarantees that the route of the robot
will never exceed in length a constant times the
length of the shortest watchman route through
s. For the problem of exploring unknown recti-
linear polygons, a v/2-competitive strategy has
been presented [?]. For simple polygons, Deng
et al. were the first to claim that a competitive
strategy does exist, but the constant is estimated
to be in the thousands [?]. A factor of 133 was
later given by Hoffmann et al. [?], which has
recently been improved to 18v/2 + 1 < 26.5 [?].
In this paper, we present a new strategy for
a mobile robot to explore an unknown simple
polygon. First, we show that the polygon ex-
ploration problem can be reduced to the sub-
problems of exploring two different types of re-
flex vertices. For each subproblem, the off-line
v/2-approximation algorithm for the watchman
route problem [?] and a geometric structure called
the angle hull [?] are then used, so as to obtain
a better competitive factor. With these ideas,
we are able to prove that an unknown polygon
can be explored by a route of length at most
6.7 times that of the shortest watchman route
through s. This gives a significant improvement
upon the previous 26.5-competitive strategy [7].

—39 —

2 Preliminary

Let P be a simple polygon and s a point on the
boundary of P. A vertex is reflex if its internal
angle is strictly larger than w; otherwise, it is
convez. The shortest path tree of s consists of all
shortest paths from s to the vertices of P. The
vertices touching a shortest path from right are
called the right reflex vertices, or shortly, right
vertices. The left reflex vertices or left vertices
can be defined accordingly.

The polygon P can be partitioned into two
pieces by a “cut” C that starts at a reflex ver-
tex v and extends an edge incident to v until it
first hits the polygon boundary. The piece of P
containing s and including C itself is called the
essential piece of C. We denote by P(C) the es-
sential piece of the cut C, and call v the defining
vertex of C. See Fig. 1(a). A cut C; dominates
C; if P(Cj;) contains P(C;) (Fig. 1(b)). We also
say a point p dominates the cut C if p is not
contained in P(C). A cut is called the essen-
tial cut if it is not dominated by any other cuts.
The watchman route problem is then reduced to
that of finding the shortest route intersecting or
visiting all essential cuts.

/ 2 \v/\ﬁ) r/ /\¢ /\ﬂ/

ST RO

) (b)

Figure 1: Essential cuts.

For short presentation, we denote by Wy, the
shortest watchman route through s, and W,
the watchman route which is computed by the
v/2-approximation algorithm [7]. For a route R
inside P, we denote by |R| the length of R.

In the following, we briefly review the off-line
v/2-approximation algorithm [7], and then give
the definition of angle hulls.

2.1 The v2-approximation algorithm

The reflection principle is used in most of the
watchman route algorithms [3, 7, 9]. Let a and b
denote the two points on the same side of a line
L. Then, the shortest path visiting a, L and b
in this order, denoted by S(a, L, b), follows the
reflection principle. That is, the incoming an-
gle of S(a,L,b) with L is equal to the outgoing

angle of S(a,L,b) with L. The reflection point
on L can be computed by reflecting b across L
to get its image b, and then reporting the in-
tersection point of L with ab’. See Fig. 2(a).
Let L(a) denote the point of L closest to a. The
path consisting of aL(a) and L(a)b, denoted by
5'(a, L, b), gives a v/2-approximation of the path
S(a, L,b), since the angle Za L(a) V' is at least
/2 (Fig. 2(a)). The same result also holds for
a line segment [. See Fig. 2(b).

Figure 2: Approximating the reflection principle.

The idea of the v/2-approximation algorithm
is to repeatedly apply the approximation scheme
designed for the reflection principle to essential
cuts [7]. Let Ci, Cy, - -+, Cp, be the sequence of
essential cuts indexed in clockwise order of their
left endpoints, as viewed from s. Let s = s¢ =
Sm+1. Given a point p in the polygon P(C), we
define the image of p on the cut C as the point
of C that is closest to p inside P(C).

Beginning with the starting point s, we first
compute the images of sy on the cuts in the poly-
gon P (or P(Cy) [7]). Let s; denote the image
of sop on Cp, sy the image of sg on Cy and so
on. The computation of s¢’s images is termi-
nated when the image s;;1 does not dominate
the cuts C1, Cy, ..., C; before it (Fig. 3). Then,
we select a critical image from s1,s2,...,8; as
follows. If there exists an image s;, (h < i) such
that the image of s, on Cj;1, which is computed
in P(Cp), dominates Ch1,...,C;, we take the
image sy, (e.g., the image s; in Fig. 3(a)) as the
critical image. Otherwise, we take s; (e.g., the
image s9 in Fig. 3(b)) as the critical image. Let
sk denote the chosen critical image. The images
of s, on the following cuts as well as the next crit-
ical image in the polygon P(Cj) can similarly be
computed [7]. This procedure is repeatedly per-
formed until the image s, on C,, is computed.
See Fig. 3.

Let Wy denote the route which is the con-
catenation of the shortest paths between every

pair of adjacent critical images (including sp and
Sm+1). Clearly, Wep, is a watchman route (Fig.
3). An important property of Wy, is that the
reflection points (i.e., critical images) of Wy,
are guaranteed to be to the left of those of the
shortest watchman route through s [7].

Figure 3: Critical images and routes Wy, Wopp.

Lemma 1 (Tan [7]) For any instance of the watc

man route problem with a given starting point s,
[Wapp| < V2|Wope| holds.

2.2 Angle hulls

In an unknown polygon, exploring a reflex ver-
tex v requires a little care. Since we do not know
the cut defined by v, the point on the cut closest
to the current position of the robot, say, p, can-
not simply be found. This difficulty is overcome
by using the circle spanned by v and by p [5].
Clearly, the intersection point of the circular arc
with the cut is the point on the cut closest to p.
This property leads to a study of angle hulls [5].

Let D denote a convex region in the plane.
Suppose that a photographer follows a path to
take a picture of D that shows as large a por-
tion of D as possible but no white space or other
objects, using a fixed angle lens, say, of 90°. All
points enclosed by the photographer’s path, and
no other, can see two points of D at the right
angle; we call this point set the angle hull of D,
and denote it by AH(D). See Fig. 4(a).

@ o

Figure 4: Angle hulls.

For the polygon exploration problem, the re-
gion D is defined as a relative convez polygon in

P. That is, the shortest path between any two
points of D inside P has to be contained in D.
The photographer does not want any edges of P
to appear in pictures; thus, the photographer’s
path may touch a vertex of P or overlap with a
portion of the polygon edge. See Fig. 4(b).

In the outdoor setting, the perimeter of the
angle hull is at most 7/2 times the perimeter of
D. In the indoor setting where D is contained
in a simple polygon whose edges give rise to vis-
ibility constraints, we have the following result.

Lemma 2 [5] Suppose that P is a simple poly-
gon, and D is a relatively convez polygon (chain)
instde P. The length of the perimeter of the an-
gle hull AH(D), with respect to P, is less than 2

plimes the length of D’s boundary.

3 The 6.7-competitive strategy

We will present our 6.7-competitive strategy in
a top-down manner. First, an overview of the
competitive strategy is given. The details of the
strategy are then described, and finally, the per-
formance analysis is presented.

For simple presentation, we impose an order-
ing on the boundary points of P by a clockwise
scan of the boundary, starting at s. So when
we say a boundary point u is "smaller” (resp.
"larger”) than the other point v, it implies that
u is encountered before (resp. after) v by a clock-
wise walker on the boundary, starting at s.

We say a vertex is discovered if it has ever
been visible once from the robot. A left or right
reflex vertex is unezplored as long as its cut has
not been reached, and fully explored thereafter.

3.1 An overview of the strategy

First, the robot makes a clockwise tour to ex-
plore the right vertices, as many as possible, with-
out considering to explore any left vertex of P.
Next, the robot makes the other counterclock-
wise tour to explore the left vertices, as many
as possible. During this counterclockwise tour,
some of the right vertices having not yet been ex-
plored may become visible from the robot, as the
left vertices that obstruct them from being visi-
ble from the first tour have been fully explored;
those left vertices are taken as the starting points

for exploring the remaining right vertices. So the
procedure for exploring right vertices is called
again several times. In this way, all right and
left vertices can eventually be explored.

Let P-Exploration denote the procedure for
exploring a simple polygon. It mainly consists
of a recursive procedure, which is named as P, -

EzxplorationRec. The procedure P,-EzplorationRec

first explores the right vertices, as many as pos-
sible, and then calls the other recursive proce-
dure for exploring the left vertices. The pro-
cedure for exploring the left vertices, denoted
by P;-Ezploration-Rec, slightly differs from P, -
EzplorationRec because several further calls of
P,.-EzplorationRRec may be made within it.

Figure 5: Exploring an unknown polygon.

Before describing P-Ezploration, we give more
definitions. Let C'P denote the current position
of the robot, which is initially set to s. Let Right-
Target (vesp. LeftTarget) denote the list of the
right (resp. left) vertices to be explored, which
have at least once been visible from the robot but
have not yet been fully explored. Observe that
the list RightTarget (resp. LeftTarget) dynami-
cally changes when the robot walks to explore a
right (resp. left) vertex.

Procedure P-Ezploration(in P, in s)

1. Set RightTarget to the list of the right ver-
tices, which are visible from s and ordered
in clockwise order.

2. Call P,-EzplorationRec(RightTarget, s).

3. The robot returns to s along the shortest
path from C' P, with turning points at poly-
gon vertices.

Fig. 5 shows an example for exploring an un-
known polygon. The routes R1 and L1 represent
the first two routes for exploring right vertices

and for exploring left vertices, and R2, R3 rep-
resent the two routes for exploring right vertices,
which are discovered when the robot walks along
the route L1. The route drawn in bold line in
Fig. 5(a) shows the connection among the start-
ing points for the second and higher level calls of
P, -EzplorationRec (or P;-Ezploration-Rec).

3.2 Exploring right vertices

In this section, we present a competitive strategy
for exploring the right vertices. An intuition of
our exploration strategy is to explicitly compute
all critical images described in Section 2.1, with
respect to the starting point s, and the cuts hav-
ing been explored by now. It is worth to pointing
out that some of critical images may not be vis-
ited by the robot, although their positions are
known to the robot. Note also that whether or
not a cut is essential can be determined after its
defining vertex is fully explored.

Denote by r the head of the list RightTarget,
which is the target vertex that the robot is go-
ing to approach. Clearly, the value of r changes
as soon as a smaller right vertex becomes visi-
ble from the robot. Denote by CI the current
critical image, whose initial value is the start-
ing point s,. Also, denote by C the currently
reached cut, and LI the (latest) image of CI on
C. (The initial value of LI is CI.) In the ap-
proach to exploring the right vertex r, the vari-
able CP changes, but the value of LI or CI does
not. Again, as pointed out above, the position
of CI or LI may not be reached by the robot.

In order to explore the vertex r, we make use
of the following two circles. Denote by Cir(CI)

(resp. Cir(LI)) the clockwise oriented circle spanned

by r and by the last vertex on the shortest path
from CI to CP (resp. from LI to r). Note that
the last vertex on the shortest path from CT to
CP or from LI to r changes as soon as the cor-
responding path is changed.

To explore the very first vertex r, starting
from s,, the robot repeatedly walks on Cir(CI).
It may happen that the view to the target vertex
r gets blocked (or when the boundary is hit). In
this case, the robot walks straight toward the
blocking vertex (or follows the boundary) until
Cir(CI) is encountered again. For an example,
see the part of the robot’s route from s, to a

shown in Fig. 6(a).

Suppose below that C' is the cut having just
been explored, and thus LI # CI. Consider
how to explore the second and the following right
vertices, starting from s,. Generally, the robot
walks along C or the shortest path toward the
vertex that blocks the view of r until the cut of
r is reached, the part of Cir(LI) contained in
P(C) or the part of Cir(CI) outside of P(C)
is encountered. When the robot reaches (along
C) the intersection point of C with the cut of
r, the vertex r is fully explored. Whenever the
part of Cir(LI) contained in P(C) or the part
of Cir(CI) outside of P(C) is encountered, the
robot changes to follow the encountered circle.
In the former case, r is defintely explored. In
the latter case, either the robot repeatedly walks
on the encountered circles Cir(CI) to explore r,
or the robot returns to C again after the part
of Cir(CI) outside of P(C) is walked through.
After an essential cut is reached, we compute
the new critical image, as what is done in [7].
This can be done as all the cuts between CI
and C'P are known to the robot. As soon as a
new critical image is found, the variable CT is
renewed. Moreove, the variable LI with respect
to the new point CT is also maintained.

Figure 6: Exploring right vertices.

It may happen that the image of the new
point CI on the cut having just been explored
is not reached by the robot. This occurs when
the robot reaches the cut of r at the intersection
point of the cut of with the previous cut C. For
the example shown in Fig. 6(a), the point s3 on
the cut of r3 is recognized as a new critical image
when the robot reaches the intersection point of
the cuts of 74 and r5, but CP is not equal to
the image of s3 on the cut of 4. In this case, we
compute this image of CT and let it be a critical

image. In the following exploration, we take CP
as a new starting point, like the original point
sr. See Fig. 6(a) for an example, where s4 is
considered as a critical image and s5 is taken as
a new starting point. Hence, two critical images
on the same cut are reported in this case, which
slightly differs from the v/2-approximation algo-
rithm [7]. (Note that for the example shown in
Fig. 6(b), the point s3 on the cut of 74 is chosen
as a critical image [7].)

As our strategy explores the right vertices
as many as possible, it may thus happen that
the robot loses sight of the next (discovered)
right vertex, after the current target r is fully
explored. In this case, the robot walks along
the shortest path toward the head of RightTarget
until it becomes visible again. For the example
shown in Fig. 6(a), after r2 is fully explored,
the robot moves along the shortest path to the
point e, where r4 becomes visible again. The
robot further moves along the polygon boundary
to explore r4, and at f, the vertex r3 becomes
visible and the target vertex then changes to r3.

It may also happen that the robot crosses
the cut of a right vertex different from r. In this
case, the former vertex (which is larger than r) is
removed from RightTarget. After r is explored,
it is deleted from RightTarget, too.

In the following, we first give a non-recursive
procedure, denoted by P.-FEzploration, for ex-
ploring only the right vertices.

Procedure P,-Ezploration(in RightTarget, in
Sr)

1. Set CI « s;.

2. while the list RightTarget is not empty do
(a) The current target vertex, i.e., the ver-
tex whose cut we are intending to reach at
the moment, is always set to the head r of
the list RightTarget. When no right ver-
tices are visible from CP, the robot walks
clockwise on the shortest path until the
head of RightTarget becomes visible again.

(b) If the very first right vertex, starting
from C1I, has not yet been fully explored,
the robot repeatedly moves along the cir-
cles Cir(CI) to explore it. Assume below
that C is the cut having just been explored.

(¢) To explore the vertex r, the robot walks

along C or the shortest path toward the
vertex blocking the view of 7 until the part
of Cir(LI) contained in P(C) or the part
of Cir(CT) outside of P(C) is encountered,
or the cut of r is reached. When the speci-
fied part of Cir(CI) or Cir(LI) is encoun-
tered, the robot moves on that part to ex-
plore r. Also, the robot may return to C
after the part of Cir(CI) outside of P(C)
is walked through. After an essential cut
is reached, the variable CI as well as LI is
maintained. If the image of CI on the cut
having just been explored is not reached by
the robot, take C'P a new starting point
and then continue the exploration again.

When the robot walks along Cir(CI) or
Cir(LI), its view to the target vertex may
get blocked (or when the boundary is hit).
In this case, the robot walks straight to-
ward the blocking vertex (or follows the
boundary) until Cir(CI) or Cir(LI) is en-
countered again. Also, the list RightTarget
is maintained during the robot’s walk.

3. The robot returns to the starting point s,
along the shortest path from CP.

Let us explain a little more on Step 2 of P,-
Ezploration. Step 2(a) specifies which vertex or
which cut we are intending to explore, and how
to recovery sight of the target vertex. Step 2(b)
devotes to the motion of the robot for exploring
the very first right vertex from a starting point.
Step 2(c) gives the method to approach the cut of
the target vertex. See Fig. 6(a) for an example.

Lemma 3 Let P, denote a polygon, with a point
boundary point s,, such that the essential cuts
of P, are all defined by the right reflex vertices.
A call of P.-Ezploration (in RightTarget, in s,)
then explores the whole polygon P, by reporting
a route of length at most 2v/2 times the length of
the shortest watchman route through s,.

Proof. To simplify the proof, we modify P, as
follows. For every (maximal) internal line seg-
ment through two polygon vertices on which the
robot changes the circle to follow, we add two
isometric edges to P, by extending the line seg-
ment from its left endpoint until the extension is
blocked by the route of the robot. See Fig. 6(a)

for an example, where the introduced edges are
shown in fat dashed line. The resulting polygon,
denoted by P/, is still a simple polygon.

Let W, denote the route of the robot. The
route W, is a relatively convex polygon inside
P/, except for the situations in which W, makes
left turns at some 4nterior points of P.. It occurs
when a smaller right vertex becomes visible. For
the example shown in Fig. 7(a), in the approach
to explore 3, the smaller vertex r1 becomes vis-
ible at the point z. Since the vertex y may block
the view of r1, the robot further moves straight
toward y. We call these interior points of P, the
pseudo-images. So W, consists of the relatively
convex chains, with the pseudo-images and the
critical images as their endpoints.

Denote by T the list of all the pseudo-images
and the critical images reported by calling P,-
Ezploration (in RightTarget, in s,), in clockwise
order. Denote by W;_qp, the route consisting of
the shortest paths that connect every pair of two
consecutive points of T (see Fig. 6(a)). We first
claim that the route Wy, is of length at most
the perimeter of the angle hull of W, _gpp in P
Assume that W, is a relatively convex polygon;
otherwise, each relatively convex chain of W,
is considered. The route W, is the same as the
angle hull of W,._,pp, except for the following two
situations. The first exception is a trivial case, in
which some parts of W,,;, are the shortest paths
from a critical image or a pseudo-image toward
the vertex r or back to s;, or even they enclose
those of W,,, where a new starting point is re-
set (e.g., two segments A’sd and s4 s5 of Wy_gpp
enclose the segment hA's5 of W, in Fig. 6(a)).
The second exception is that some circular parts
of W,o may be contained in the angle hull of
Wi _app- For an example, the part of Wy, from
g to h in Fig. 6(a) follows the circle spanned by
f and r4, which is contained in the angle hull
of the line segment s3 7/, where A/ is the inter-
section point of 53 s4 with the cut of r4. The
containment of Wy, in the angle hull of W, _4pp
comes from the fact that the semicircle on which
the robot walks always contains the correspond-
ing segment of Wy._,,,. Hence, our claim follows,
and thus |W,;] < 2|W;_gpp| holds.

Finally, we apply Lemma 1 to show |W,_gpp| <
V2|Wpt|. Suppose first that a pseudo-image »
is used as the common endpoint of two shor-

est paths of Wy_gpp. It is easy to see that the
(smaller) angle at z formed by two shortest paths
of Wy_opp is at least 7/2 (Fig. 7(a)). Observe
also that the portion of W,; enclosed by these
two shortest paths is a convex chain. See Fig.
7(a). Comparing with Wop,, the competitive fac-
tor for W,_,pp to make a left turn at the pseudo-
image z is no more than v/2.

Figure 7: Illustraion for the proof of Lemma 3.

Assume below that W,_g,, consists of the
shortest paths that have only the critical images
as their endpoints. Then, the route Wi _app 18 the
same as Wy, except that two critical images on
the same cut are reported by P,-Ezploration. In
the following, we show that [W, _app| < v/2|Wp]
also holds in this case. Let a and b denote two
critical images in clockwise order, and C the cut
on which a and b are. Recall that o is the image
of the previous point CI on C by that momemt,
and b is taken as a new starting point from then.
Hence, the reflection point of W, is still to the
right of a (if it reflects on C). Since b is to the
right of @ on C, the same reflection property still
holds for the images after b, except for the point
b itself. Thus, we only need to consider the parts
of two routes before and after C. If the reflection
point of W on the cut C is not between ¢ and b,
then the part of the route W, _gp, between two
points ¢; and 3 is of length at most v/2 times
that part of the route Wop;, where £; and 3 de-
note two intersection points of the routes Wy,
and W, _,,, before and after C. This is because
the route of W, _,,, between ¢; and ¢y can be
stretched into a convex chain that is enclosed in
an obtuse-angled triangle with the longest edge
16, where &' is the point obtained by reflecting
ty across the cut C. See Fig. 7(b) for an exam-
ple, where ad'b'b denotes a parallelogram. (We
have assumed that W,,; makes a perfect reflec-
tion on C and that W, makes a right turn on

C by at least 7/2 [7].) If the reflection point of
Wopt on C is between a and b, the proof can simi-
larly be given. See also Fig. 7(c) for an example.
In conclusion, we have |[Wy_gpp| < V2[Wope. Tt
completes the proof. O
There is a symmetric procedure P;- Ezploration

for exploring the left vertices, which is identi-
cal to P,-Ezploration, except that left/right and

. clockwise/counterclockwise are exchanged.
) We can now give the procedure F,.-EzplorationRec.

Procedure P,-EzxplorationRec(in RightTar-
get, in s;)

1. Call P.-Ezploration(Right Target, s).

2. Sort in counterclockwise order all left ver-
tices, which are visible from the route of
the robot produced by calling the proce-
dure P,-Ezploration, and then, set LeftTar-
get to the list of these vertices.

3. Call P;-Exploration-Rec(LeftTarget, s;) by
setting s; « s;.

3.3 Exploring left vertices

As described in Section 3.1, the procedure P;-
Ezploration-Rec first explores the left vertices of
P, as many as possible, and then calls the pro-
cedure P,-EzxplorationRec several times, so as to
further explore the right vertices that have at
least once been visible from the robot but have
not yet been fully explored. To this end, we
maintain a list, say, StartPoints, to hold the left
vertices [such that at least one right vertex be-
comes visible, for the first time, from the robot
after the left vertex [is fully explored.

It is clear that some of the left vertices in
StartPoints are descendants of others, and they
have to be removed from the list StartPoints.
Only maximal (highest up in the shortest path
tree of s) are retained, which are the starting
points for exploring the remaining right vertices.

Procedure P;-Ezploration-Rec(in Left Target,
in Sl)

1. Call F-Exploration(LeftTarget, s;).

2. Set StartPoints to the list of the left ver-
tices in clockwise order such that some right
vertices become visible, for the first time,
after these left vertices are fully explored.

3. Clean up the list StartPoints so as to retain
only those left vertices which are highest
up in the shortest path tree of s.

4. for each vertex s, of StartPoints do

(a) Walk on the shortest path to s,, and let
RightTarget be the list of the right vertices
in clockwise order, which are visible from
sr and have not been fully explored.

(b) Call P,-EzplorationRec(Right Target, s,).

In the following, we show that these local
starting points have to be visited at least once
by the shortest watchman route through s.

Lemma 4 All the local starting points s, for call-
ing Pr-EzplorationRec have to be visited at least
once by the shortest watchman route through s.

Prof. Omitted in this extended abstract. O

3.4 Performance analysis

It is clear that the starting points for calling P, -
Ezploration (P-Exploration) at the kth (k > 1)
level differ from those at the k + 1st level. More-
over, since the procedure P,-Ezploration (resp.
P,-Ezploration) explores the right (resp. left)
vertices as many as possible, any two routes of
the robot output by calling the procedure P -
Ezploration (vesp. Pj-Ezploration) are mutually
invisible (see also Fig. 5).

Lemma 5 Any two routes of the robot output by
calling the procedure P,-Exploration (resp. P-
Ezploration) are mutually invisible, with a pos-
sible exception of their starting points.

By now, we can obtain the main result of this
paper.

Theorem 1 For a polygon P and a starting point
s on the boundary of P, a call of P-Ezploration(P,
s) explores P, which outputs a watchman route
of length at most 4v/2+1 < 6.7 times the length
of the shortest watchman route through s.

Proof. It follows from Lemma 3 and Lemma 5
that all the routes W,_,;, for exploring the right
vertices (resp. left vertices), which are obtained
by calling P,-Ezploration (resp. P;-Ezploration),

cannot exceed in length v/2{Wp|. Therefore, all
the robot’s routes together, which are output by
calling P,-Ezploration and P,-Ezploration, can-
not exceed in length 4v/2|Wp)|.

The remaining task is to bound the path length
caused by the walks during the for loops of F;-
Exploration-Rec. As shown in [5], all those walks
together make up for an additional path length
of at most |Wyp| (see also Fig. 5). It completes
the proof. O

References

[1] X. Deng, T. Kameda and C. Papadim-
itrioun, How to learn an unknown environ-

ment, Proc. FOCS’1991 298-303.

X. Deng, T. Kameda and C. Papadimitriou,
How to learn an unknown environment I:
The rectilinear case, J. ACM 45 (1998) 215-
245.

[3] M. Dror, A. Efrat, A. Lubiw and J. S. B.
Mitchell, Touring a sequence of simple poly-

gons, Proc. STOC’20038, 473-482.

F. Hoffmann, C. Icking, R. Klein and K.
Kriegel, A competitive strategy for learning
a polygon, Proc. SoDA’1997, 71-82.

F. Hoffmann, C. Icking, R. Klein and K.
Kriegel, The polygon exploration problem,
SIAM J. Comput. 31(2) (2001) 577-600.

X.Tan, Fast computation of shortest watch-
man routes in simple polygons, Inform. Pro-
cess. Lett. 77 (2001) 27-33.

X.Tan, Approximation algorithms for the
watchman and zookeeper’s problems, Dis-
crete Applied Math. 136 (2004) 363-376.

X.Tan, A linear-time 2-approximation algo-
rithm for the watchman route problem for
simple polygons, Theoretical Computer Sci-
ence 384 (2007) 92-103.

X.Tan, T.Hirata and Y.Inagaki, Corrigen-
dum to an incremental algorithm for con-
structing shortest watchman routes, Int. J.
Comput. Geom. Appl. 9 (1999) 319-323.

