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abstract

We consider the minimum cost edge installation problem (MCEI) in a graph
G = (V,E) with edge weight w(e) > 0, e € E. We are given a vertex s ¢ V
designated as a sink, an edge capacity A > 0, and a source set S C V with demand
0 < g{v) £ A v €S Forany edge e € E, we are allowed to install an integer
number h(e) of copies of e. The MCEI asks to send demand g(v) from each source
v € S along a single path P, to the sink s. A set of such paths can pass through a
single copy of an edge in G as long as the total demand along the paths does not
exceed the edge capacity A (splitting the demand g(v) of a source into two or more
copied of an edge e is not allowed). The objective is to find a set P = {P, |v € §}
of paths of G that minimizes the installing cost cost(P) = > . h(e)w(e). In this
paper, we propose a (15/8 + pgr)-approximation algorithm to the MCEI, where pgy
is any approximation ratio achievable for the Steiner tree problem.

1 Introduction nication networks [2] and transportation net-

works [8, 9]. In telecommunication networks

We study a problem of finding routings from
a set of sources to a single sink in a network
with an edge installing cost. This problem is a
fundamental and economically significant one
that arises in hierarchical design of telecommu-

this corresponds to installing transmission fa-
cilities such as fiber-optic cables, which repre-
sent the edges of the network. In other ap-
plications, optical cables may be replaced by
pipes, trucks, and so on.



Consider an edge-weighted undirected
graph G, where V(G) and E(G) denote the
vertex set and edge set of G, respectively. We
are given a set S C V(@) of vertices specified
as sources and a vertex s € V(@) specified as
a sink. Each source v € S has a nonnegative
demand g(v), all of which must be routed to
s through a single path. We are also given a
finite set of different cable types, where each
cable type is specified by its capacity and its
cost per unit weight. The costs of cables obey
economies of scale, i.e., the cost per unit ca-
pacity per unit weight of a high capacity cable
is significantly less than that of a low capac-
ity cable. The single-sink buy-at-bulk problem
(SSBB) (also known as the single-sink edge in-
stallation problem [3]) asks to construct a net-
work of cables in the graph by installing an
integer number of each cable type between ad-
jacent vertices in G so that given demands at
the sources can be routed simultaneously to s.
The goal is to minimize the costs of installed
cables.

The problem of buy-at-bulk network design
was first introduced by Salman et al. [8]. They
showed that the problem is NP-hard by show-
ing a reduction from the Steiner tree problem.
The Steiner tree problem is a classical NP-
hard optimization problem, and the current
best approximation ratio for the Steiner tree
problem is a bit less than 1.55 [7]. Moreover,
they showed that the problem remains NP-
hard even when only one cable type is avail-
able. The approximation ratio for the SSBB
problem was gradually reduced from O(log? n)
[1] to 24.92 [2] by a series of papers, where n is
the number of vertices of the underlying graph.

In this paper, we study a special case of
the SSBB that arises from transportation net-
works [9]. A multinational corporation wishes
to enter a new geographic area, characterized
by demand at each city. It has identified the
location of its manufacturing facility. Suppose
the shipping of the good will be carried out
by some transport company. This transport
company has only one truck type, with a fixed
capacity. For each truck, the transport com-
pany charges at a fixed rate per mile, and offers
no discount in the case where the truck is not
utilized to full capacity. The problem facing

the corporation is to decide a shipping plan of
the finished good to each city, so that the total
demand at each city is met and the total cost
is minimized.

In such a transportation network, we have
a single cable type with a fixed capacity A > 0
for all edges, and we are interested in con-
structing a set P of paths each of which con-
nects one of given sources to a single sink s.
The cost of installing a copy of an edge e is rep-
resented by the weight of e. A subset of paths
of P can pass through a single copy of an edge
e as long as the total demand of these paths
does not exceed the edge capacity A; any inte-
ger number of separated copies of e are allowed
to be installed. However, the demand of each
source is not allowed to be split at any vertex
or over two or more copies of the same edge.
The cost of a set P of paths is defined by the
minimum cost of installing copies of edges such
that the demand of each source can be routed
to the sink under the edge capacity constraint,
ie.,

cost(P) = Z h(e)w(e),

e€E(G)

where h(e) is the minimum number of copies
of e required for routing the set of all demands
along e, simultaneously. The goal is to find a
set P of paths that minimizes cost(P). We call
this problem, the minimum cost edge installa-
tion problem (MCEI). Notice that, in order to
get a feasible solution to the MCEI, such edge
capacity A should be as much as the maximum
demand in the network. The MCEI can be for-
mally defined as follows, where Rt denotes the
set of nonnegative reals.
Minimum Cost Edge Installation Prob-
lem (MCEI):
Input: A connected graph G, an edge weight
function w : E(G) — R™, a sink s € V(G),
a set S C V(@) of sources, an edge capacity
A > 0, and a demand function ¢ : § — RT
such that ¢(v) < A, veS.
Feasible solution: A set P = {P, | v €
S, {s,v} C V(P,)} of paths of G.
Goal: Find a feasible solution P that mini-
mizes cost(P).

The MCEI is closely related to the capac-
itated network design problem (CND), which
can be stated as follows. We are given an undi-
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rected graph G such that each edge e € E(G)
is weighted by nonnegative real w(e), a subset
S C V(G) of sources, and a vertex s € V(G)
designated as a sink. Each source v € S has a
nonnegative demand ¢(v), all of which must be
routed to s through a single path. A cable with
fixed capacity A is available for installing on
the edges of the graph, where installing 7 copies
of the cable on edge e costs sw(e) and provides
2 capacity. The CND asks to find a minimum
cost installation of cables that provides sufli-
cient capacity to route all of the demand simul-
taneously to s. The problem requires choosing
a path from each source to the sink and find-
ing the number of cables to be installed on
each edge such that all the demand is routed
without exceeding edge capacities. Demands
of different sources may share the capacity on
the installed cables and the capacity installed
on an edge has to be at least as much as the
total demand routed through this edge. For
this problem, Mansour and Peleg [6] gave an
O(log n)-approximation algorithm for a graph
with n vertices. Salman et al. [8] designed a
7-approximation algorithm for the CND based
on a construction from [5]. Afterwards Has-
sin et al. [4] gave a (2 + psr)-approximation
algorithm, where pgr is any approximation ra-
tio achievable for the Steiner tree problem. By
using of a slight intricate version of this algo-
rithm, they improved the approximation ratio
to (1 + psr) when every source has unit de-
mand. When all non-sink vertices are sources,
the approximation ratio of Hassin et al. [4]
becomes 3 for general demands and 2 for unit
demands, since the Steiner tree problem in this
case is a minimum spanning tree problem.
Note that, a solution to each of the MCEI
and the CND can be characterized by spec-
ifying for each source v, the path P, along
which the demand g¢(v) of v will be sent to
the sink. The cables installed on each edge of
the network are induced by these paths. In
particular, for each edge e, a feasible solution
to the MCEI assigns an integer number of sep-
arated cable copies required for routing all de-
mands in {g(v) | e € E(P,)}, simultaneously.
On the other hand, a feasible solution to the
CND assigns on € at least [} ,..c p(p,) 2(v)/A]
copies of the cable. That is, on contrary to

the MCEI, the CND allows the demand from
a source to be split among different copies of
the same edge. Note that, the algorithm of
Hassin et al. [4] to the CND takes the advan-
tage (over the MCEI) of this assumption only
for routing demands larger than A to the sink.
Hence, their algorithms can be used to ob-
tain approximate solutions to the MCEI with
approximation ratios 1 + pgr and 2 + pgr for
the unit and general demand networks, respec-
tively. In this paper, we proved that there is
a (15/8+ psr)-approximation algorithm to the
MCEI with general demands. Our result is
based on a new and elaborated method for par-
titioning the source set of a given tree. When
S = V(@G), the approximation ratio becomes
2.875.

The rest of this paper is organized as fol-
lows. Section 2 introduces terminologies on
graphs and two lower bounds on the optimal
value of the MCEIL Section 3 describes some
results on tree partitions. Section 4 gives a
framework of our approximation algorithm for
the MCEI, analyzing its approximation ratio.
Section 5 makes some concluding remarks.

2 Preliminaries

This section introduces some notations and
definitions. Let G be a simple undirected
graph. We denote by V(G) and E(G) the
sets of vertices and edges in G, respectively.
An edge-weighted graph is a pair (G,w) of a
graph G and a nonnegative weight function
w : E(G) —» R". The length of a shortest
path between two vertices ¥ and v in (G, w) is
denoted by d(g ) (u,v). Given a vertex weight
function ¢ : V(G) — R* in G, we denote by
q(Z) the sum ) - q(v) of weights of all ver-
tices in a subset Z C V(G).

Let T be a tree. A subtree of T is a con-
nected subgraph of T. For a subset X C V(T')
of vertices, let T(X) denote the minimal sub-
tree of T' that contains X (note that T(X) is
uniquely determined). Now let T' be a rooted
tree. We denote by L(T') the set of leaves in
T. For a vertex v in T, let Ch(v) and D(v) de-
note the sets of children and descendants of v,
respectively, where D(v) includes v. A subtree
T, rooted at a vertex v is the subtree induced



by D(v), i.e., T, = T{D(v)). For an edge
e = (u,v) in a rooted tree T', where u € Ch(v),
the subtree induced by {v} U D(u) is denoted
by Te, and is called a branch of T,,. For a rooted
tree T, the depth of a vertex w in T is the
length (the number of edges) of the path from
v to u.

For a set Z, a set {Z1,Za,...,Z;} of pair-
wise disjoint subsets of Z is called a partition
of Zif U Z; = Z.

The rest of this section presents two lower
bounds on the optimal value to the MCEL The
first lower bound has been proved and used to
derive approximation algorithms to the CND
in [4].

Lemma 1 For an instance I = (G = (V, E),
w,S,q,8,A) of the MCEI, let opt(I) be the
weight of an optimal solution to I, and T™ be

the minimum weight of a tree that spans SU{s}
in G. Then

smax{w(T), 5 3 aOdaam(s:0) ) < oD,

tesS

where w(T™) is the sum of weights of edges in
T*. O

The second lower bound is derived from an
observation on the distance from sources t € S
with g(t) > A/2 to sink s.

Lemma 2 For an instance I = (G =
(V,E),w,S,q,s,A\) of the MCEI with q(t) €
[0,A], t € S, let opt(I) be the weight of an op-
timal solution to I. Then

Z d(G,w)(sv t) < Opt(I),
tes’

where 8" = {t € S| q(t) > \/2}.

Proof. The proof is followed directly by not-
ing that for any two sources u,v € S, the
paths P, and P, of the optimal solution can-
not share the capacity of a single copy of any
edgee e E. O

Given an instance I = (G = (V, E),w, S,
g, s, \) of the MCEI, our algorithm firstly pro-
duces a tree T of G that spans all vertices in
SU{s}, finds a partition S of §, and assigns a
vertex tz € Z for each subset Z € S such that

when all demands in each subset Z € S are
routed to ¢z simultaneously, the total flow on
each edge of T' is at most A, where we call such
a vertex tz the hub vertex of Z. Afterward, for
each Z € S, we install a copy of each edge in
a shortest path SP(s,tz) between s and tz in
@G, and construct path P;, t € Z, by adding
SP(s,tz) to the path between t and ¢z in T.
The running time of this algorithm is domi-
nated by the approximation algorithm for the
Steiner tree problem to compute tree 7"

3 Tree partition

The purpose of this section is to describe how
to construct a tree partition in a tree that
spans a source set, that is, how to find a par-
tition of the source set of the tree. Such a tree
partition will be the basis of our approxima-
tion algorithm to the MCEI in the next sec-
tion. We first present some results for special
cases of tree partitioning.

3.1 Tree partition in special trees

In this subsection, we prepare several lemmas
on tree partition problem for a tree with spe-
cial structure. We first introduce a subgraph
which plays a key role in our algorithm.

Definition 1 For a vertez v in a rooted tree,
a source set Z, C V(T,,)—{v}, a demand func-
tion q : Z, — RT, and a positive number A, a
binary rooted tree T, is said to be a balance-
tree if g(Zy) > A holds and the total demand
in each of its branches is less than (4/7)A.

We are given a binary rooted tree T, with a
source set Z, = L(T;), an edge capacity A > 0,
a demand function q : Z, — RT such that
q(t) < A/2 for all t € Z,, and a vertex weight
function d : Z, — R%. Moreover, for each
u € Ch(z), if q(V(T,)NZg) > (4/7)), then T,
contains a balance-tree and satisfies ¢(V (To,) N
Zz) < (8/7)\. We partition Z, into subsets,
and choose a hub vertex from each subset such
that, when demands of each subset are routed
to its hub vertex simultaneously, the total flow
on each edge of T, is bounded from above by
A. For brevity, we use (I3, Zs, q,d, \) to refer
to this tree throughout this subsection.



We give the following three lemmas with-
out proofs due to space limitation.

Lemma 3 Given a tree (Ty,Zs,q,d,\) with
(B/TA < q(Zz) < (12/T)A, there is a parti-
tion {X,Y} of Z; such that q(Y) > (4/7)),
and when q(X) and ¢(Y) are routed to tx =
argmin{d(t) | t € Z;} and ty = argmin{d(t) |
t € Y}, respectively, the total amount of these
flow on each edge of T, is at most A. O

Lemma 4 Given a tree (Ty,Z4,q,d,)) with
q(Zz) = (12/7) X, there is a partition {A, B, C}
of Zy and a subset Z!, C Z, with ¢(Z.) >
(12/7)X such that ¢(AN Z.),q(B N Z.) >
B/, ¢(Cn Z) = (5/7)A, and when
q(A), q(B), and g(C) are routed to t4 =
argmin{d(t) | ¢t € Z.}, tp = argmin{d(¢) | t €
Zl — A}, and t¢ = argmin{d(t) |t e CN Z.},
respectively, the total amount of these flow on
each edge of T, is at most A. O

Lemma 5 Given a tree (Ty,Z;,q,d,\) with
Zs # 0, there is a partition Z1 U 2y of Z,
such that ¢(Z) > (4/7)\ for each Z € Z;,
q(Z) < (4/T)X for each Z € Z,, and when de-
mands in each Z € Z1 and Z € Z9 are routed
to tz = argmin{d(t) | t € Z} and z, respec-
tively, the total amount of these flow on each
edge of T, is at most . ]

3.2 Algorithm for tree partition

In this subsection, we present an algorithm
that exploits the results in Lemmas 3-5 to com-
pute a partition of the source set of a general
tree given in the next theorem.

Theorem 1 Given a tree T rooted at s, an
edge capacity A > 0, a source set S CV(T), a
demand function q : S — R such that q(t) <
A2, t € S, and a verter weight function d :
S — Rt there is a partition S = S; U Sy U
S3U Sy of S, where S = Ulgigk{Xth} and
Sy = Ut<i<e{4s, Bi, C;}, and a set H= {tz €
S| Z € S} of hub vertices, that satisfy:

(i) For each subset Z € 81, ¢(Z) < (4/7)A
andtz = s.

(if) For each subset Z € Sy, q(Z) > (4/7)A
and tz = argmin{d(t) | t € Z}.

() For i = 1,2,....k q(¥i) > (4/7),
g(X;UY;) > (8/7)A, tx, = argmin{d(t) |
t € X;UY;}, and ty, = argmin{d(t) |t €
vi)

Fori = 1,2,...,¢, q(A4; N Z)),q(B; N
) > (3/T)\, and g(Ci 0 ZL) > (5,
where Z!, C A; U B; U C; with ¢(Z%,) >
(12/7)A, and t4, = argmin{d(¢) | ¢ €
7}, tp, = argmin{d(t) | t € ZI, — A;},
and tc; = argmin{d(t) |t € C; N ZL}.

(iv)

When the total demand of each subset
Z € S is routed to tz simultaneously, the
total amount of these flow on each edge
of T is bounded from above by .

V)

Furthermore, such a partition S can be com-
puted in polynomial time. O

To prove Theorem 1, we can assume with-
out loss of generality that in a given tree T,
(i) all sources are leaves, i.e., S = L(T), by
introducing a new edge of weight zero for each
non-leaf source, and (ii) [Ch(v)| = 2 bolds for
every non-leaf v € V(T), i.e., T is a binary
tree rooted at s, by splitting vertices of degree
more than 3 with new edges of zero weights.

We prove Theorem 1 by showing that the
next algorithm actually delivers a desired par-
tition S = S1 US2 US3 U Sy. We first choose a
vertex v ¢ @ U {s} with the maximum depth
in the current tree such that the total demand
of a source set Z, of the tree rooted at v is at
least (4/7)\, where @ is initialized to be empty
and is used to keep track of vertices v in the
current tree such that T, contains a balance-
tree and satisfies ¢(Z,) < (8/7)A. Depending
on the total demand of Z,, we add Z, to Sz,
add v to @, or compute a partition of Z, by
using Lemma 3 or 4. In the latter case, we
add the subsets of the obtained partition to
one of Sg or S4. We then remove all sources
in S US3 U Sy from S and repeat these steps
on the minimal subtree of 7" that spans s and
the current source set until there is no such
vertex v. Finally, we partition the remaining
set of sources by using Lemma 5 and add the
resulting partition to one of $; or Sz. A formal
description of the algorithm is the following.

Algorithmm TREEPARTITION



Input: A binary tree T rooted at 8, a capac-

ity A of each edge, a set S = L(T) of sources,

a demand function g : § — R such that ¢(t)

< A/2,t €S, and a vertex weight function d :

S — R*.

Output: A pair (S,H) that satisfies the

conditions in Theorem 1.

Initialize T:=T; Q :=H := 81 := 53 := S3

= 54 = 0
1 while there exists a vertex v € V(T') — {s}
—@Q such that ¢(V(T,) N S) > (4/7)\ do
2 Choose such v with the maximum depth
from s;

3 Let Z, := Dp(v) N S; Ty :=T{(Z,);

4 begin /* Distinguish four cases. */

5 Case-1¢(Z,) < X Let S2 :=8, U{Z,};

6 tz, = argmin{d(t) | t € Z,}; H := HU
{tz.};

7 Case-2 )\ < q(Z,) < (8/T)A:

Let Q := QU {v};

Case-3 (8/7)A < ¢(Z,) < (12/T)A:
Apply Lemma 3 to (T, Z,,q,d, A) to
get a partition {X,Y} of Z, and vert-
ices tx and ty that satisfy the condit-
ions in the lemma,;

10 S3:=8U{X,Y}; H:=HU{tx,ty}

11 Case-4 (12/7)A < g(Zy) < (16/7)X:

12 Apply Lemma 4 to (T3, Zy, q,d, \) to
get a partition {4, B,C} of Z, and
vertices t4, tg, and t¢ that satisfy
the conditions in the lemma;

13 Sy = S4U{A,B,C} and H :=HU
{ta,ts,tc}

14 end; /* Cases-1,2,3,4 */

15 Let §:=8—(S;US3U8y); T :=T(SU

{sh

16 endwhile;

17if S # ¢

18 Regard T as a tree T, rooted at s and ap-

ply Lemma 5 to (Ts,5,¢,d, \) to get a pa-
rtition Z; U Z; of S and a vertex tz for
each Z € Z; U 2, that satisfy the conditi-
ons in the lemma;

19 8 =258 =8 UZ; H:=HU{tz|

zZezZ U Zz}

20 endif.

© oo

Proof of Theorem 1. We first prove by induc-
tion the correctness of algorithm TREEPARTITION.
We first consider the vertex v chosen in the first
iteration of the while-loop. By the choice of v,
q(V(T,) N S) < (4/7)A for all u € Ch(v). Hence
4/ < ¢(Z,) < (8/7T)A holds, which implies
that ¢(Z,) < Aor A < ¢(Z,) < (8/7)A can oc-
cur in the first iteration. If ¢(Z,) < A holds, then
Z, is removed from S and added to S;. Other-

wise A < ¢(Zy) < (8/7)X holds and hence T, is a
balance-tree. In the latter case, v is added to a set

Q.

Assume that the algorithm works correctly af-
ter the execution of the jth iteration, and let T
be the current tree. We show the correctness of
the algorithm during the execution of the (j+1)th
iteration. Note that, for any vertex v chosen by
the algorithm, Z, will be removed from the cur-
rent S except for the case where A < ¢(Z,) <
(8/7)A. Now let v be a vertex selected in the
(j + 1)st iteration. Then we see that, for each
u € Ch(v), either (i) ¢(V(T,) NS) < (4/7)X holds
(if » has not been chosen before by the algorithm)
or (ii) v € @ holds and T, contains a balance-
tree and satisfies g(V(T,,) N S) < (8/7)A (other-
wise). Therefore, one of (4/7)A < q(Z,) < A,
A < q(Zy) < (8/T)A, (8/T)A < a(Zy) < (12/7)A,
and (12/7)A < q(Z,) < (16/7)X holds. Let B}
and B2 denote the two branches of T, and let Z}
denote the set of sources in B, i = 1,2, where
q(Z2}) > q(Z2). Now if ¢(Z,) < A holds, then Z,
is removed from the current S after it is added
to So. If A < ¢(Z,) < (8/7)A holds, then T,
is a balance-tree (if ¢(Z1),q(Z2) < (4/7)A) or
B} (consequently 7,) contains a balance-tree (by
g(ZL) > q(Z2)). In this case, v is added to a set
Q. Finally, if (8/7)A < q(Z,) < (12/7)A (resp.,
(12/7A < q(Zy) < (16/7)A) holds then T, sat-
isfies conditions of Lemma 3 (resp., Lemma 4) in
this case. In the latter two cases, Z, is removed
from the current S after elements of its partition
are added to appropriate subsets of S. Therefore,
the algorithm works correctly during the execution
of all iterations of the while-loop.

After the final iteration, there is no vertex
v € V(T)—{s}—Q such that ¢(V(T,,)NS) > (4/7)A
for the current tree T'. If the current S # (, then for
each u € Ch(s), either (i) ¢(V(T,) N S) < (4/7)A
holds (if » has not been chosen before by the al-
gorithm) or (ii) v € @ holds and T, contains a
balance-tree and satisfies ¢(V(Ty) NS) < (8/7)A
(otherwise). That is, the current tree 1" satisfies
the conditions in Lemma 5 and a desired partition
of the current S can be constructed.

Now we prove that the partition obtained from
algorithm TREEPARTITION satisfies conditions (i)-
(v) in Theorem 1. Conditions (i)-(iv) follow im-
mediately from construction of Sy, S, S3, and S;.
Now we show (v). Let v be the vertex chosen in
line 2 of an arbitrary iteration of the algorithm,
where the subtree T, of the current tree T is being
processed in this iteration. Now, if Case-2 holds,
then we just add v to Q and then move to the next
iteration (the current S and 7' remain unchanged in
this iteration). Otherwise (Case-1, 3, or 4 holds),
the algorithm partitions the set Z, of all sources of



T, into subsets and chooses a hub vertex from each
of these subsets. We then remove Z, from the cur-
rent source set S, that is, none of the vertices of T,
will become a hub vertex in the subsequent itera-
tions of the algorithm. Thus it is sufficient to show
that, overall iterations of the algorithm, when the
demand of each source in Z, is routed to its hub
vertex simultaneously, the total flow on each edge
of T, is bounded from above by A. Hence (v) fol-
lows from the conditions of Lemmas 3, 4, and 5.
This completes the correctness of TREEPARTITION
and the proof of Theorem 1. [}

4 Approximation Algorithm
to MCEI

This section describes a framework of our approxi-
mation algorithm for the MCEI and then analyzes
its approximation ratio. The algorithm relies on
the results on tree partition we provided in Sec-
tion 3.

The basic idea of the algorithm is to first pro-
duce a tree T' of minimum cost including all ver-
tices in S U {s}. For each source ¢ € S with
g(t) > A/2, we install a copy of each edge in a
shortest path SP(s,t) between s and ¢ in (G, w),
and let P, := SP(s,t). We then find a partition
S of the remaining sources in S, and assign a hub
vertex tz for each subset Z € S, such that when
the total demand of each subset is routed to its hub
vertex simultaneously, the amount of these flow on
each edge of T is at most A. Finally, for each set
Z € 8, we install a copy of each edge in a short-
est path SP(s,tz) between s and tz in (G, w), and
construct a path P; from the path between ¢ and
tz in T by adding SP(s,tz) for all t € Z.
Algorithm ArPROXMCEI
Input: An instance I = (G = (V, E),w, S,q,s,A)
of the MCEL
Output: A solution P to I.

Step 1. Compute a Steiner tree T' that spans SU
{s}inG.
Regard T as a tree rooted at s, and define
d: S — R*' by setting

d(t) = d(G,w) (3’ t)a

Step 2. Let §' ={t € 5| q(t) > A/2}.
For each t € ', choose a shortest path
SP(s,t) between s and ¢ in (G, w), joint to s
by installing a copy of each edge in SP(s,t),
and let P; := SP(s,t).

Step 3. Apply Theorem 1 to (T,S — S, q,s,d,\)
to obtain a partition

S=81U82U83U54

tes.

of § — S’, where 83 = Ulsisk{XhY;‘.} and
Sy = Ulgige{Ai,Bi,Ci}, and a set H =
{tz € S| Z € 8} of hub vertices, that satisfy
conditions (i)-(v) of the theorem.

Step 4. For each t € Z € &1, let P; be the path

between £ and s in 7.

For each Z € § - &1,
Choose a shortest path SP(s,tz) betw-
een s and tz in (G, w) and join tz to s
by installing a copy of each edge in
SP(s,tz).
For each t € Z, let P; be the path obtai-
ned from the path between ¢ and ¢z in
T by adding SP(s,tz).

Step 5. Output P = {P; |t € S}. O

Before analyzing the worst case performance of
this algorithm, we show the following lemma. The
proof is omitted due to space limitation.

Lemma 6 LAetS =81 US; US3US, be a partition
from a tree T by algorithm TREEPARTITION and
let H ={tz € S| Z € 8} be the associated set of
hub vertices. Then, we have

>

tEZESUS3US, ZES,US3US,

q(t)d(?) > (4/7)A d(tz)-

0

We now turn to proving that the solution out-
put from algorithm ApPROXMCEI is within a fac-
tor of (15/8 + psr) of the optimal solution.

Theorem 2 For an instance I = (G =
(V,E),w, S,q,s,\) of the MCEIL, algorithm Ap-
PROXMCEI delivers a (15/8 + psr)-approzimate
solution P, where psr is the performance ratio for
approzimating Steiner tree problem.

Proof. Let opt(I) denote the weight of an opti-

mal solution. By the construction, the cost of P is
bounded by

ZES,US3US,

cost(P) < w(T) + Z d(t) +

tes’

d(tz).

For a minimum Steiner tree T* that spans SU{s},
we have w(T') < psrw(T™) and w(T™) < opt(I) by
Lemma 1. Hence w(T") < pgr - opt(I) holds. To
prove the theorem, it suffices to show that

ddmy+ >

tes’ ZESUS3USy

d(tz) < (15/8)opt(I). (1)

To prove this inequality, we distinguish two dif-
ferent cases. In the first case, >, o q(t)d(t) >



Y ies—g 4(t)d(t). By Lemma 1, this implies that

opt(I) > (1/3) D a(t)d()

tesS

= (W/NOQ_a®dd)+ Y qt)d(t)
tes’ tesS-—87

> (2/0) ) qt)d(t)
teS—-8’

> 2/ ). abdw)
tEZ€S2US3US

> 8/ Y dita), (2)
ZES2US3USy

where the last inequality follows from Lemma 6.
Inequality (2) and Lemma 2 prove (1) in this case.

In the second case, ), o q(t)d(t) <
> teg—g 4(t)d(t). Then it is easy to see that there
exist two real numbers 0 < a,f < 1 such that
« +ﬂ = 1) o < ﬁa (1/)‘) ZteS’ q(t)d(t) < aopt(I),
and (1/A) Yy g a(d® < fopt(l). Since
q(t) > A/2 for all t € §’, we have

(1/2) D" d(t) < (1/X) Y q(t)d(t) < aopt(I).

tes tes’
)
On the other hand, Lemma 6 implies that
@n 3 dltz)
ZESUS3US,
</ D> q®)d) < Popt(I).  (4)
tEZES;US3US,

By muiltiplying (3) and (4) by 2 and 7/4, respec-
tively, and adding the obtained inequalities, we

have
>

> dt) +
tcS’ ZESUS3US,

d(tz) < (20 + (7/4)B)opt(I)

< (15/8)opt(1),
by the assumptions on « and S. O

5 Concluding remarks

In this paper, we have studied the minimum cost
edge installation problem (MCEI), a problem of
finding a routing from a set of sources to a single
sink in a network with an edge installing cost. The
MCEI is closely related to the capacitated network
design problem (CND). In particular, a solution
to each of the MCEI and the CND can be char-
acterized by a set of paths, each of which sends
the demand of a source to the sink and the set
of these paths induces the numbers of cables in-
stalled on each edge of the network. The CND

allows the demand from a source to be split among
different copies of the same edge, while the MCEI
does not allow such splitting. We have designed
a (15/8 + pgr)-approximation algorithm for the
MCEI, improving the approximation ratio of the
algorithm of Hassin et al. [4] designed for the CND,
where pgr is any approximation ratio achievable
for the Steiner tree problem. Our improvement
is based on an elaborate tree partition and a new
lower bound on the optimal value which relies on
the constraint that no demand is allowed to be split
among different copies of the same edge.
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