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abstract

In an undirected graph G = (V, E) with a weight function w : E x V — Q.. the weighted
degree dy,(v; E) of a vertex v € V' is defined as Y {w(e,v) | e € E incident with v}. In this
paper, we consider a network design problem with the upper-bound on weighted degree of
each vertex. Inputs of the problem are an undirected graph G = (V, E) with E = E{UE,UE;3,
weights w1 : By XV — Q, p: E; —» Q4 and v : E3 — Qy, an edge-cost ¢ : E — Q, and
a degree-bound b : V' — Q. A solution consists of a spanning tree T C E and weights
wi : Ty x V. — Qg for i € {2,3}, where T} stands for T'N E;. It is defined to be feasible
if it satisfies wa(e, u) + wa(e,v) = u(e) for e = uv € Ty, {ws(e,u), ws(e,v)} = {0,v(e)} for
e =uv € T3, and dy, (v;T1) + du, (v; T2) + du, (v;T3) < b(v) for each v € V. The goal of
this problem is to find a feasible solution that minimizes its cost > ecr c(e). Relaxing the
constraints on weighted degree, we propose bi-criteria approximation algorithms based on the
iterative rounding. We also consider another problem that asks to minimize the maximum
weighted degree of vertices.
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(V,E) be an undirected graph. A weight function w : E x V — Q is defined on pairs of
edges and their end vertices, where Q.. is the set of non-negative rational numbers. Let § (v; E) denote

the set of edges in E incident with v € V. We define the weighted degree of a vertex v € V in G as

2 ees(v;m) W(e; ), and denote it by dy, (v; E). The weighted degree of G is defined as maxycy dy, (v; E).
The weighted degree of a vertex measures load on the vertex in applications. For constructing a net-

work with balanced load, it is important to consider weighted degree of networks. Take a communication



network for example, and suppose that w(e,v) represents the load for the communication device on a
node v to use a link e incident with v. Then the weighted degree of v indicates the total load of v for
using the network.

In this report, we consider a network design problem which has upper-bounds on weighted degrees
of vertices as its constraints while the objective is to compute a minimum cost graph with a prescribed
connectivity. In the above example of the communication network, this corresponds to the case in which
each node has an upper limit on the load that can be handled on the node.

The problem introduces three types of edges. For an edge e = wv of the first type, weights w(e, u)
and w(e, v) are given as inputs. For an edge e = uv of the second type, weight u(e) is given and we can
allocate it to u and v. In other words, we decide w(e,u) and w(e,v) so that w(e,u) + w(e,v) = u(e).
For an edge of the third type, weight v(e) is given and we can decide w(e,u) and w(e,v) so that
w(e, u) + w(e,v) = v(e) similarly for the second type while {w(e, u),w(e,v)} = {0,v(e)} must hold for
the third type.

For stating our problems formally, let us define several notations related to connectivity of graphs. For
a subset U of V and a subset F' of E, §(U; F) denotes the set of edges in F which join vertices in U with
those in V—U, and F'(U) denotes the set of edges in F whose both end vertices are in U. Let N be the set
of natural numbers. For a given set function f : 2V — Non V, a graph G/ = (V, F) is called f-connected
when [0(U; F)| > f(U) holds for every non-empty U C V. If f(X)+ f(Y) < f(XNY)+ f(XUY) or
FX)+fY) < f(X=Y)+ f(Y — X) holds for any X,Y C V, then f is called skew supermodular. With
a skew supermodular set function, f-connectivity represents a wide variety of connectivity of graphs such
as the local edge-connectivity.

Now we formulate our problem.

Weighted Degree Bounded Survivable Network Problem (WDBOUNDEDNETWORK): Let G =
(V, E) be an undirected graph where E is the union of disjoint sets E;, Es, and Es, and possibly contains
parallel edges. For those sets, weights wy : By xV — Q4, 0 : B2 — Q4 and v : E3 — Q. are respectively
defined. As inputs, we are given the graph G = (V, E = E; U F3 U E3) with the weights w;, 4 and v, an
edge-cost c: E — Q (Q is the set of rational numbers), a skew supermodular set function f : 2V — N,
and a degree-bound b: V' — Q4. A solution consists of F C E, weights w;(e, u) € Q4 and w;(e,v) € Q4
for each e = uv € F;, i € {2,3}, where F; denotes F N E;. We call wy (resp., w3) allocation of i (resp., v)
when wa (e, u) + wa(e,v) = p(e) for e = uv € Fy (resp., {ws(e,u), ws(e,v)} = {0,v(e)} for e = uv € F3).
Throughout this report, we let w : F' x V — Q.. refer to the function that returns w; (e, v) for e € F; and
v € V. The solution is defined to be feasible if G’ = (V| F) is f-connected, wo and ws are allocations of
p and v respectively, and degree constraint dy,(v; F) < b(v) for each v € V is satisfied. The goal of this
problem is to find a feasible solution that minimizes its cost Y- . c(e).

If f(U) =1 for all non-empty U C V, then the minimal solutions are spanning trees. We particularly
call such instances weighted degree bounded spanning tree problem (WDBOUNDEDTREE).

Feasible solutions of WDBOUNDEDTREE are Hamiltonian paths when E; = E3 = 0, wy(e,u) =
wi(e,v) = 1 for all e = wv € Ey, and b(v) = 2 for all v € V. This means that it is NP-hard to test
whether an instance of WDBOUNDEDTREE (and hence WDBOUNDEDNETWORK) is feasible or not. By
this reason, it is natural to relax the degree constraints and consider bi-criteria approximation algorithms.
We say that, for an instance of WDBOUNDEDNETWORK and some a, 3 > 1, a solution consisting of
F C E, an allocation ws of i, and an allocation ws of v is an (a, B)-approzimate solution if it satisfies

o > crcle) <amin{d  p cle) | F/ C E is in a feasible solution}, and
o dy(v; F) < Bb(v) forallv e V.

Define 6 as max{b(u)/b(v), b(v)/b(u) | uv € Es} if E5 # (), and 0 otherwise. Let  be 1 if E3 # 0, and
0 otherwise. For problems WDBOUNDEDTREE and WDBOUNDEDNETWORK, we propose algorithms
which achieve approximation ratios (1,4+36+x) and (2, 74560+ 2k) respectively in O(L(|V |+ |E|)) time,
where L is the time for solving a linear programming. Our algorithms take the approach successfully
applied to the bounded degree spanning tree problem by Singh and Lau [14] and to the bounded-degree



survivable network design problem by Lau et al. [10], which correspond to instances with uniform w; and
E; = FE5 =0 in our problems. Their approach is based on the iterative rounding originally used for the
generalized Steiner network problem by Jain [7]. Roughly illustrating, they iterate rounding fractional
variables in basic optimal solutions or removing constraints of a linear programming relaxation. The
key for guaranteeing the correctness of the algorithm is an analysis of the structure of tight constraints
which determine the basic optimal solutions. In this report, we show that this approach remains useful
even if the weighted degree is introduced.
In addition, we also discuss the following variation of the above problem.

Minimum weighted degree survivable network problem (MINIMUMWDNETWORK): An undi-
rected graph G = (V, E) with E = E{UE,UFE3, weights w1 : E1 xV — Qy, u: B2 —» Qy, v: E3 — Qy,
and a skew supermodular set function f : 2V — N are given. A feasible solution consists of a f-connected
subgraph G’ = (V, F) of G, an allocation ws : F; x V — Q4 of p, and an allocation w3z : F3 x V — Q4
of v. The objective is to minimize the weighted degree max,cy dy,(v; F) of G'.

Similarly for problem WDBOUNDEDNETWORK, we call instances with f(U) = 1 for all non-empty
U C V minimum weighted degree spanning tree problem (MINIMUMWDTREE).

For problems MINIMUMWDTREE and MINIMUMWDNETWORK, our algorithms achieve approx-
imation ratios 4 + k and 7 + 2k in O(L(|E| + |V| + log(W/%)) time if E; = (), where W =
> e—uwver; (W16, u) +wi(e,v)) + X .cp, ule) + X cp, v(e), and ¥ denotes the maximum denomina-
tor of all given weights w1, u and v. If E; # (), our algorithms achieve approximation ratios 7 + & + ¢ and
12+ 2K+ ¢ in O(L(|E| + |V| + log(W/(we))) time for an arbitrary € > 0, where w denotes the minimum
of all given weights w, pu and v.

Previous Works

The bounded degree spanning tree problem has been studied extensively in the last two decades [12,
8,9, 1, 2, 13]. For the uniform cost (i.e., c(e) =1 for e € E), an optimal result was given by Fiirer
and Raghavachari [3]. Their algorithm computes a spanning tree which violates degree upper-bounds
by at most one. For general costs, Goemans [5] gave an algorithm to compute a spanning tree of the
minimum cost although it violates degree upper-bounds by at most two. The algorithm obtains such a
spanning tree by rounding a basic optimal solution of an LP relaxation with the matroid intersection
algorithm. Afterwards an optimal result for general cost was presented by Singh and Lau [14]; Their
algorithm computes a spanning tree of minimum cost which violates degree upper-bounds by at most
one. As mentioned above, their result is achieved by extending the iterative rounding due to Jain [7],
who applied it for designing a 2-approximation algorithm to the generalized Steiner network problem.

After their algorithm, this approach is applied to several problems with degree bounds. Lau et a). [10]
considered the survivable network problem, and proposed an algorithm that outputs a network of cost
at most twice the optimal and the degree of v € V' is at most 2b(v) 4 3. This result was improved in Lau
and Singh [?]. Bansal et al. [?] considered the arborescence problem and survivable network problem
with intersecting supermodular connectivity. Kiraly et al. [?] generalized bounded degree spanning tree
to bounded degree matroid. They also considered degree bounded submodular flow problem.

There also are several works on the network design problem with weighted degree constraints. All of
these correspond to the case with E; = E3 = () and w (e, u) = wa = (e, ) for e = uv € E;. Ravi [11] pre-
sented an O(log |V|, log |V'|)-approximation algorithm to problem WDBOUNDEDTREE and an O(log [V])-
approximation algorithm to problem MINIMUMWDTREE. For problem MINIMUMWDTREE, Ghodsi
et al. [4] presented a 4.5-approximation algorithm under the assumption that G is a complete graph and
c is a metric cost (i.e., triangle inequality holds) while they also showed that it is NP-hard to approx-
imate it within a factor less than 2. Notice that our algorithm described in this report achieves (1,4)-
approximation to problem WDBOUNDEDTREE and 4-approximation to problem MINIMUMWDTREE
when E3 = E3 = (). Hence it improves these previous works.



Organization

The rest of this report is organized as follows. Section 2 presents our algorithms to problems WDBOUND-
EDTREE and MINIMUMWDTREE. The algorithms are derived from a good property of polytopes that
give a linear programming relaxation of the problems. Section 2 also shows that our analysis on the
property is tight. Due to the space limitation, discussion about problems WDBOUNDEDNETWORK and
MINIMUMWDNETWORK is omitted.

2 Spanning Trees with Weighted Degree Constraints

In this section, we let I stand for the set of an undirected graph G = (V, E) with £ = E; U E; U E3,
weights wy : B XV — Qy, p: E; —» Qp v: E3 — Q4, asubset Aof V, and b: A — Q4. Note that
A is a set of vertices whose weighted degrees are bounded by b. We denote by Pr(I) the polytope that
consists of vectors € QF and y € QE2UE)XV that satisfy

0<z(e) for all e € E, (1)

0 <wyle,u), yle,v) for all e =uv € E5 U Es3, (2)
y(e,u) + y(e,v) = z(e) for all e =uv € E5 U Ej, 3)
a(B) = V| - 1, (4)
z(E(U)) <|U|-1 for all U C V with 2 < |U], (5)

and
Z wi(e,v)z(e) + Z ule)y(e,v) + Z v(e)y(e,v) < b(v) for all v € A, (6)
e€d(v;Ey) e€d(v;E2) e€d(v;E3)
where 2(F') denotes ) . xz(e) for F C E. Remark that (5) with U = {u, v}, uv € E implies

z(e) <1 forall ecE. (7)
Also constraints (4) and (5) with U = V — v imply
z(d(v;E)) > 1forallveV, (8)

since 2(6(v; E)) = z(E) —2(E(V —v)) > (V| -1) - ([V —v| = 1) = 1.

Observe that Pr(I) with A =V is the polytope of a linear programming relaxation of problem WD-
BoUNDEDTREE. Although (5) has an exponentially many number of constraints, linear programming
over the polytope is solvable in polynomial time by using the ellipsoid method [1] or by transforming it
to a polynomial-size formulation [6].

For a vector z € Q¥, let E, denote {e € E | z(e) > 0}. We say that polytope Pr(I) is (1, B)-bounded
for some B > 1 if every extreme point (z*,y*) of the polytope satisfies at least one of the following:

e There exists a vertex v € V such that |6(v; Ez«)| = 1;

o There exists a vertex v € A such that |6(v; Ep«)| < 8.
If [6(v; Ex+)| = 1, then z*(e) = 1 holds for the edge e € §(v; E;-) by the equalities z(0(v; Eg-)) =
z(0(v; E)) > 1 and z(e) < 1.

In what follows, we see that the iterative rounding can be applied to problem WDBOUNDEDTREE
when Pr(I) is (1, 8)-bounded. By this and the fact that Pr(I) is (1, 3)-bounded (Theorem 3), we can

obtain an approximation algorithm for problem WDBOUNDEDTREE.
Now let us describe the algorithm which works under the assumption that Pp(I) is (1, 3)-bounded.

Algorithm for problem WDBOUNDEDTREE

Input: An undirected graph G = (V, E) with E = E{UE,UEj3, weights w; : EyxV — Qq, p: Ey — Q4,
v: E3 — Q4, an edge-cost ¢ : E — @, and a degree-bound b: V — Q.



Output: A solution consisting of a spanning tree ' C E of G, an allocation we : To x V. — Q4 of p
and an allocation ws : T3 x V' — Q4 of v, or message “INFEASIBLE”.

Step 1: Set A:=V and T := 0.

e Delete e = uv € E; from G if wy (e, u) > b(u) or if wy (e, v) > b(v).
e Delete e = uv € Ey from G if p(e) > b(u) + b(v).
e Delete e = uv € E3 from G if v(e) > max{b(u), b(v)}.

e Ife = uv € E3 and b(u) > v(e) > b(v), then move e from E3 to Ey with setting w; (e, u) := v(e)
and wi(e,v) := 0. If e € E3 and b(v) > v(e) > b(u), then move e from E3 to E; with setting
wi(e,u) :=0 and wi (e, v) := v(e).

If Pr(I) = 0, then output “INFEASIBLE”, and terminate;
Step 2: Compute a basic solution (z*,y*) that minimizes )" ., c(e)z*(e) over (z*,y*) € Pr(I).
Step 3: Remove edges in F — E « from E;

Step 4: If there exists a vertex v € V such that |6(v; Eg+)| = 1 (i.e., the edge e = uv € §(v; E,-) satisfies
z*(e) = 1), then add e to T and delete v from G. Moreover, execute one of the following operations
according to the class of e:

Case of e € Ey: If u € A, then set b(u) := b(u) — w (e, u);

Case of e € Ep: Set wa(e,u) := u(e)y*(e,u) and wa(e,v) := ple)y*(e,v). If u € A, then set
b(u) := b(u) — wa(e,u).

Case of e € E3: If y*(e,u) > y*(e,v), then set ws(e,u) := v(e) and ws(e,v) := 0. If y*(e,u) <
y*(e,v), then set ws(e,u) := 0 and ws(e,v) := v(e). If u € A, then set b(u) := b(u) —
v(e)y*(e,u).

Step 5: If there exists a vertex v € A such that |§(v; E-)| < 3, then remove v from A;

Step 6: If |[V| = 1, then output (T, ws,ws) as a solution, and terminate. Otherwise, return to Step 2.

Define 6 = max{b(u)/b(v),b(v)/b(u) | uv € Es} if E; # 0, and 6 = 0 otherwise. Moreover, define
k= 1if E3 # 0, and k = 0 otherwise. We let L denote the time for solving the linear programming over
Pr(I).

Theorem 1. If each Pr(I) constructed in Step 2 is (1, B)-bounded, then problem WDBOUNDEDTREE
is (1,1 + B(1 + 6) + k)-approzimable in O(L(|V| + |E|)) time.

Proof. Tt is clear that the algorithm described above runs in O(L(|V| + |E|)) time. In what follows, we
only see that the (1 + B(1 + ) + )-approximability of the algorithm, due to the space limitation.

Observe that the linear programming over Pr(I) is still a relaxation of the given instance after Step 1.
Hence the original instance has no feasible solutions when the algorithm outputs “INFEASIBLE”. Each
edge e = uv € E satisfies the following after Step 1:

e If e = uv € Ey, then wy(e,u) < b(u) and wi(e,v) < b(v);
o If e = uv € Ej, then p(e) < b(u) + b(v) < (1+ 60)b(u) and p(e) < b(u) + b(v) < (1 + 0)b(v);
o If e = uv € E3, then v(e) < b(u) and v(e) < b(v).

Now suppose that Pr(I) # 0 after Step 1. Let e; = w;v; denote the i-th edge added to T, I; =
(Gi = (Vi, EY), w1, 1,v, Ay, b;) denote I at the beginning of the iteration in which e; is added to T,
and (z7,y;) denote the basic solution computed in Step 2 of that iteration. We also let I, stand for T
immediately after Step 1 of the algorithm. Assume that e; is chosen by [6(vi; Ez:)] = 1 in Step 4 (i.e.,
Visi — Vi = {Uz})




By Steps 4 and 5, 4,11 C A; holds, and

bi(’U)"Uh(ei,’U) 1f1):ul € A and e; €E1,
bi(v) — p(es)y;(es,v) ifv=u; € Aande; € Es,
bi(v) —v(e)yi(e;,) ifv=wu; € Aande; € Es,

bi+1 (U) = (9)

bi(v) otherwise.

also holds for ¢ > 1.
Fix v as an arbitrary vertex. Consider Step 4 of the iterations during v € A. Let T” be the set of
edges that are added to T' during those iterations. By applying (9) repeatedly, we obtain

)2 Y wilenn)+ Y i)+ Y vle)yi(e).

e €6(v;TY) e; €6(v;T3) e €6(v;T3)

If e; € 6(v; Ez), then wa(e;,v) = u(ei)yf(es,v). If e; € 8(v; E3), then v(e)y(es,v) > ws(e;,v)/2
holds because even in the case of ws(e;,v) = v(e;), y}(e;,v) > y¥(ei,u) holds, and hence yr(es,v) >
(y; (s, u) + y;(e5,v))/2 = z}(e;)/2 = 1/2. Therefore,

Yo wlev)+ Y peyilenv)+ Y. vleyi(ev)

e; €5(v;TY) e; €5(v;T3) e, €5(v;T3)
2 du, (v; T7) + du, (0; Ty) + duy (v; T3) /2.

It implies that dy, (v; T") < b(v) holds if E3 = 0, and d,(v; T') < 2b(v) otherwise.

Consider the iterations after v is removed from A. Let 7" denote the set of edges that are added to
T during those iterations. When v is removed from A in Step 5, the number of remaining edges incident
with v is at most 3 by the condition in Step 5. Hence |§(v;T,)| < 3 holds. We have already seen that,
after Step 1, e = wv € Ej satisfies wi(e,v) < b(v), e = uv € B, satisfies wa (e, v) < p(e) < (1 + 0)b(v),
and e = wv € Ej satisfies ws(e,v) < v(e) < b(v). So dy(v;T") < B(1 + 0)b(v). Because dy,(v;T) =
duw(v; T') + dw (v; T"), we have dy, (v; T) < (14 B(1+6))b(v) if E3 = 0, and d,, (v; T) < (24 6(1+6))b(v)
otherwise. This completes the claim. O

Now we let W be 3° _,,c 5, (w(e,u)+w(e, V) + 2 eer, 1(€)+ e g, v(€), ¥ be the maximum denom-
inator of weights w, p and v, and w be the minimum of weights w, u and v. The following theorem shows
that the algorithm to problem WDBOUNDEDTREE gives an algorithm to problem MINIMUMWDTREE.

Theorem 2. Suppose that problem WDBOUNDEDTREE is (o, 3')-approzimable for some o’ and 3. For
an arbitrary € > 0, problem MINIMUMWDTREE is (3’ +¢)-approzimable in O(L(|E|+|V|+log(W/(we)))
time. If E3 = 0, then it is (3'-approzimable in O(L(|E| + |V | + log(W/v)) time.

Proof. For an r € Q, define G, as the subgraph obtained from G by deleting each edge e = uwv € E;
such that max{w: (e, u),w;i(e,v)} > r, each edge e € E5 such that u(e) > 2r, and each edge e € E;
such that v(e) > r. Let b, : V — Q, be the function such that br(v) = r for all v € V, and
I, = (Gr, w1, p,v, A= V,b,).

We denote min{r € Q4 | P(I;) # 0} by R, and the minimum weighted degree of the given instance
by OPT. For given ¢, define ¢ = we. Since w < OPT, we have ¢/ < eOPT. Since the characteristic vector
of an optimal solution to the given instance of problem MINIMUMWDTREE satisfies all constraints of
Pr(lopr), we have R < OPT. It is possible to compute a value R’ such that R < R < R+ ¢ by the
binary search on interval [0, W], which needs to solve the linear programming over Pr(I,) log(W/¢')
times.

Let T be an (o, §)-approximate solution to the instance of problem WDBOUNDEDTREE consisting
of Ig: and an arbitrary edge-cost c. By the B-approximability of T, we have dy(v;T) < Bbr (v) <
B(R +€) < B(1 + €)OPT for any v € V. This implies that T is a B(1 + ¢)-approximate solution to
problem MINIMUMWDTREE.
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Figure 1: A counterexample for (1,2)-boundedness of Pr(I)

When E; = 0, set € so that ¢ < ¢ holds. In this case, if R’ satisfies R < R’ < R + ¢, then
R’ = R. Such R’ can be computed by solving the linear programming over log(W/¢') = log(W/) times.
Hence we have d,, (v;T) < Bbr/(v) < BOPT for any v € V, which implies that T is a S-approximate
solution. O

Now we see that Pr([) is (1, 3)-bounded. First let us observe that the key property of tight constraints
observed in [14] also holds in our setting. We omit the proof due to the space limitation.

Lemma 1. For any extreme point (z*,y*) of Pr(I), there exists a laminar family L = {U C V |
\U| > 2} (i.e., any U,U’ € L satisfy either U C U, U' C U, or UNU’ # 0) and X C A such that
|Ez-| < |L]+1X]. O

Theorem 3. Polytope Pr(I) is (1,3)-bounded for any I.

Proof. Suppose the contrary, i.e., all vertices v € V satisfy |§(v; Ey-)
|6(v; Ez+)| > 4. Then |Ez-| > (2(|V] — |A]) + 4|A])/2 = |V| + |A].
On the other hand, let £ be an arbitrary laminar family of subsets U of V with |U| > 2, and X be
an arbitrary subset of A. By their definitions, |£| < |V| -1 and |X| < |A| hold. Therefore we have
|L|+ |X| < |V|+ |A| =1 < |Ey+], a contradiction to Lemma 1. O

> 2 and all vertices v € A satisfy

Corollary 1. Problem WDBOUNDEDTREE is (1,4 + 360 + k)-approzimable in O(L(|V| + |E|)) time.
Problem MINMUMWDTREE is (4 + &)-approzimable in O(L(|E| + |V| + log(W/v)) time if E» = 0, and
is (7 + & + €)-approzimable in O(L(|E| + |V| + log(W/(we))) time for any € > 0 otherwise.

Proof. Immediate from Theorems 1, 2 and 3. O

It is a natural question to ask whether the (1,3)-boundedness of Pr(I) can be improved to (1,2)-
boundedness. Let us discuss this assuming that Fy = E5 = 0. Unfortunately (1,2)-boundedness does
not hold even if wi(e,u) = wi(e,v) = 1 for all e = uv € E; as mentioned in [14]. Singh and Lau [14]
weakened the (1, 2)-boundedness by replacing its first condition with the following:

e There exists an edge e € E such that z*(e) = 1.

They then designed their algorithm by observing that the property holds for more general polytopes than
Pr(I). This approach is also not useful for our setting because there exists a counterexample, which we
will give in the rest of this section.

Let G be the graph in Figure 1. We let wy (e, u) = wi(e,v) for all e = uv € E; and integers beside
edges in the figure represent their weights. Rational numbers beside vertices represent the values of b
for them. Let A =V, and the set of |E| = 6 tight constraints consist of constraints (4), (5) for the set
of white vertices and for the set of black vertices, and (6) for all vertices. Then these tight constraints
determine an extreme point z* of Pr(I) such that z*(e) = 2/3 for edges represented by solid lines,
and z*(e) = 1/3 for edges represented by dotted lines. Clearly, z* (e) < 1 for any edge e € E and
minyea=v |0(v; By« )| = 3.
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