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Abstract In this paper, we deal with a vertex capacitated arborescence packing prob-
lem. The input consists of a directed graph, a root vertex, a vertex capacity function
and edge consumption functions. The problem is to find the maximum number of rooted
arborescences such that the total consumption of arborescences at each vertex does not
exceed the capacity of the vertex. The problem is one of the network lifetime problems
that are among the most important issues in the context of sensor networks. We reveal
the computational complexity of the problem in several cases; e.g., the given graph is
acyclic or not, the instance is metric dependent.

1 Introduction

In this paper, we consider a vertexr capacitated arborescence packing problem. The input consists of
a directed graph, a root vertex, a vertex capacity function and edge consumption functions. The
problem is to find the maximum number of rooted arborescences such that the total consumption
of arborescences at each vertex does not exceed the capacity of the vertex.

Formally, let G = (V, E) be a digraph. We call a subset A C F spanning arborescence if (V, A) is
a directed spanning rooted in-tree. Let R be the set of nonnegative real numbers. Let h : E — R4
and t : £ — Ry be a head and a tail consumption function on directed edges, respectively. The
consumption ¢(A,v) of an arborescence A at a vertex v € V is defined as

c(A,v) = Z h(e) + Z t(e),
e€dy (v) eeéj(v)

where 65, (v) (resp., 67, (v)) is the set of edges in E’ entering (resp., leaving) v. We call the first term
of the above equation head consumption, and the second term tail consumption. Let b: V — R,
be a vertex capacity function. The vertex capacitated arborescence packing problem is to find the
maximum number of arborescences A rooted at the given root r € V such that

Z c(A,v) <b(v), Yve V.
AeA



Note that the set of arborescences A is a multiset; i.e., it may include same arborescences.
The aim of this paper is to reveal the computational complexity of several variations of the
problem. Our results are summarized as follows:

e packing one arborescence

— without head consumptions: polynomially solvable
— with head consumptions on acyclic graphs: strongly NP-hard

— on complete graphs embedded in a space with head consumptions depending only on
the distance between end vertices: strongly NP-hard

e packing arborescences (in general)

— without head consumptions

* on acyclic graphs: polynomially solvable
* on general graphs: strongly NP-hard

* on complete graphs embedded in a space with tail consumptions depending only on
the distance between end vertices: NP-hard

— with head consumptions: strongly NP-hard

Recently, several kinds of graph packing problems are studied in the context of ad hoc wireless
networks and sensor networks. They are called network lifetime problems. Among the important
problems in this category are the vertex capacitated spanning subgraph packing problems consid-
ered in [1]. In their formulation, head consumptions are not considered, and the consumption at
each vertex is the maximum tail consumption among the edges leaving the vertex. There are varia-
tions of the problem with respect to additional conditions on the spanning subgraph such as strong
connectivity, symmetric connectivity, and directed out-tree rooted at a given vertex. They dis-
cussed the hardness of the problem and proposed several approximation algorithms. Our problem
without head consumptions is another kind of the vertex capacitated spanning subgraph packing
problem; the spanning subgraphs are arborescences.

These network lifetime problems, including our problem, are similar to the well-known edge-
disjoint spanning arborescence packing problem: Given a directed graph G = (V,E) and a root
r in V, find the maximum number of edge-disjoint spanning arborescences rooted at r. Note
that the given graph G’ may have parallel edges. The edge-disjoint spanning arborescence packing
problem is solvable in polynomial time [2, 6]. Its capacitated version is also solvable in polynomial
time [3, 7, 8].

The rest of this paper is organized as follows. In Section 2, we show the computational com-
plexity of a special case of our problem, packing one arborescence. In Section 3, we show the
complexity of the problem in general.

In this paper, we assume that the given root vertex is reachable from all other vertices; otherwise
the vertex capacitated arborescence packing problem is obviously infeasible.

2 Packing One Arborescence

In this section, we consider the decision problem of the vertex capacitated one arborescence packing
problem; given an instance of the vertex capacitated arborescence packing problem, decide whether
the instance has a packing with one arborescence.

We first consider the problem without head consumptions; ie., h(e) = 0, Ve € E. In this
case, the consumption of an arborescence at each vertex is caused by exactly one edge leaving the
vertex. Let E' C E be the set of all edges whose tail consumptions are at most the capacity of



their tail vertices; i.e., Ve' € E’, t(e') < b(tail(e')), where tail(e) is the tail vertex of a directed edge
e. Because the vertex capacitated one arborescence packing problem on (V| E) is equivalent to the
problem of finding an arborescence in (V, E’), the following lemma holds.

Lemma 1 The vertex capacitated one arborescence packing problem without head consumptions is
solvable in O(|E|) time.

Next we consider the problem with head consumptions. In this case, the decision problem of
the vertex capacitated one arborescence packing problem is strongly NP-hard.

Theorem 1 The decision problem of the vertex capacitated one arborescence packing problem is
strongly NP-hard. The problem is still strongly NP-hard, even when the given graph is acyclic and
there are no tail consumptions.

Proof (Outline): We show that the bin-packing problem polynomially transforms to the above
decision problem without tail consumptions. The decision problem of the bin-packing is known to
be strongly NP-complete [4].

Let {1,...,k} be the set of bins whose capacities are 1. Let n be the number of items to be
packed into bins and s; (i = 1,...,n) be the sizes of items satisfying 0 < s; < 1.

For the set of k bins, we introduce a set of vertices U := {uy,...,ux}. For each item i, we
introduce a vertex w;. Let W := {w,...,w,}. We also introduce a root vertex r. Edges are
emanating from each vertex in W to all vertices in U, and emanating from each vertex in U to the
root 7. We set a head consumptions h(e) := s; if the edge e is leaving w; € W. We set the capacity
of a vertex to 1 if the vertex corresponds to a bin, and 0 otherwise. See Figure 1 for an example.
Then the arborescence packing has a feasible packing of size one if and only if the bin-packing has
a feasible packing. |
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Figure 1: An example of the transformation from the bin-packing

The problem is strongly NP-hard when the graph is complete and embedded in the 1-dimensional
space R!, and the head consumption of each edge depends only on the distance between its end
vertices. Though we showed that the bin-packing problem polynomially transforms to this special
case, we omit the details.

3 Packing Arborescences (in General)

In this section, we deal with the general case of the vertex capacitated arborescence packing prob-
lem. From the results in the previous section, the vertex capacitated arborescence packing problem
with head consumptions is strongly NP-hard. We therefore concentrate on the case without head
consumptions in this section.

We first consider the case that the given graph is acyclic. When a given graph is acyclic, an
arborescence of the graph is easily found.



Proposition 1 When a graph G = (V, E) is acyclic, a set of edges E' C E is an arborescence if
the outdegree in (V, E') is one for all vertices except for the root.

From Proposition 1, we can easily see that the vertex capacitated arborescence packing problem
without head consumptions is solvable in O(|E|) time.

Lemma 2 When the given graph is acyclic and there are no head consumptions, the vertex capac-
itated arborescence packing problem is solvable in O(|E|) time.

Proof: Let G = (V, E) be the given graph. Let 7 € V be the given root vertex. For allv € V'\ {r},
we let emin(v) be an edge leaving v such that the tail consumption is minimum among all edges
leaving v; i.e.,

emin(v) 1= € € 05(v) such that t(e) < t(e'), Ve’ € 55 (v).

Then the set of edges {emin(v) : v € V' \ {r}} is an arborescence from Proposition 1. O

Theorem 2 The following problem is strongly NP-hard: Given an instance of the vertex capaci-
tated arborescence packing problem and a number n, decide whether the instance has a packing of
size n. The problem is still strongly NP-hard, even when there are no head consumptions.

Proof (Outline): We show that the bin-packing problem (known to be strongly NP-complete)
polynomially transforms to the above decision problem without head consumptions.

Let {1,...,k} be the set of bins whose capacities are 1. Let n be the number of items to be
packed into bins and s; (i =1,...,n) be the sizes of items satisfying 0 < s; < 1.

For the set of k bins, we introduce a set of vertices U := {us,...,ux}. For an item i, we
introduce a vertex w;. Let W := {w,..., w,}. We also introduce a root vertex r. Edges are
emanating from each vertex in W to the root r, and connecting vertices in U and W each other,
and connecting all vertices in U. We set a tail consumption s; to edges entering w;, and set a tail
consumption 1 to edges entering the root. We set the capacity of each vertex to 1 except for the
root. See Figure 2 for an example. Then the arborescence packing has a feasible packing of size n
if and only if the bin-packing has a feasible packing. |
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Figure 2: An example of the transformation from the bin-packing

In the following, we show that the vertex capacitated arborescence packing problem is still hard
when the problem is metric dependent.

Definition 1 (Vertex Capacitated Metric Dependent Arborescence Packing) A vertex ca-
pacitated metric dependent arborescence packing problem is a special case of the vertex capaci-
tated arborescence packing problem such that the given graph is complete and embedded in the
d-dimensional space R? and that the tail consumption t((v,w)) of each edge (v,w) depends only on
the distance between its end vertices v and w.

To show the hardness of the problem in this case, we define a Difference-Increasing Sequence
Partition problem (DIS Partition), which is a special case of the set partition problem.



Definition 2 (Difference-Increasing Sequence Partition Problem) Given a set of numbers
S = {s1,82,..., 8} such that

0< s1 < 82/2, (1)
S — Si—1 < 8i+1 — Si (i=2,3,...,n—1), (2)

the difference-increasing sequence partition problem is to decide whether there exists a subset S’ C S

such that
Z 8 = Z Sj.

s;€8" s; ¢S’
Lemma 3 DIS Partition is NP-complete.

Proof (Outline): The set partition problem, known to be NP-complete [4], transforms to DIS
Partition in linear time. |

Let (z1(v),...,z4(v)) € R be the d-dimensional coordinate of the vertex v. We denote the L*
norm between v and w as LF(v,w) = (|z1(v) — 21(w)[¥ + - - + |24(v) — zq(w)|F)V*.

Theorem 3 The following problem is NP-hard for any fized constant k € {1,...,00}: Given a
number n and an instance of the vertex capacitated metric dependent arborescence packing prob-
lem whose tail consumption is L* norm between its end vertices, decide whether the instance has
an arborescence packing of size n. The problem is still NP-hard, even when there are no head
consumptions and the given graph is embedded in the 1-dimensional space R!.

Proof: First, we show that DIS Partition polynomially transforms to the above problem such that
there are no head consumptions and the given graph is embedded in R!. DIS Partition was shown
to be NP-complete in Lemma 3.

Let S = {s1,82,...,5n} be an instance of DIS Partition. For each number s;, we introduce a
vertex u; whose coordinate is s;. Let U := {uy, ..., un}. We introduce a set of vertices W := {w, ug}
whose coordinates are 0, and we introduce a root vertex r whose coordinate M is sufficiently large.
All pairs of vertices are connected each other. The tail consumption of each edge is the distance
between its end vertices. The capacity b(v) of each vertex v is defined as follows:

0 (v=r),
b(v) :=¢ D 8i/2 (vew),
M+ (n—2)s;—(n—1)s-1 (v=u; €U),

where sg = 0. See Figure 3 for an example (n = 4).
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Figure 3: An example of embedded vertices

Suppose the metric dependent arborescence packing has a packing {41,..., A, }. Because M is
sufficiently large, edges connecting vertices in W and r never appear in the arborescences. Because
b(u;) = M + (n —2)s; — (n—1)s;_1 (u; € U) (and M is sufficiently large), for an index i, an edge
(ui, ) appears at most once in the arborescences. From the setting of b(u;), once the edge (u;,r)



is used, (u;,u;—1) must be used in the rest of arborescences (note that u;_; is the nearest vertex
of u;). As a result, for i = 1,...,n, A; = {(u;,7), (uo, w;), (W, up)} U {(uj,uj—1) : 3 > 0,5 # i} or
Ai = {(wi,7), (w,u;), (o, w)} U {(uj,uj_1) : j > 0,5 # i}. See Figure 4 for an example (i = 3).
Then DIS Partition has a feasible subset S’ composed of numbers s; such that (ug,u;) appears in
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Figure 4: An arborescence of a feasible packing

these arborescences. Similarly, the opposite holds.
When the graph is embedded in R? and the tail consumption is L* norm, the above 1-
dimensional case is included. d

In Theorem 3, we assumed that the tail consumption of the edge (v, w) is L*(v, w). We extended
the above result to the case that the tail consumption is (L* (v, w))* for any positive constant o. We
omit the details here because the idea is similar to the above proof. These assumptions are quite
natural in the context of wireless radio networks, because the radio intensity decreases according to
the distance [5]. In other words, as the distance between vertices becomes larger, a radio transmitter
consumes more energy.

We leave open the strong NP-hardness of the vertex capacitated metric dependent arborescence
packing problem without head consumptions.
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