FEEREN LB B
IPSJ SIG Technical Report

AL TR 3610 2 BRI RE

NE FZ
FORUR R S R T AR
AV 2 —F BEER
yato@is.s.u-tokyo.ac.jp

B =

FIARRARE (ASP) &) DX, BIBEDA L A F U AL L b LA EZD Wi B OfE RoFD &
)b DThD, ASP OFERMITICET 2 1%EIZ £/2+6 D& LT ASP 2&t23HY . Z Bk
(ZMEBEE) KL TERI D, AHETIE, HEESBH THLRALH NS —LTHS QBF ¥—
L78 PSPACE IS5 85 BMEEY 5 2 1cBW\ T ASP 554£L 22 2L #7T, Y07 7 A TiE
—ANRANG — AT BEE)] OZRTED ASP BRI RDZEBEISRENTWS, DI LT, £E
RFHRO N —b L BEEAXFEO— AT — L DOEMENRSFES 7 A DI E FREMBEY 5 2 2R0n
T RALTH T & 2TBL TW5,

Another Solution Problems in Alternating
Polynomial Time
Takayuki YATO

Department of Computer Science
Graduate School of Information
Technology and Science
The University of Tokyo
yato@is.s.u-tokyo.ac.jp

Abstract
The Another Solution Problem (ASP) is the problem to find a solution other than the given ones.
One of the important tools for analyzing the computational complexity of ASPs is ASP-completeness,
which is defined for function problems (multivalued functions). This study shows that QBF Game,
an artificial two-player game well known in the complexity, is ASP-complete in a function problem
class which corresponds to PSPACE and in which (a version of) Sokoban is also ASP-complete.
This result suggests that the equivalence between two-player games with polynomial duration and

2008 —AL—120
200871177

one-player puzzles with superpolynomial duration holds in the world of the function problems.

1 Introduction

For a function problem X, ASP of X denotes the
following problem: given an instance of X and some
solutions to the instance, find a solution other than
the given ones. (Here function problems are for-
mulated as multivalued functions.) ASPs of some
specific problems have appeared sparsely in the con-
text of computational complexity. For instance, Pa-
padimitriou [2] shows that the ASP of the Hamil-
tonian Circuit problem is NP-complete in contrast
to the fact that the restricted case for cubic graphs
is trivial.

Ueda and Nagao [7], in contrast, first regarded
ASP as a new class of problems (and used the term
ASP) in their complexity analysis of a type of puz-
zle Nonogram. Moreover they pointed out that ASP
has close relation to the task of designing problems
for puzzles requiring uniqueness of solutions, since

the work for checking a newly made puzzle problem
does not have any solution other than intended one
can clearly be viewed as an instance of ASP. They
also showed that a special kind of reduction is a use-
ful tool for examining complexity of ASPs; that is a
parsimonious reduction that allows efficient trans-
formation of solutions. (Similar to function-parsi-
monious reductions that we use in this study but
in weaker form.)

Later Yato and Seta [8] introduced the notion of
ASP-completeness, which is the completeness with
respect of the ‘strongly’ parsimonious reducions,
and proved the completeness (in class FNP) of
some well-known puzzle types, including Sudoku.
The fact that a function problem X is ASP-com-
plete in FNP implies the NP-completeness of the
decision version of X as well as the NP-complete-
ness of the ASP of X. (Note that the original prob-
lem can be viewed as a special case of ASP where

®)

the number of given solutions is zero.) The way to
prove the ASP-completeness of X is to establish a
function-parsimonious reduction from some ‘canon-
ical’ complete problem such as 3SAT to X. This
method has an advantage in that it often enables
one to prove the NP-completeness of ASPs using
existing results of reductions without actually con-
sidering the ASPs at all since in many cases reduc-
tions between languages can be easily modified to
be function-parsimonious.

It is worthy of noticing that function-parsimo-
nious reductions are defined in function problems
rather than languages and thus ASP-completeness
is defined for function problem classes (such as
FNP). So far function problem classes have been
studied mostly from theoretical interest (refer to
Selman’s survey [3] for such studies). Our study is
different in that it is aimed at the analysis of ASP,
which has practical interest in the realm of puzzle
design.

However, there are popular and amazing puz-
zles outside the level of NP in our world. One
type of such examples is those regarding motions.
This type includes block-pushing puzzle such as
‘Sokoban’ and block-moving puzzle such as ‘Ruch
Hour’. The decision of solvablity of such puz-
zles lie in the class PSPACE due to the fact
that the length of solution can grow superpoly-
nomially. Seta and Yato [4] extended the theory
of ASP to be applicable for the problems outside
NP. One of the major obstacles in such exten-
sion is absence of the suitable definition of multival-
ued function classes that correspond to the higher
language classes. They introduced a new type of
transducer, called OB-transducer, which is a trans-
ducer with restriction on the way to output. Then
they defined a class FNPSPACE, . using OB-
transducers and proved that the three-dimensional
version of Sokoban is ASP-complete in that class.
The class FNPSPACE,_qy; is so carefully defined
that it captures the nature of Sokoban and other
block-moving puzzles in that the solution can be
extremely long but verifiable in polynomial time
in output length. The ASP-completeness signifies
the defined class suitably captures the nature of
Sokoban and its solution definition.

The other type of puzzle that lies outside NP
is finding a winning strategy for the player to move
next when given a position of a two-player game,
such as Chess studies and Tsume-Shogi. Then
we use as a natural definition of solutions a tree
called trace as defined in [5]. Two-player games
are in complexity theory formalized as alternating
computation [1]. When a game has duration (the
number of moves) bounded in polynomial in input
length then it corresponds to alternating polyno-

mial time computation, and the class of languages
which can be decided by such computation coin-
cides with PSPACE (1], which is the same as one-
player puzzle with superpolynomial duration such
as Sokoban. Then it will be of interest whether
this equality holds in the world of function prob-
lems: Our present study answers this question in
affirmative way. That is, we prove that QBF-game
(an artificial two-player game with polynomial du-
ration) is ASP-complete when a modified form of
trace is employed as solutions.

2 Preliminaries

2.1 Function Problems

We follow the framework for function problems and
their complexity that is proposed by Selman [3].

Let £* be a fixed alphabet. A function problem
is formulated as a partial multivalued function from
¥* to X* (we simply call it a multivalued function
thereafter).

For a multivalued function f, we write f(z) — y
when y is a value of f(z) (that is, y is a solution
to instance x). Moreover, we define the following

notations:

o the solution set of f to an instance z: set-f(z)

{y| f(z) = y}.

o the graph of f: graph(f) = {(z,9) | f(z) — y}.

o the domain of f: dom(f) ¥ {z | 3y. f(z) — y}.

A multivalued function f is called polynomially-
balanced when there is a polynomial p such that
lyl < p(|z|) holds for all = and y satisfying f(z) —
y. A ezponentially-balanced function is defined in
an analogous way.

A computation model for multivalued functions
is a transducer, which is a Turing machine with a
write-only output tape. A transducer may be deter-
minstic or nondeterministic. For a transducer M,
we define a multivalued function M(-) as follows:
M(z) — y if and only if M halts in an accept-
ing state on an input z and leaves y on the output
tape when it halts. When M is nondeterministic,
the function M(-) is multivalued generally. We say
that M represents a multivalued function f when
M(-) is equal to f.

2.2 Two-Player Games

Here we give a formal definition of two-person
games, based on [5].

Definition 2.1. A (two-person perfect informa-
tion) game G is a triple (Py, P2, R), where

e P (resp. P2) is the set of positions where
Player 1 (resp. 2) is to move.

e Ris a subset of (P x P;) U (P, x Pp), and
means the set of all legal moves.

The winning positions of Player 1 is defined as
follows.

Definition 2.2. Let G = (P;, P2, R) be a game.
The set of winning positions (with respect to
Player 1) of G, denoted as W(G), is defined as fol-
lows:

e W_1(G):=0.

o Wi(G) :=W;_1(G)

(7r1 e 772) €R
U{?\'1 epP ’ Jmo Epz(/\ﬂ_2 c VVi-l(G)
(me —» m) €R

Ulme € Py|Vm EP1<=>7r1€Wi_1(G) .

o W(G) = U0 WilG).

Then a tree T constructed as follows (called
trace there) is considered as solution of a two-person
game G:

o T is a part of AND/OR tree consisting of the
positions in W(G) (the winning positions of
Player 1).

o A position 7 of Player 1’s turn in T has one
child 7’ such that 7 — 7/ is legal.

e A position 7 of Player 2’s turn in T has as
children all the positions 7’ such that 7 — 7’
is legal.

Definition 2.3. The QBF Game is the game
(P1, Py, R), where P1, P,, R is defined as follows:

o P is the set of all quantified boolean formulas
in prenex form with fully alternating quanti-
fiers starting with 3.

o P, is the same as Pj, except that quantifiers
start with V.

e R={(rrn)ePixP|m—-7n}U{(s.nm)e
P, x P, | m — 7'}; where legal moves m — pi’
is declared as follows: m — pi’ holds if and
only if 7/ is consructed from 7 by removing
its first quantified variable, assigning 0 or 1
to that variable and reducing the body by fol-
lowing rules: 0 =1,0Az =0,0Vz = z,
etc. There is exceotions when the reduced ex-
pression results in constants: Player 1 cannot
move to constant 0 and Player 2 cannot move
to constant 1. Note that if an assigned value
of a variable is irrevant in the body expression
then there is only one choice.

3 Theory of Another Solution
Problem

3.1 Definition of ASP

In this section we describe the theory of Another
Solution Problem (ASP).

Definition 3.1. Let f be a multivalued function.
The n-ASP of f, denoted ASP™-f, is the multival-
ued function described as follows:

e A well-formed instance of ASP"-f is (the
string which encodes) a pair (z,S) where
z € X¥* is an instance of f, |S| = n and
S C set-f(x).

e The solution set is defined as follows:

set-(ASP™-f)(x, S) & set-f(z) — S. (1)

One of our main tools for investigating the com-
plexity of ASPs is function-parsimonious reduc-
tions, which are parsimonious reductions with the
condition that the transformation of solutions is
tractable.

Definition 3.2. Let f and ¢ be multivalued func-
tions. A function-parsimonious reduction from f
to g is a triple (¢, ¢, ¢B) satisfying the following
conditions:

e Let ¢;(z) = z’. Then there is a bijection ¢,
from set-f(z) to set-g(z').

e If f(z) — y then ¢r(z,y) = d.(y).

o If f(z') — y then ¢(z,y') = ¢7 (y).

When all of ¢, ¢p, and ¢ are computable
in polynomial time, we say (¢1,¢r,¢B) is a
polynomial-time function parsimonious reduction
from f to g and write f <gy g via (¢1, ¢r, ¢B)-

The existence of bijection ¢, implies that the in-
stance transformer ¢; preserves the number of solu-
tions and thus function-parsimonious reducions are
a special case of parsimonious reducions. ¢ and ¢g
are the forward and backward solution transformers
respectively.

Proposition 3.1. Let f and g be multivalued func-
tions. If f <¢gn g then ASP™-f <¢y ASP™-g for any
nonnegative integer n.

Proposition 3.2. For any multivalued function
f and nonnegative integers m and n, we have
ASPm_ASPn_f Sf# ASPm+n_f

Combining the two propositions above, we ob-
tain the following important result.

Theorem 3.3. Let f be a multivalued function. If
f <tz ASP!-f, then for any nonnegative integer n
we have f <gu ASP™-f.

3.2 ASP-completeness

ASP-completeness is completeness with respect to
function-parsimonious reductions, and defined as
follows:

Definition 3.3. Let f be a multivalued function
and F be a function class. A multivalued function
f is ASP-complete in F (ASP-F-complete) if and
only if f € F and g <gx f for any g € F.

This definition of ASP-completeness is slightly
modified from that used in [8] in two points: (1) we
use function-parsimonious reductions instead of old
‘ASP-reductions’; (2) ASP-completeness is defined
for any function class not restricted to FNP.

The following propositions are straightforward
from the definitions.

Proposition 3.4. Let f and g be function problems
in a class F. If a problem f is ASP-F-complete and
f <tx g holds then g is also ASP-F-complete.

First we show the most important property of
ASP-completeness.

Theorem 3.5. Let F be a function class and sup-
pose there is a multivalued function f satisfying the
following condition:

f is ASP-F-complete and f <gg ASP-f. (2)
Then for any ASP-F-complete multivalued func-
tion g and any nonnegative integer n the problem
ASP™-g is ASP-F-complete.

Proof. From f <gu ASP!-f and Proposition 3.3 we
have f <gx ASP™-f. Since f and g is ASP-F-com-
plete we have f <¢x g and applying Proposition 3.1
to it we obtain ASP™-f <y ASP™-g. Combining
both relations shows f <gu ASP™-g, and since f is
ASP-F-complete g is so. .

In many cases some ‘canonical’ ASP-complete
problems in a class are expected to satisfy the prop-
erty (2) and in such a class ASP-completeness of
a multivalued function automatically derives ASP-
completeness of n-ASP.

Next we argue the relation of ASP-completeness
and completeness of languages.

Proposition 3.6. Let F be a function class.
When a multivalued function f is ASP-F-complete,
dom(f) is dom(F)-complete (under many-one re-
ductions). Here dom(F) is defined as {dom(f) |
feF}.

From Theorem 3.5 and Propostion 3.6, we have
the following proposition:

Corollary 3.7. Let F be a function class and sup-
pose there is a multivalued function f satisfying (2).
Then for any ASP-F-complete multivalued function
g and any nonnegative integer n dom(ASP"-g) is
dom(F)-complete.

4 Function version of

PSPACE

Here we provide a function class that is analogous to
PSPACE and captures the nature of trace finding.

4.1 OB-transducers

OB-transducers are transducers which has a restric-
tion on the way that they output a symbol and de-
fined as follows:

Definition 4.1. An OB-transducer is a nondeter-
ministic transducer M which satisfies the following
conditions:

e The states of finite state control are classi-
fied into four types: accepting states, reject-
ing states, deterministic states and nondeter-
ministic states. When M enters either of the
former two types of state, M halts.

e A transition from a deterministic state is al-
ways deterministic and M does not write any
symbol to its output tape in such a transition.

e A transition from a nondeterministic state has
nondeterministic options, and there is a one-
to-one correspondence between the set of op-
tions and the alphabet 3. Whenever a option
is chosen the corresponding symbol in ¥ is
written to the output tape. That is, the tran-
sition function can be formulated as a func-
tion that maps a pair of a local configuration
and an output symbol to the next local con-
figuration.

The multivalued function f which M represents is
defined in the same way as ordinary nondetermin-
stic transducers: M(z) — v if and only if M halts
in an accepting state on an input = with leaving y
on the output tape.

Although the definition requires that moves
with output must be nondeterminitic, an OB-
transducer actually can output a symbol a deter-
ministically, by branching nondeterministically and
immediately rejecting on all the branches but the
one that output a.

The next fact suggests importance of consider-
ing OB-transducers.

Proposition 4.1. The class of multivalued func-
tions which can be represented by an OB-transducer
running in polynomial time is equivalent to FNP.

An important property of FNP problems as op-
posed to NPMV ones are that they can be verified
in polynomial time. This property relates the prob-
lem to solve a Sudoku-like puzzle to the class FNP,
since solutions of such a puzzle can also be verified
easily. When we think of the problem of finding
traces, we notice the following property: although
the length of a solution can be exponential in the
instance size, it can always be verified in polynomial
time with respect to the sum of the lengths of the
instance and the solution. It means that the class of
multivalued functions representable by polynomial-
space transducers is not suitable since the graph
of a multivalued function in such a class does not
always belong to P (unless P = PSPACE).

The reason that a multivalued function in such
classes is not verifiable efficiently is that some infor-
mation on which choice a transducer took in non-
deterministic branches does not appear in the re-
sulted output. If the choice is always recorded in
the output, then the verification of a solution can
be done in the same time as the transducer took for
outputting the solution. Hence the Proposition 4.1
holds.

As for multivalued functions corresponding to
PSPACE, however, we have another issue. Even if
the time needed to verify a function can be bounded
by the running time of an OB-transducer that repre-
sents the function, the running time of polynomial-
space bounded OB-transducers is not bounded in
polynomial neither in the input length nor the out-
put length: it could be arbitrarily large compared
to the input since a machine could loop many times
and then halt, and it could be exponentially long in
the output length since a machine could continue
to run long deterministically without outputting a
symbol. Thus we need a further restriction that the
running time of the OB-transducer is not extremely
long compared to the output length.

4.2 Definition of the class

FNPSPACE, out

From the argument above we define a function prob-
lem version of PSPACE using OB-transducers as
follows:

Definition 4.2. o We define FNPSPACE as
the class of multivalued functions f which sat-
isfies the following condition: there exists a
nondeterministic transducer M which repre-
sents f and runs in exponential time and poly-
nomial space with respect to the input length.

e We define FNPSPACE o as the class of
multivalued functions f which satisfies the
following condition: there exists a nonde-
terministic transducer M which represents f
and runs in exponential time and polynomial
space with respect to the input length and in
polynomial time with respect to the length of
an output.

The class FNPSPACE is a natural PSPACE
analogue of NP, but here we utilize the
class FNPSPACE, ., which imposes an ad-
ditional restiction (hence FNPSPACE, ., C
FNPSPACE).

Here we state the reason that we regard
FNPSPACE, ot as a class that well captures the
difficulty of Sokoban. First, the class naturally cor-
responds to PSPACE.

Proposition 4.2. dom(FNPSPACE) =
dom(FNPSPACE,, ,y¢)
= PSPACE.

Moreover any problem in FNPSPACE, o is
efficiently verifiable.

Proposition 4.3. For any multivalued function f
in FNPSPACE o, the graph of f belongs to P.

We present the first ASP-FNPSPACE,, oy:-
complete problem. It is a FNPSPACE, o ver-
sion of the Halting Problemm of TMs and thus
called bh-NPSPACE, short for ‘Bounded Halting
NPSPACE'.

Definition 4.3. The multivalued
bh-NPSPACE is defined as follows.

e Input: A tuple (M, z,s,t) such that M is an
OB-transducer; z is a string; s is an integer
in unary notation; ¢ is an integer in binary
notation.

e Output: A pair (y,?') such that ¢ is an inte-
ger in unary; y is an output of a run of M(z)
within space s and exactly in time t'; more-
over ¢’ <t holds.

function

Theorem 4.4. The multivalued func-
tion bh-NPSPACE is ASP-complete in
FNPSPACE oyt

Proof. First we show that for any multivalued func-
tion f in FNPSPACE,, oy there is a polynomial-
time function-parsimonious reduction (¢r, ¢, ¢B)
from f to bh-NPSPACE. There must be an OB-
transducer M, polynomial functions S(-) and U(")
and an exponential function T'(-) such that M rep-
resents f, M’s running time is bounded by both
T(n) and U(m) and M’s work space is bounded by
S(n), where n is an input length and m is an output
length. Then we define ¢r, ¢r, and ¢p as follows:

o ¢1(z) = (M, z,S(|z]), T(Jx)));
o ¢r(z,y) &

= (y,T"), where T” is the running
time of a run of M (z) that outputs y; and

L4 ¢B(z1 (y7)) =Y.

(If an input to each of the functions is not well-
formed then the value is defined to be an empty
string instead.) It is straightforward to confirm that
the tuple (&1, ¢r, ¢¥B) is a desired reduction except
that ¢p is polynomial-time computable. However,
¢r(z,y) can be computed by simulating the run of
M (z) that outputs y. This simulation is possible
deterministically since M is an OB-transducer, and
takes at most O(T”) time. Since T" < U([y|) and U
is a polynomial, it is shown that ¢ is polynomial-
time computable. (Note also that the length of
¢1(2) is polynomial in |z|.)

Next we show that bh-NPSPACE itself belongs
to FNPSPACE, ;. This function can be rep-
resented by an ‘universal OB-transducer’ U which
simulates M (z) for input (M, z, s,t). Since an out-
put includes unary ¢’ (running time), it can be said
that U runs in polynomial time in output length. =

Since bh-NPSPACE is a quite generic problem,
it is easy to show that the problem satifies the prop-
erty (2).

Proposition 4.5.
bh-NPSPACE <y ASP'-bh-NPSPACE.

Proof. We assume {0,1} C 3 without loss of gen-
erality. Let v(-) be defined as follows: for an OB-
transducer M, v(M) is defined as an OB-transducer
that runs in either of the following ways: (i) out-
puts 0 and then accepts; or (ii) outputs 1 and then
runs exactly the same as M. Then we define ¢y, ¢r,
and ¢p as follows:

o oi(M,z,5,t) = (W(M),z,s,t+1);

o ¢p(z, (v,t)) < 1y, +1); and

b ¢B($! (1y1 t/)) = (yv - 1)

Then it is straightforward to confirm that
bh-NPSPACE ~ <g ASP'-bh-NPSPACE via
(¢1, p¥, ¢B). .

5 ASP-completeness of QBF
Game

Definition 5.1. QBFGame is a multivalued func-
tion defined as follows:

e Input: A position 7 of QBF Game;

e Output: A trace for 7. We assume that a
tree is stringified in a certain way that nodes
appear in preorder, without specifying further
detail.

Here we show that QBFGame is ASP-complete
in FNPSPACE,_ gyt.

Lemma 5.1. The function QBFGame belongs to
FNPSPACE out.

Proof. We construct an OB-transducer M which
computes QBFGame as follows. For an input 7 (a
position of QBF Game), M does the folloing recur-
sively:

e When 7 is Player 1’s turn (3), then M chooses
a value (0 or 1) to assign to the target variable
and obtains the reduced expression 7’. Then
M writes 7' and computes for 7’ recursively.

e When 7 is Player 2’s turn (V), M runs as
above except that M recurses twice: it first
chooses value 0 and next chooses 1.

In this way positions are arranged in the right way
on the output. It is straightforward to confirm that
M is polynomial space bounded. [

Lemma 5.2.

bh-NPSPACE <4 QBFGame.

Proof. We constructs an function-parsimonious re-
duction (¢, ¢r, ¢p). It is a minor modification to
the reduction given by Stockmeyer and Meyer [6]
that shows PSPACE-completeness of QBF.

The instance reduction ¢r is given as follows.
Let (M,z,s,t) be an instance of bh-NPSPACE.
Here we only consider instances such that ¢ is a
power of two. The function ¢; maps the instance to
a QBF formula in the same as in [6]. That is we con-
struct a formula that signifies ‘middle-first’ reach-
ability in the space of configurations of M as fol-
lows. Let reach(A, B,T) denote the predicate “M
can move from A to B within T steps.” Then the
fact “M accepts z” is expressed as reach(Cy, Cy,t)
where C] is the initial configuration and C is the
accepting configuration (computed from M, z and
s). Then we recursively expand the expression by
the following equality:

reach(A,B,T) = 3ZVXVY
((X=AANY=Z)V(X=Z ANY=B))
= reach(X,Y,T/2)).

The base case reach(A, B,1) can be described as
expression of variables in A and B according to M'’s
trasition function.

The solution reductions ¢r and ¢g are the nat-
ural correspondence of solutions of both problerns
which are derived from the same run of the trans-
ducer M. Since both strings contain sufficient in-
formation to completely restore the run of M, these
reductions can be computed in polynomial time (al-
though the input length itself can be superpolyno-
mial with respect to the input to ¢r). .

76‘7

Theorem 5.3. QBFGame is ASP-complete in
FNPSPACE, .

Corollary 5.4. For any integer n, the language
dom(ASP™-QBFGame) (that is, the decision ver-
sion of n-ASP of QBFGame) is PSPACE-com-
pelte.

6 Conclusion

We showed that QBFGame is ASP-complete in the
class FNPSPACE, oy, in which (a three-dimen-
sion version of) Sokoban is also ASP-complete. This
result suggests that the equivalence between two-
player games with polynomial duration and one-
player puzzles with superpolynomial duration holds
in the world of the function problems.

References

[1] A. K. Chandra, D. C. Kozen, and L. J. Stock-
meyer. Alternation. J. ACM, 28:114-133, 1981.

[2] C. H. Papadimitriou. Computational Complez-
ity. Addison-Wesley, 1994.

[3] A. L. Selman. Much ado about functions. In
Proc. Conf. on Structures in Complezity The-
ory, pp- 198-212, 1996.

[4] T. Seta and T. Yato. Hardness of finding an-
other solution to problems in PSPACE — with
application to Sokoban puzzle game. submitted
for publication.

[5] L. J. Stockmeyer and A. K. Chandra. Provably
difficult combinatorial games. SIAM J. Com-
put., 8(2):151-174, 1979.

[6] L. J. Stockmeyer and A. R. Meyer. Word prob-
lems requiring exponential time: Preliminary
report. In Proceedings of the 5th ACM Sympo-
sium on Theory of Computing (STOC’73), pp.
1-9, 1973.

[7] N. Ueda and T. Nagao. NP-completeness re-
sults for NONOGRAM via parsimonious reduc-
tions. Technical Report TR96-0008, Depart-
ment of Computer Science, Tokyo Institute of
Technology, 1996.

[8] T. Yato and T. Seta. Complexity and complete-
ness of finding another solution and its applica-
tion to puzzles. IEICE Trans. Fundamentals,
E86-A(5):1052-1060, 2003.

