BN LS SRS 2008—AL—120 (4)
IPSJ SIG Technical Report 200871177

Population protocol IZE1T 24 Z 7 V& b7 VWHELEY —
Z— RO AEMEIZ B LT
Shukai Cai 4 TE #—
AEBTRRE

BE ARXTHE, FEO=—Vxr MR ATFHAEEZ population protocol IZFBW\T, JRFT AT U HEMEEE
ERNHEDED D, AT INEHFIRVEBCRE Y —F —EEMEE AR T DO OUNEFSE&MEE 25,
F9, n =—Y x> h® population protocol IZIVT, AT LDWREKN n—1 DEABCEEY) —F—
BEMBEEMRT D570 b VIIFELRNI L 2T, ZORAREMEEZEAT 5729, Fx 2 closed-set
LRI D B AR AR A AT B

£7o, BEREV — ¥ —BEMEE RS n REZEATI 70 ha v BNMEBEOA TR RET D Z L7
LI TEDZ L&Y, SHIZ, BEREY — ¥ —EEMEL2M 70 a2 ERT 200, VX
FTANDT—Vxy MREIEHICIBET 2 ZENUETHHZ L 2T,

On Solvability of Self-Stabilizing Leader Election without Oracles
in Population Protocols
Shukai Cai Taisuke Izumi Koichi Wada

Nagoya Institute of Technology

Abstract In this paper, we identify the necessary and sufficient conditions to solve the self-stabilizing
leader election in population protocols without oracles from the aspects of local memory complexity and
fairness assumptions. This paper shows that under the assumption of global fairness, no protocol using
only n—1 states can solve the self-stabilizing leader election in complete graphs, where n is the number of
agents in the system. To prove this impossibility, we introduce a novel proof technique, called closed-set
argument. In addition, we propose a self-stabilizing leader election protocol using n states that works
under the assumption of unfairness. This protocol requires the exact knowledge about the number of
agents. It is also shown that such knowledge is necessary to construct the self-stabilizing leader election
protocols.

1 Introduction

A passively-mobile system is a collection of agents that move in a certain region but have no control over
how they move. Since the communication range of each agent is quite small compared to the region, two
agents can communicate only when they are sufficiently close to each other in the region. Passive mobility
appears in many real systems. A representative example is a network of smart sensors attached to cars
or animals. In addition, a certain kind of natural computing, such as synthesis of chemical materials
and complex biosystems, can be included in passively-mobile systems by regarding chemical interactions
as communications. While those systems are different in the view of applications, all of them aim to
a common goal, that is, how to organize and manipulate computing entities that are uncontrollable in
the sense of mobility. Then, it is reasonable to think about some common principle underlying them.
Revealing such principle from the aspect of theoretical computer science is an interesting and worthwhile
challenge.

Recently, as a model for such passively-mobile systems, population protocols are introduced [1, 2, 9].
A population protoco! consists of a number of agents to which some program (protocol) is deployed.
Following the deployed protocol, each agent changes its state by pairwise interaction to other agents
(that is, interactions imply that an agent approaches to the close area of other agents in the region).
Typically, the capability of each agent is limited. More precisely, it is often assumed that each agent
has oy constant-space memory and no identifier. The population protocol is a good abstraction that
captures the feature of passively-mobile systems in spite of its mathematical simplicity. Therefore, in the
last few years, the interest to it is rapidly growing among the community of the distributed computing
[3, 4, 5, 6, 7, 8, 10].

Population protocols are originated by Angluin et al. [1], which investigate the class of predicates
that can be computed autonomously over population protocols consisting of weak agents. The primary
result of this paper is that any predicate in semilinear class can be computed on population protocols by
proposing protocols that stably compute any predicate in the class. In the following paper [9], it is also
shown that any computable predicate by population protocols belongs to semiliner, that is, semiliner is
the necessary and sufficient class of the predicates that can be computed on population protocols.

The protocol computing semilinear predicate, proposed in the above paper, is assumed to start from a
properly-formed system configuration. In this sense, it is not a self-stabilizing protocol: Self-stabilization
is one of the desirable properties of distributed computations, which ensures that the system necessarily
converges to the desired behavior regardless of its initial configuration. The primary benefit of self-
stabilization is that self-stabilizing protocols require no global initialization. In addition, it also brings
another benefit of resilience to any transient fault. Generally, it is not guaranteed that the system correctly
comes back to its desired behavior after the recovery of transient faults because some effects caused by
transient faults, such as memory corruption, still remain. However, by the nature of self-stabilization,
selt-si2bilizing protocols necessarily recover to their correct behavior.

Sel{-stabilization on population protocols is considered in several previous papers [2, 13, 11], which
have investigated the solvability of the self-stabilizing leader election (SS-LE) problems under some kinds
of assumptions. The general model of population protocols introduces an interaction graph specifying
the possibility between two agents. The above papers show the solvability and unsolvability of SS-LE for
specific classes of interaction graphs such as complete graphs, rings, rooted trees, directed acyclic graphs,
etc. Unfortunately, it is easily shown that SS-LE is almost impossible if we assume nothing. Thus, the
above papers also consider some additional (but reasonable) assumptions to make SS-LE solvable by
introducing several notions extending the computational power of population protocols: global fairness
and leader detector oracle Q7. A fairness assumption is a constraint for possible executions on population
protocols. Intuitively, the global fairness prevents the occurrence of livelock caused by the loop of some
illegal executions. The leader detector oracle is an abstracted virtual device that informs the existence
and inexistence of the agents having the leader state. Both of the assumptions give some additional
computational powers to population protocols, which are sufficient to solve SS-LE in some cases, but
insufficient in some other cases. However, the complete characterization of system assumptions making
SS-LE solvable is unknown. Currently, only a few results about the solvablility of SS-LE on the complete
interaction graphs are known:

1. Assuming global fairness and the oracle Q7, there exists a SS-LE protocol where each agent uses
only one bit of memory.

2. Under the assumption of unfairness and no oracle, no uniform protocol can solve SS-LE, where a
uniform protocol is one that works correctly on the system with arbitrary number of agents (that
is, uniform protocols do not use any information about the total number of agents).

3. Without Q7?, any protocol using only one bit of memory cannot solve SS-LE even if we assume
global fairness.

In this paper, we also investigate the solvablity of SS-LE on population protocols. In particular, we
are interested in self-stabilizing leader election protocols in complete interaction graphs that have no use
of oracles. The primary contribution of our work is to identify the necessary and sufficient conditions such
that SS-LE becomes solvable from the aspects of local memory space and fairness assumptions. More
precisely, this paper shows the following three results:

1. Without oracles, there is no SS-LE protocol using only log,(n— 1) bits of memory even if we assume
the global fairness.

2. There exists an SS-LE protocol that uses log, n bits of memory and correctly works under the
unfairness assumption.

3. Even if we assume global fairness, without oracle, there is no uniform SS-LE protocol in strong
sense. More precisely, we show that any SS-LE protocol working correctly on the population of n
agents does not work on the population of n + k agents (k > 0).

The third result implies that even the knowledge about the upper bound for the number of agents is

insufficient to design SS-LE protocol, and thus it justifies the fact that the exact value of n is necessary
to construct the protocol shown in the second possibility result. It should also be noted that the first

impossibility result is quite nontrivial and interesting. The global fairness is reasonable but sufficiently
strong so that it can break the essential ideas leading the previous impossibility results. Actually, under
the global fairness assumption, many of the existing techniques to prove the impossibility cannot be
adapted. In this paper, we resolve such difficulty by introducing a novel proof technique based on closed
sets. The key idea of it is to identify the set of states that never create the leader state. While this
paper utilizes this technique to show the impossibility of SS-LE, we believe that the proposed technique
can be applied to more broader cases, including other problems and other graph classes, to prove the
impossibility under the global fairness assumption.

2 Model and Definitions

We introduce the formal definitions of population-protocol considered in this paper.

A population consists of n agents, which can change its own state by interacting with each other. In
the general model of population protocols, all pairs of agents do not necessarily have direct interactions.
The possibility of direct interactions between two agents is defined by interaction graphs: An interaction
graph G=(V, E) is a simple directed graph where each vertex, labeled by vy, vs,vs,- - -, corresponds to
each agent. The edge from a node v; to v; implies that the agent corresponding to v; can interact to the
agent for v, where v; is the initiator and v; is the responder. Throughout this paper, we assume that
the interaction graph is complete. That is, any pair of agents are possible to interact with each other.

A protocol P = (Q,) is a pair of a finite set @ of states and a transition function § that maps each pair
of states @ X @ to a nonempty subset of @ x Q. The transition function, and the protocol, is deterministic
if §(p, q) always contains just one pair of states. In this paper, we only consider deterministic protocols,
and thus we simplify the definition of a transition function to a mapping § : @ x @ — @ x @ (i.e., the
states after each transition is uniquely determined). For any transition r : (p,q) — (p/,¢’) of 4, we call
p and g the prestates of r, p’ and ¢’ are called the poststates of . Notice that a transition does not
necessarily cause either of the nodes to change its state. That is, a transition (p,q) — (p, q) is possible.
We define silent transitions as ones that do not change any state. The transition that is not silent is
called active.

Formally, a configuration C' is an n-tuple (g1, g2, g3, - -, qn) of states where each entry g corresponds
to the state of the agent vg. The state of an agent vy, at the configuration C is denoted by C(vy). Letting
C be a configuration, and r be a transition that maps (p,q) to (p,q’), we say that r is enable in C if
there exists an edge (v;,v;) such that C(v;) = p and C(vj) = g. Then, we say that C can go to C’ viar,
uescted by C = €', if €’ is the configuration that are obtained by changing the states of v; and v; to
p’ and ¢ respectively. We simply say that C' can go to C’, denoted C — C’, if C' = C’ holds for some
transition r. We define executions in population protocols as follows:

Definition 1 (Execution) Letting P = (Q,d) be a protocol, an ezecution of P is an infinite sequence
of configurations and transitions Cy, 9, C1,71, - - - satisfying

1. for each i, r; is a transition of § and C; = Cj41, 4 =0,1,--- holds , and
2. r; is active for infinitely many ¢ unless all the enable transitions are silent.
Notice that the second condition ensures the progress of protocols (i.e., it excludes the meaningless

executions such that only silent transitions appear in it).

2.1 Fairness Assumption

Fairness is an assumption that restricts the behavior of systems. Formally, it is defined as a constraint
for executions. In this paper, we introduce the following two fairness assumptions [13]:

Definition 2 (Global fairness assumption G) An execution E = Cy,r9,C1,71, - - is global fairness,
i for every C and C’ such that C — C’, if C = C; for infinitely many 4, then C; = C and C;y; = C' for
infinitely many <.

Definition 3 (Local fairness assumption L) An execution E = Cy,rg,C1,71, - - is local fairness, if

for every transition r, if 7 is enable in C; for infinitely many 4, then C; = C! 41 for infinitely many i.
Hence, the transition 7 is taken infinitely many times in E. We say the scheduler S is local fairness.

In addition to the above, we also define unfairness assumption U, which requires no assumption to
executions. Given a protocol P and an arbitrary fairness assumption X € {G,L, U}, we define Ex(P) to
be the set of all executions of P satisfying the fairness assumption X.

2.2 Self-stabilization, Legitimate Configurations

Self-Stabilizing protocols guarantee the convergence to their desired behavior starting from an arbitrary
initial configuration. In this paper, we consider the self-stabilizing leader election over populations, which
requires that the system eventually reach a legitimate configuration, where exactly one process keeps a
special state, called leader state, and no other leader state is generated in any following execution.
Formally, the self-stabilizing leader election problem is defined as follows:

Definition 4 (Self-stabilizing leader election) A protocol P solves the self-stabilizing leader election
under fairness assumption X if there is one special state s and any execution E in Ex(P) satisfies that
there exist some ¢ and vy such that for any j >4 and h # k , C;(vx) = s and C;(vs) # s hold.

3 Impossibility of Self-Stabilizing Leader Election Using Only
n — 1 States

In this section, we will show that without the help of Q7, the self-stabilizing leader election protocol is
impossible in a complete network graphs under global fairness only use distinct n — 1 states (logy(n — 1)
bits of memory).

3.1 Difficulty of Proving Impossibility under the Global Fairness

In this section, we explain why it is a quite nontrivial and difficult task to prove impossibility under the
global fairness. We show existing techniques used to prove the impossibility do not work under the global
fairness assumption.

Roughly speaking, all of existing impossibility proofs for SS-LE are roughly divided into two types:
One is the argument by illegal loop, and the other one is that by partition. We explain the details for
both of them:

Illegal loop argument:

The key idea of Illegal loop argument is to find a looped execution including non-legitimate configuration.
The infinite execution repeating the loop never converges to legitimate configurations, which contradicts
to the self-stabilization property. This kind of arguments widely used in almost all areas of distributed
computation. However, it cannot be applied to prove the impossibility under the global fairness because
the global fairness assumption does not allow the system to periodically repeat the same behavior: If the
system repeats such looped behavior, any configuration in the loop appears infinitely often. Then, under
the global fairness, it is necessarily guaranteed that the system could escape from the looped execution.

Partition argument:

It is the technique using the fact that it is difficult to break a certain kind of symmetry. Its basic idea
is to divide a given n-node interaction graph into two same subgraphs with size n/2 (in general, division
to three or more subgraphs can be considered). By their symmetry, it is possible to show the existence
of the execution that converges to the configuration where two subgraphs independently and separately
elect a leader respectively. However, it is contradict to the uniqueness of leader. First, this argument can
be applied only to the case of uniform protocols because nonuniform protocol does not guarantee to elect
one leader in the divided subgraph (that is, it is not guaranteed that the protocol works correctly on n/2
agents). In addition, to make an execution where two subgraphs independently elect a leader respectively,
we have to prohibit the interactions between the two subgraphs. However, if some interaction is enabled
on the edge that joints two subgraphs infinitely often, it must occur necessarily under the global fairness.
We cannot eliminate the possibility that such interaction breaks the symmetry, which can result in the
union of two leaders.

To circumvent the problems the above two arguments hold, in the following subsection, we newly
introduce a proof technique based on closed sets. Intuitively, the closed set argument finds a set of states

such that the interaction between any pair of two states in the set creates no state out of the set. The
key of our proof is to find a closed set excluding the leader state.

3.2 Impossibility Using n — 1 States

First, we introduce several notions necessary for the following proofs.

Let C be a configuration. A subconfiguration C’ of C is an n-tuple obtained by replacing several entries
in C by L, where L is the special value that masks the state of the corresponding agent. The above
definition is simply extended in the case that C is a subconfiguration. That is, if a subconfiguration
C' is obtained from another subcofiguration C” by the replacement of entries, we say that C’ is a
subconfiguration of C”. The size of a subconfiguration C’ is the number of non- 1 values appearing in
C’, and it is denoted by |C’|. For example, letting C = (a,b,d, €) be a configuration, C] = (a, L,d,€),
Cy=(L1,1,d,1),and C§ = (L,b,d, L) are subconfigurations of C whose sizes are 3, 1, and 2, respectively.
In addition, C} is also a subconfiguration of C] and CY itself, but C} is not a subconfiguration of Cj.

A traceis a sequence of transitions. We say a trace T' = 7o, 71, - - -, 75 is applicable to a (sub)configuration
Cy if there exists a sequence of (sub)configurations Cy, C1,- -, Cjy1 such that Cp Lo, 5

C;+1- For a (sub)configuration C and a trace T applicable to C, we define o7 (C') as the configuration
result:1 by applying T to C. If C’ = or(C) holds, we often use the notation C L.
A (sub)configuration C’ is reachable from a (sub)configuration C, denoted by C = (', if there

exists a trace T such that C 5 C’. We say a (sub)configuration C' can generate state p, if there is a
(sub)configuration C” that is reachable from C and contains p. For a set G of states, if a (sub)configuration
cannot generate any state in G, we say C cannot generate G. Letting P = (Q, §) be a population protocol,
a subset G of Q is called a closed set of P if for any transition 7 : (p,q) — (p/,q’) in 4, p,q € G implies
r,q¢ €G.

We first show three fundamental lemmas obtained from the above definitions.

The proof of Lemma 1 is omitted due to lack of space.

Lemma 1 Letting C’ be a subconfiguration of C, if a trace T' is applicable to C’, it is also applicable to
C, and o7(C") is a subconfiguration of or(C).

Lemma 2 If a (sub)configuration C' cannot generate a set of states G, then for any (sub)configuration
C' such that C 5 ¢, C' cannot generate G.

Proof Suppose for contradiction that C’ can generate a state p in G. Then, there exists a (sub)configuration
D such that ¢’ 5 D and p € D. Since C = C’ holds, we obtain C = D, which contradicts the fact that

' cannot generate G.

Lemma 3 If a (sub)configuration C cannot generate a set of states G, any subconfiguration of C' cannot
generate G.

Proof Suppose for contradiction that a subconfiguration C’ of C can generate a state p in G. Then,
there exists a trace T' such that o7 (C") includes the state p. By Lemma 1, T is also applicable to C' and
or(C’) is a subconfiguration of o (C). This implies p belongs to or(C), which is contradiction.

The following lemmas are the key of our impossibility result.

Lemma 4 Let G (|G| < n — 1) be a set of states, and C' (|C| > 0) be a subconfiguration that cannot
generate G. Then, either of the following conditions holds:

1: The complement of G is closed.

2: There exists a subconfiguration C’ and a set of states G’ such that [C|—1 < |C'| and |G| +1 = |G|
hold, and C’ cannot generate G'.

Proof We prove this lemma by showing that the condition 2 necessarily holds if the complement of G
is not closed. Let G be the complement of G. Assuming that G is not closed, there exists a transition
r: (p,0) — (p',¢’) such that p,q ¢ G and at least one of p’ and ¢’ € G (because if such a transition does
not exist, any intraction of two states in G results in two states in G, which implies G is closed). Then
we consider the following cases:

1. One of p and ¢ cannot be generated by C: Without loss of generality, we assume that C cannot
generate p. Then, C cannot generate {p} U G. Therefore, we obtain C’ = C and G’ = G U {p}
satisfying the condition 2.

. Both of p and g can be generated by C: Since C can generate p, there exists a subconfiguration D
such that C = D and p € D. We consider the subconfiguration D’ that is obtained by replacing the
entry of pin D by L. Then, if we can show that D’ cannot generate g, the lemma is proved by letting
C’' = D' and G = GU{g}. In the following, we show it actually holds: Suppose for contradiction
that D’ can generate q. Then, there exists a trace T that makes D’ reach a subconfiguration with
q. By Lemma 1, T is also applicable to D, and or(D) includes both p and g. This implies that C
can reach the configuration o (D) that includes both p and ¢. Then, It is clear that C can generate
both p’ and ¢’ because the transition r is enable in the configuration or (D). However, either of p’
or ¢’ belongs to G and thus it is contradiction.

[SP]

Lemma 5 Any self-stabilizing leader election protocol P has no closed set excluding its leader state.

Proof Suppose for contradiction that P has a closed set H which excludes its leader state in P. Consider
an initial configuration C whose states are all in H. Since H is closed, so C can only generate the states
in H. Because the leader state is not in H, C cannot generate a leader state. This implies that any
executions starting from C cannot reach configurations with leader. It is contradiction.

By using the above two lemmas, we can show the impossibility of self-stabilizing leader election using
only n — 1 states.

Theovem 1 There is no self-stabilizing leader election protocol that uses only n — 1 states.

Proof We assume for contradiction that a self-stabilizing leader election protocol P which uses only
distinct n — 1 states. The n — 1 states of the protocol P are denoted by @ = {so, 81,52, - -, Sn—2}, Where
so implies the leader state. The set of all transitions constituting A is denoted by 4 4.

Letting C be a legitimate configuration, that is, exactly one leader exists in it and another leader is
not newly created in any following execution. This implies that the subconfiguration C’ which obtained
by masking the leader state sp in C' cannot generate the leader state sg. Thus, letting Cp = C’ and
Go = {so}, Co cannot generate Gy, and they satisfy |Co| = n — 1 and |Gp| = 1. By Lemma 5, there is
no closed set excluding so in P. Thus, the complement of Gy is not closed. Then, by Lemma 4, we can
obtain a subconfiguration C; and a set of states G satisfying that |C1| > |Co|—1 =n—2, |G1| = |Go|+1,
and C; cannot generate G;. Similarly, we can also obtain C;y; and G;4; from C; and G; by applying
Lemma 4 repeatedly. Finally, after applying the lemma n — 2 times, we have a subconfiguration C,_2 and
G2 satisfying |Cp—a| > 1, |Gp—2| = n — 1 and C,,_5 cannot generate G,,_». Then, G,_» is equivalent
to @, and thus C),_o cannot generate any state. However, Cp,_s is not empty, which implies a state q in
Cy_o can be generated by C,_o. This is contradiction.

4 Leader Election Protocol Using n States

In this subsection, we will show a self-stabilizing leader election protocol B which uses distinct n states.
The n states of the protocol B are denoted by @ = {so, s1, S2, - -, Sn—1}, where so implies the leader state.
The proposed protocol is quite simple: When two agents with the same state interact, the responder will
increment the subscript of its state (modulo n). That is, when the state of the responder is s;, it will
changed to be s;4+1, 2 =0,1,---,n — 2, Exceptionally, s,—; will be changed to sq.

Protocol 1 (s;, ;) = (8i,53i41) mod n)s (:=0,1,---,n—1)

In what follows, we show that the above protocol correctly elect a unique leader. First, we introduce
several notions necessary for the proofs. Throughout this subsection, we use another representation of
each configuration C = (mo(C),m1(C),---,mn_1(C)), where mi(C) (0 < k < n) is the number of the
agents whose state is s in C. We also define #(C) to be the number of my(C) (k = 0,1,---,n — 1)
such that my(C) = 0 holds.

The correctness of the protocol is proved by the argument based on monotonically-decreasing function,
which is a standard technique for the proof of self-stabilizing protocols. We first define the distance
between two states.

Definition 5 (Distance Function) For any configuration C, the distance di ;(C) between the two
states s; and s; is defined as follows:

0 (m;(C) # 0 or k = j)
di;(C) =1 (G —k)(mk(C) - 1) (0<k<y)
G+n=k)m(C)-1) (G<k<n)

The total distance d;(C) of the state s; in C is the sum of the distances between any state and s;,
that is, d;(C) = Sp_gdy,;(0).

From the definition, a pair of states s; and s; can have a non-zero distance only if m;(C) = 0 and
my(C) > 1. That is, if the distance between s, and s; for a configuration C is non-zero, no agent has
the state s; and two or more agents necessarily have sg. Then, the value di ;(C) implies how many
interactions are necessary to create the agent with the state s; from an agent having s; in C. The
distance dj, ;(C) is obtained by multiplying the surplus number of agents having the state si to such the
necessary number of interactions.

The following lemmas show that if the total distance of some state becomes zero, it remains zero in
any following executions.

The proof of the following lemmas are omitted due to lack of space.

Lemma 6 If mi(C) > 0 (0 < k < n) holds in a configuration C, then mg(C’) > 0 in C’ holds for any
configuration C’ such that C = C'.

Lemma 7 Let E be any unfair execution of Protocol 1, (i.e., E € Ey(B)). If m;(C) = 0 holds for some
j in a configuration C' that appears in F, a configuration C’ such that m;(C’) > 0 is reachable from C
in E.

By the above two lemmas, we can show the following corollary.

Corollory 1 For any execution E = Cy,r,C1,71,C2,-- € Ey(B), there exists ¢ such that #,(C;) =0
holds for any j > 3.

The above corollary directly implies the correctness of the protocol.

Theorem 2 Protocol 1 is a self-stabilizing leader election protocol working correctly under the unfair-
ness assumption and from an arbitrary initial configuration, the legitimate configuration C; such that

#0(C;) = 0 will be reached in (n?).

5 No Simple Protocol for Complete Graphs with Difference
Sizes

In Section 4, we give a protocol using n states to solve the self-stabilizing leader election in complete
graphs of size n. In this section, we will show that there does not exist any single protocol to solve the
self-stabilizing leader election in complete graphs with different sizes.

Theorem 3 Letting A be a protocol which can solve the self-stabilizing leader election in complete
graphs with size n, then A cannot work correctly in complete graphs with size n — 1.

Proof Consider the legitimate configuration C' of a complete graph with size n. Since a new leader
will not be created, so the subconfiguration D which obtained by masking the leader state in C' where
|D| = n — 1, cannot generate the leader state. So consider an initial configuration C' = D — {1}, from
which the leader state will not be generated. Noting that C’ is an initial configuration of a complete
graph with size n — 1, and from such the initial configuration, the legitimate configuration will never be
reached. Hence, A cannot elect a leader correctly in complete graphs with size n — 1

6 Conclusion

In this paper, we showed the necessary and sufficient condition to the solvability of the SS-LE in popula-
tion protocols having no oracles and complete interaction graphs. The condition is characterize by local
memory space and fairness assumption. To prove the impossibility under global fairness, we introduce a
new proof technique using closed sets.

References

[1] Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, René Peralta. Computation in
networks of passively mobile finite-state sensors. Twenty-Third ACM Symposium on Principles of
Distributed Computing. (2004) 290-299.

2

Dana Angluin, James Aspnes, Michael J. Fischer, Hong Jiang. Self-stabilizing population protocols.
In Proc. Principles of Distributed Systems, 9th International Conference, pages 103-117, 2005.

[3] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, René Peralta. Stably
computable properties of network graphs. In DCOSS, pages 63-74, 2005.

[4] Dana Angluin, James Aspnes, David Eisenstat, Eric Ruppert. On the power of anonymous one-
way communication. In Proc. Principles of Distributed Systems, 9th International Conference, pages
396-411, 2005.

5

Dana Angluin, James Aspnes, David Eisenstat. Stably computable predicates are semilinear. In Proc.
25th Annual ACM Symposium on Principles of Distributed Computing, pages 292-299,2006.

[6

Dana Angluin, James Aspnes, David Eisenstat. Fast computation by population protocols with a
leader. In Proc. Distributed Computing, 20th International Symposium, pages 61-75, September 2006.

[7] Dana Angluin, James Aspnes, David Eisenstat. A simple protocol for fast robust approximate ma-
jority. In Proc. Distributed Computing, 21th International Symposium, pages 20-32, 2007.

[8] Dana Angluin, James Aspnes, David Eisenstat, Eric Ruppert. The computational power of population
protocols. Distributed Computing, 20(4), pages 279-304, 2007

[9] James Aspnes, Eric Ruppert. An introduction to population protocols. Bulletin of the EATCS, 93,
pages 98-117, October 2007.

[10] Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, Brigitte Rozoy. Self-stabilizing
counting in mobil sensor networks. Technical Report 1470, LRI, Université Pairs-Sud 11,2007.

[11] Davide Canepa, Maria Gradinariu Potop-Butucaru. Stabilizing leader election in population proto-
cols. Unpublished, 2007."

[12] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Eric Ruppert. When birds die: Mak-
ing population protocols fault-tolerant. In Proc. 2nd IEEE International Conference on Distributed
Computing in Sensor Systems, pages 51-66, 2006.

[13] Michael J. Fischer, Hong Jiang. Self-stabilizing leader election in networks of finite-state anonymous
agent. In OPODIS, pages 395-409, 2006.

73‘7

