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Augmenting Edge-Connectivity between Vertex Subsets

Toshimasa Ishii Kazuhisa Makino

Abstract

Given a graph G = (V,E) and a requirement function r : Wi x Wa — R4 for two families Wi,
Wa C 2V — {0}, we consider the problem (called area-to-area edge-connectivity augmentation problem) of
augmenting G by a smallest number of new edges so that the resulting graph G satisfies 3a(X) > r(Wh, W2)
for all X C V, Wy € Wi, and Wy € Wp with W1 C X C V — Wa, where §g(X) denotes the degree of
a vertex set X in G. This problem can be regarded as a natural generalization of the global, local, and
node-to-area edge-connectivity augmentation problems.

In this paper, we show that there exists a constant ¢ such that the problem is inapproximable within a
ratio of clog (Wi, Wa), unless P=NP, even restricted to the directed global node-to-area edge-connectivity
augmentation or undirected local node-to-area edge-connectivity augmentation, where a(W1, Wy) denotes
the number of pairs W1 € W1 and W2 € Wy with 7(W1, W2) > 0. We also provide an O(log a(W1, W2))-
approximation algorithm for the area-to-area edge-connectivity augmentation problem. This together with
the negative result implies that the problem is ©(log a(W1, W2))-approximable, unless P=NP, which solves
open problems for node-to-area edge-connectivity augmentation in [9, 10, 12].

Furthermore, we characterize the node-to-area and area-to-area edge-connectivity augmentation prob-
lems as the augmentation problems with modulotone and extended modulotone functions.

1 Introduction

In communication networks, graph connectiv-
ity is one of the most fundamental parameters
to measure the robustness and availability of the
networks. Various kinds of connectivity augmen-
tation problems have been extensively studied as
an important subject in the network design, and
many efficient algorithms have been developed so

far (see [4, 7, 14] for surveys).

Let G = (V, E) be a multigraph. For a graph G,
let 6 (X) denote the number of edges e = (u,v)
such that v € X and v ¢ X. Two vertices s and ¢
are k-edge-connected if there exists k-edge disjoint
paths from s to t. By Menger’s theorem, s and ¢
are k-edge-connected if and only if every vertex
set X with s € X CV — {t} satisfies g(X) > k.
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In this paper, we consider the following problem
which deals with edge-connectivity not only be-
tween two vertices, but also between two vertex
subsets. Here two vertex sets S and T are k-edge-
connected if there exists k-edge disjoint paths from
S to T, which is equivalent to the condition that
every vertex set X with S C X CV — T satisfies

Problem 1.1 (AREA-TO-AREA EpGE-
CONNECTIVITY AUGMENTATION)

Input: A multigraph G = (V,E) and a require-
ment function T : Wi xWs — Ry for two families
Wi, Wy C 2V — {0}

Output: A minimum set F of new edges such
that the resulting graph G = (V,E UF) satisfies
da(X) > r(W1,Ws) for all X CV, W1 € Wy,
and Wo € Wy with W; C X CV — Ws.

Here R, denotes the set of all nonnegative reals.
We remark that multigraphs can be represented
as simple graphs with edge capacity. Throughout
the paper, we treat G as a multigraph just for
simplicity of exposition.

This problem can be regarded as a natural gen-
eralization of the global edge-connectivity augmen-
tation problem (GAP) [2], local edge-connectivity
augmentation problem (LAP) [3], and node-
to-area edge-connectivity augmentation problem
(NAAP) [12].

Previous Work

Let us briefly survey the developments in the
edge-connectivity augmentation problems. Let
V={{v}|lveV}

LAP is equivalent to Problem 1.1 with W, =
W, = V, while GAP is a special case of LAP
with uniform requirements r(u,v) = k for some
integer k; namely, GAP (resp., LAP) asks to aug-
ment the global (resp., local) edge-connectivity of
a given graph. GAP was first shown to be solv-
able in polynomial time by Watanabe and Naka-
mura [19] for undirected graphs and by Frank [3]
for directed graphs. The fastest known algorithms
achieve O(mn + n?logn) time due to Nagamochi
[13] for undirected graphs and O(mn?logn?/m)

time due to Gabow [6] for directed graphs, where
n = |V| and m denotes the number of edges in
the graph obtained from G by identifying multi-
ple edges into a single one. As for LAP, Frank
[3, 4] showed that it is polynomially solvable for
undirected graphs, while it is NP-hard for di-
rected graphs, even restricted to r(u,v) € {0,1}
for u,v € V. Later it was shown by Nutov [15]
and Kortsarz and Nutov [11] that it is ©(logn)-
approximable in polynomial time.

NAAP is equivalent to Problem 1.1 with W; =
V, which includes LAP as a special case with
Wy = V. Miwa and Ito [12] showed that NAAP
for undirected graphs is NP-hard, even if r = 1,
while it is known by Miwa and Ito [12] and Ishii,
et al. [9] that it is solvable in polynomial time if
r = k for some k(> 2). Furthermore, Ishii and
Hagiwara [10] showed that it is solvable in poly-
nomial time, if a requirement function r depends
only on W, and 7 > 2. From the results of [10]
and [15], we can observe that NAAP for undi-
rected graphs with 7 depending only on W is 7/4-
approximable in polynomial time. However, no
other approximation result is known for NAAP in
undirected/directed graphs. For directed graphs
with a uniform requirement 7, no complexity re-
sult is even known; it is open whether the problem
is NP-hard.

Tables 1 and 2 summarize the currently best
known results on the complexity status for these
problems.

‘We note that several extensions of the augmen-
tation problems have been studied [1, 8, 11, 15,
18]. All the problems can be formulated as the
problem of augmenting G so that the resulting
graph G covers a given requirement function r* :
2V 5 Ry (ie., §4(X) > r*(X) for § # X C V).
Ishii [8] proved that the problem with a monotone
r* is equivalent to NAAP with r depending only
on W, and showed that it is polynomially solv-
able, if G is undirected and r*(X) > 2 holds for
all X C V with r*(X) > 0, where r* is called
monotone if 7*(X) < r*(Y) holds for arbitrary
two subsets X CY C V.



Table 1: Currently best known results for GAP, LAP, and NAAP in undirected graphs

LWlT Ws “ r: uniform r: arbitrary ]
v 1 GAP LAP
O(mn +n2logn) [13]  O(mn®logn?/m) [6]
V | arbitrary NAAP
NP-hard* [12] NP-hard** [12]

*7/4-approximable [15] if 7 = 1, solvable in O(|Wa|n + m) time if r = 2 [12], and in
O(IWalkn® + n(k® + n?)(|Wa| + kn))) time if = k(> 3) [9].
**7 /4-approximable [15] if r depends only on W, while solvable in O(n®|W,|(m + nlogn)) time if in
addition r > 2 holds [10].

Table 2: Currently best known results for GAP, LAP, and NAAP in directed graphs

EWl | Ws —H r: uniform r: arbitrary l
1% 1% GAP LAP
O(mn2logn?/m) [6] ©(logn)-approximable [11, 15]
V | arbitrary NAAP
- Q(log n)-approximable [15]

We further remark that the augmentation prob-
lem with r* can also be represented by the prob-
lem of covering a given function p : 2V — R,
by a graph (V, F) with a minimum |F|; i.e., aug-
menting a graph G = (V,0) by a new edge set
F. The function p can be constructed from r*
by p(X) = max{0,7*(X) — 6c(X)}. Benczir and
Frank [1] showed that it is polynomially solvable,
if p is symmetric supermodular, where p is sym-
metric if p(X) = p(V — X) for every X CV, and
supermodularif p(X)+p(Y) < p(XNY)+p(XUY)
for every X,Y C V with p(X),p(Y) > 0. GAP in
undirected graphs is a special case of the problem,
since —d¢ is symmetric supermodular. Recently,
Nutov [15] proved that if p is symmetric skew-
supermodular (ie., p(X) +p(Y) < p(X NY) +
p(XUY) or p(X) +p(Y) < p(X -Y)+p(Y — X)
for every X,Y C V with p(X),p(Y) > 0), then it
is APX-hard and 7/4-approximable in polynomial
time under the mild assumption mentioned in [15]
(note that the assumption holds for any super-
modular function p [1]). The function p defined in

w

LAP in undirected graphs and NAAP with r de-
pending only on Ws in undirected graphs are not
symmetric supermodular, but symmetric skew-
supermodular, as observed in [3, 10]. Since the
assumption holds for these cases, the result in [15]
implies the 7/4-approximability for NAAP with
7 depending only on W, in undirected graphs.

Our Contributions

The results obtained in this paper can be sum-
marized as follows. Let a(W;, Ws) be the num-
ber of pairs of sets W7, € W; and Wy € W,
with r(Wy1,Ws) > 0; by definition, we have
a(Wr, We) < [W1|[W,].

e We show that there exists a constant ¢ such
that NAAP is not approximable in poly-
nomial time within a ratio of clog a(V, Ws)
unless P=NP, even in the case where (i) G is
undirected and r € {0, k}¥>*"2 holds for any
k(> 1), or (ii) G is directed and r = k for
any k(> 1). This shows the inapproxima-
bility of NAAP, whose complexity status



was left open [9, 10, 12]. Here we remark
that the function p discussed in [1, 15] is
not skew-supermodular for these cases, and
hence Nutov’s result is not applicable.

e For undirected/directed graphs, we pro-
pose O(log a(Wh, Ws))-approximation algo-
rithms for Problem 1.1. By combining the
hardness results described above, we can say
that our approximation algorithms are opti-
mal, i.e., Problem 1.1 in undirected /directed
graphs are O (log a(W;, Ws))-approximable.

e Moreover, we characterize the node-to-area
and area-to-area edge-connectivity augmen-
tation problems by wusing k-modulotone
functions, where a function r* : 2¥ — R, is
called k-modulotone if each nonempty subset
X of V has a subset W of X with |[W| < k
such that r*(Y) > r*(X) for all subsets
Y of X with W C Y. Namely, we show
that the area-to-area edge-connectivity aug-
mentation problems with 7 : Wy x Wy —
R, can be regarded as the augmentation
problems with k-modulotone functions with
k = max{|W| | W € Wi}; the node-to-
area edge-connectivity augmentation prob-
lems can be regarded as the problems with 1-
modulotone functions. 1-modulotone func-
tions are first introduced in [17] for giving
a generalized framework of the source loca-
tion problem and extended network prob-
lem. The results give another application
of 1-modulotone functions as well as its ex-
tension. By combining with the second re-
sults, we can see that the augmentation
problems with k-modulotone functions are
O(log a(Wy, Wy))-approximable in polyno-
mial time, if the corresponding function r :
Wi x Wy — R, in Problem 1.1 can be con-
structed from 7* in polynomial time.

The rest of this paper is organized as follows.
In Section 2, we present an O(loga(Wi, Ws))-
approximation algorithm for Problem 1.1. Sec-

tion 3 shows the inapproximability of NAAP. Sec-
tion 4 discusses the augmentation problem with
k-modulotone functions.

Due to space constraint, technical details of
some proofs are omitted.

2 Approximation Algorithms for
Area-to-Area Edge- Connectivity
Augmentation

2.1 Transforming area-to-area  edge-

connectivity augmentation

In order to present an O(loga(Wi, Wh))-
approximation algorithm for Problem 1.1, let us
start with the following lemma which shows that
the approximability of Problem 1.1 in directed
graphs indicates the one in undirected graphs.

For two subsets X,Y C V in G, we denote by
A (X,Y) the edge-connectivity from X to Y, i.e.,
Ae(X,Y) =min{ég(Z) | X CZ CV —Y}; here
we define Ag(X,Y) = +o0 if X NY # (. For a
graph G and a function 7 : Wi x Wy — Ry, we
say that G is r-edge-connected if Ag(W1, Wa) >
r(W1, W2) holds for all sets W, € Wy and Ws €
Ws.

Lemma 2.1 If Problem 1.1 in directed graphs is
B-approximable, then Problem 1.1 in undirected

graphs is 23-approzimable. m]

Let us then consider the following problem
which augments G = (V, E) by adding a new ver-
tex s ¢ V and new edges between s and V, defined
as follows.

Problem 2.2 (s-BASED AREA-TO-AREA AUG-
MENTATION)

Input: A multigraph G = (V,E) and a require-
ment function r : Wi X Wa — Ry for two fami-
lies Wi, Wy C 2V — {0}.

Output: A minimum set F of new edges be-
tween s(¢ V') and V' such that the resulting graph
G = (VU{s}, EUF) satisfies 65(X) > (W1, Wa)
for all X CVU{s}, W1 € Wi, and Wy € Wy with
Wy CX CVU{s}—Ws.



The following lemma shows that the approxima-
tion ratios of Problems 1.1 and 2.2 differ only by
a constant factor.

Lemma 2.3 (i) If

approximable,  then

Problem 1.1 is [3-
Problem 2.2 is 203-
approzimable. (1¢) If Problem 2.2 is (-
Problem 1.1 s 203-

approzimable. m]

approzimable,  then

Lemmas 2.1 and 2.3 indicate that it suffices to
prove that Problem 2.2 in directed graphs is ap-
proximable within a ratio of O(loga(Wi, Ws)).
Below, we further transform Problem 2.2 in di-
rected graphs into the problems below, where the
technique is based on the one developed by Ko-
rtsarz and Nutov to construct an approximation
algorithm for augmenting the mixed connectivity
(11, Section 2].

Let Tmae = max{r(Wy, W) | W1 € Wy, W, €
W»}, and let F.© (resp., F;) be the set of Tmaz
multiple directed edges from s to each vertex

v € V (resp., from each vertex v € V to s).

Problem 2.4 (s-BASED AREA-TO-AREA
AUGMENTATION™)

Input: A directed multigraph G = (V,E) and a
requirement function v : Wi X Wa — R4 for two
families Wy, Wy C 2V — {0}

Output: A minimum set F'~ of new edges from
V to a vertex s ¢ V, such that the resulting graph
G = (VU{s},EUF~ UF}) satisfies 65(X) >
r(Wi,Wa) for all X C V U{s}, W1 € W1, and
Wy € Wy with W1, C X CV U {s} - Wh.

Problem 2.5 (s-BASED AREA-TO-AREA
AUGMENTATIONT)

Input: A directed multigraph G = (V,E) and a
requirement function v : Wi x Wa — R4 for two
families Wy, Wy C 2V — {0}.

Output: A minimum set F* of new edges from a
vertex s ¢ V to V, such that the resulting graph
G = (VU {s},EUF* UF") satisfies 65(X) >
r(Wi,Ws) for all X C V U{s}, W1 € Wy, and
Wo € Wy with W1 C X C VU {s} — W,.

For an instance I = (G = (V, E), r) of Problem
2.2 in directed graphs, let I~ and I* be the in-
stances of Problems 2.4 and 2.5 corresponding to
I, respectively. Let '~ and F'* be feasible solu-
tions of Problems 2.4 and 2.5, respectively. It is
easy to see that F,” UF. is feasible for I. The fol-
lowing lemma shows that F~ U F'* is also feasible
for I and keep the approximability.

Lemma 2.6 If F~ and F* are 3-approzimate
to I~ and I, respectively, then F~ U FT is (-
approzimate to I. [}

2.2 Submodular set cover problem

From discussion in the previous subsection, we
have only to show that Problems 2.4 and 2.5
are both O(log (a(Wy, Ws)))-approximable. In
this section, we show the O(log(a(Wi, Wh)))-
approximability of Problem 2.4, since Problem 2.5
can be treated similarly. We shall prove this by
showing that the problem can be formulated as
the submodular set cover problem.

For a finite set U, a set function f : 2V — Ry is
submodularif f(X)+ f(Y) > f(XNY)+f(XUY)
holds for arbitrary two subsets X,Y C U. Given
a cost function ¢ : U — R4 and a monotone sub-
modular function f : 2V — R, the submodular
set cover problem asks to find a subset F of U
with the minimum cost satisfying f(F) = f(U),
ie.,

Minimize Yier (i) 1)

subject to f(F)=fU),FCU.

It is known [5, 20] that if f is integer-
valued and f(@) = 0, then the problem is
(1 + Inmax;cy f({j}))-approximable by a simple
greedy algorithm.

Lemma 2.7 Problem 2.4 can be formulated as

the submodular set cover problem.

Proof. We denote the graph (V U {s}, E U E})



by H*. Let U = F,7,

fF7)
= Z (min{)\H++F— (W17W2)7

(W1, Wa)EW] X Wy ( . )
X+ (W1, W) <r(Wy,W3)

[r(W2, Wa)1} = A+ (W, Wa))

for set F~ C F~ where HT + F~ = (VU{s}, EU
FrUF~), and c(e) = 1 for each e € F~. No-
tice that Problem 2.4 can be formulated as (2.1).
Clearly, f is integer-valued and monotone, and we
have f(0) = 0. Furthermore, we can prove that f
is submodular (we omit the details). These imply
this lemma. O

Notice that for two subsets X and Y of V,
A (X,Y) can be computed in polynomial time by
max-flow computation. Hence, it is not difficult
to see that all of the above construction can be
done in polynomial time. Since max,. - f({e})
< a(Wy, Ws), we have the following theorem.

Theorem 2.8 Problem 1.1 in undirected/directed
graphs is O(log a(Wh, Wh))-approzimable. ]

3 Inapproximability of NAAP

In this section, we show the inapproximability
of NAAP, whose complexity status was left open
[9, 10, 12]. Namely, we show the Q(log a(V, Ws))-
approximability of NAAP, even if (i) G is undi-
rected and r € {0, k}Y>*"2 holds for any integer
k > 1, (ii) G is directed and 7 = k holds for any
integer k£ > 1.

‘We use a reduction from HITTING SET to prove
the inapproximability of the problem.

Problem HITTING SET

Input: A finite set U of elements and a family
X Cav.
Output: A minimum set Z C U such that ZN

X#Qforal X € X.

It was shown by Raz and Safra [16] that there is a
constant ¢ such that HITTING SET is not approx-
imable within a ratio of clog|X|, unless P=NP,

even restricted to the case where |X| and |U| are
polynomially related’. Throughout this section,
we only consider such instances of HITTING SET.

3.1 TUndirected Graphs

In this subsection, we consider the prob-
We first show the
Q(log a(V, Ws))-approximability of Problem 2.2
with W; = V by a reduction from HITTING

lems in undirected graphs.

SET. Notice that this implies inapproximability
of NAAP by Lemma 2.3.

Lemma 3.1 For any integer k > 1, there exists
a constant ¢ such that Problem 2.2 with Wy =V
and r € {0,k}V>2 in undirected graphs is not
approzimable in polynomial time within a ratio of
cloga(V, W), unless P=NP.

Proof. Given an instance I = (U, X =
{X1,Xo,...,X,}) of HITTING SET, we construct
the corresponding instance J = (G = (V, E),r)
of Problem 2.2 with W; = V as follows. Let
V=UU{z;|i=1,2,...,qtU{v*}, where v* and
z; (i = 1,...,q) are new vertices, and let F be
the set of k — 1 multiple undirected edges (v*, z;),
1=1,2,...,q. Let Wo = {W; = X; U{z;} | i =
1,2,...,q}, and define r by r(v, W;) = k if v = v*,
and 0 otherwise. Then we can prove that if J is
[B-approximable, then I is 28-approximable (we
omit the details).

Thus, since we have a(V,Ws) = |Ws| and
HitTing SET is Q(log|X|)-approximable, it fol-
lows that Problem 2.2 with W; = V and r €
{0,k}Y>M2 is Q(log a(V, Wh))-approximable for
any integer k£ > 1. O

From Lemmas 2.1 and 2.3, we have the follow-

ing theorem.

Theorem 3.2 For any integer k > 1, there ez-
ists a constant ¢ such that NAAP with r €
{0,k}V>*W2 in undirected/directed graphs is not
approzimable in polynomial time within a ratio of
cloga(V, W), unless P=NP. O

1Here we note that HITTING SET is equivalent to the set cover problem.



3.2 Directed Graphs

We consider NAAP with uniform requirements
r in directed graphs, and show that even in this
case, it is Q(log a(V, Ws))-approximable. Similar
to the arguments given in the previous subsection,
we show the Q(loga(V, Ws))-approximability of
Problem 2.2 with Wi = V by a reduction from
HITTING SET. We omit the details.

Theorem 3.3 For any integer k > 1, there ez-
ists a constant ¢ such that NAAP with uniform
requirements v = k in directed graphs is not ap-
proximable in polynomial time within a ratio of
cloga(V, W), unless P=NP. O

4 Augmentation with Modulotone
Requirements

In this section, we consider the following aug-
mentation problem:

Problem 4.1 (r*-AUGMENTATION PROBLEM)
Input: A multigraph G = (V,E) and a require-
ment r*: 2V — Ry

Output: A minimum set F' of new edges such
that the resulting graph G = (V, E U F) satisfies
6a(X) > (X)) forall0 # X C V.

As mentioned in Introduction, the problem in-
cludes GAP, LAP, NAAP, and Problem 1.1, i.e.,
global, local, node-to-area, and area-to-area edge
connectivity augmentation problems. For exam-
ple, we can observe that Problem 1.1 can be rep-
resented by Problem 4.1 with r* defined by

T*(X) = max{r(Wl,Wz) | Wy € Wy,

(4.1)
Wa € W, W1 C X CV — Wa},

where we define 7*(X) = 0 if no W; € W, and
Wy € W, exist such that W, C X CV — W,

In this section, we give another formulations of
NAAP and Problem 1.1. Namely, we show that
NAAP and Problem 1.1 with max{|W| | W €
Wi} = k can be characterized as Problem 4.1
with a 1-modulotone and a k-modulotone function
r*, respectively. Recall that r* is k-modulotone if
each nonempty subset X of V" has a subset W of

X with |W/| < k such that r*(Y) > r*(X) for all
subsets Y of X with W C Y. We remark that a
1-modulotone function is a modulotone function
defined in [17], and that an arbitrary set func-
tion r : 2V — R, is n-modulotone since for each
nonempty subset X of V, the corresponding W
can be chosen as W = X.

Lemma 4.2 (i) Letr : Wy x Wy — Ry be a func-
tion for Wi, Wy C 2V — {0}. Then, the set func-
tion 7 : 2V — R, given as (4.1) is k-modulotone
with k = max{|W| | W € W; }.

(ii) Let r* : 2V — Ry be a k-modulotone func-
tion with r*(0),r*(V) = 0 and k < n. Then,
there exists a function v : Wi x Wa — Ry with
max{|W| | W € Wi} = k that satisfies (4.1),
where Wi, Ws C 2V — {0}. o

This lemma shows that Problem 1.1 with
max{|W| | W € W} = k (resp., NAAP) is equiv-
alent to Problem 4.1 with k-modulotone functions
r* (resp., 1-modulotone functions r*), since for
NAAP, W; =V, i.e., the corresponding k = 1.

Corollary 4.3 (i) Problem 1.1 with max{|W| |
W € Wi} = k is equivalent to Problem 4.1 with
k-modulotone functions r*.

(if) NAAP is equivalent to Problem 4.1 with 1-

modulotone functions r*. m]

22V = Ry, let 7 :

W) x Wy — Ry be the corresponding function

For a k-modulotone r*

given in the proof of Lemma 4.2, and let a(r*) =
a(Wy, Ws). Similarly, for a l-modulotone r* :
2V = Ry, let r: V xW, — R, be the corre-
sponding function, and let a(r*) = a(V, Wh).

Corollary 4.4 (i)  Problem 4.1 with k-
modulotone  functions 1* is O(log «(r*))-
approximable in polynomial time, if r can be
constructed from r* in polynomial time.  (ii)
Problem 4.1 with 1-modulotone functions r* is
O(log a(r*))-approzimable in polynomial time, if
r can be constructed from r* in polynomial time.
O



‘We remark that the reduction used in Lemmas 4.2
is not polynomial; it is not easy to construct
in polynomial time the corresponding function
r: W x Wy — R, from a given k-modulotone
function r*. Hence, Lemmas 4.2 does not indicate
that the results in Section 2 lead directly to the ap-
proximability of the problem with k-modulotone
requirements, since (2.2) cannot be computed ef-
ficiently. Thus, it is a future work to construct a
nontrivial approximation algorithm for the prob-

lem with k-modulotone requirements.
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