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Abstract. We present a new, on-line strategy for a mobile robot to explore an unknown simple polygon with n
vertices, starting at a boundary point s, which outputs a so-called watchman route such that every interior point
of P is visible from at least one point along the route. The length of the robot’s route is guaranteed to be at most
4 times that of the shortest watchman route that could be computed off-line. This gives a significant improvement
upon the previously known 26.5-competitive strategy, and also confirms a conjecture due to Hoffmann et al [5].
A novelty of our competitive strategy is a recursive procedure that reduces the polygon exploration problem to
the subproblems of exploring two different types of reflex vertices, which are classified by their turning directions
in the shortest path tree of s. The other is a mixture of techniques, including the off-line approximation algorithm
for the watchman route problem [7], a geometric structure called the angle hull [5], and the paradiam for making
the off-line techniques be on-line.
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1 Introduction

In the last decade, visibility-based problems of guard-
ing, surveying or searching have received much attention
in the commumities of computatonal geometry, robotics
and on-line algorithms. Finding stational positions of
guarding a polygonal region P is the well-known art
gallery problem. The watchman route problem asks for
a shortest route along which a mobile robot can see the
whole polygon P [6, 7, 8, 9]. If the shape of P is not
known to the robot in advance, it introduces the on-
line watchman route problem or the polygon ezploration
problem [1, 2, 4, 5].

When a starting point on the boundary of P is given,
the shortest watchman route through s can be com-
puted in O(n?) time using a dynamic programming al-
gorithm [9]. An O(n®) time algorithm was later de-
veloped to remove the restriction of the given starting
point s [6]. These two results have recently been im-
proved to O(n®logn) and O(n*logn), respectively [3].
On the other hand, a simple, linear-time approximation
algorithm for the watchman route problem with a given
starting point s has been proposed [7], which reports
a watchman route guaranteed to be at most v/2 times
longer than the shortest watchman route through s. For
the watchman route problem without giving any start-
ing point, the best approximation factor is 2 [8].

In the polygon exploration problem, a starting point
s on the boundary of the polygon P is given. A robot
with a vision system that continuously provides the vis-
ibility of its current position walks to see (or explore)
the whole region of P, starting from s. Once a corner of
P is seen, it is memorized forever, as the robot is able

to draw the map of the polygon during its exploration.
When each point of P has been seen at least once, the
robot returns to s. We are interested in a competitive ex-
ploration strategy that guarantees that the route of the
robot will never exceed in length a constant times the
length of the shortest watchman route through s. For
the problem of exploring unknown rectilinear polygons,
a v/2-competitive strategy has been presented [2]. For
simple polygons, Deng et al. were the first to claim that
a competitive strategy does exist, but the constant is es-
timated to be in the thousands [1]. A factor of 133 was
later given by Hoffmann et al. [4], which has recently
been improved to 26.5 [5]. Hoffmann et al. conjectured
that the competitive factor is far below 10 [5].

In this paper, we give a new, on-line strategy for
a mobile robot to explore an unknown simple polygon.
First, we present a recursive procedure that effectively
reduces the polygon exploration problem to the subprob-
lems of exploring two different types of reflex vertices,
which are classified by their turning directions in the
shortest path tree of s. Our strategy for a subprob-
lem is designed to follow the off-line approximation al-
gorithm for the watchman route problem so that the
robot’s route is very close to the optimum watchman
route [7]. To this end, a paradiam for making the off-
line techniques be on-line is proposed. A geometric
structure, called the angle hull [5], is also used in our
analysis. With these new ideas, we are able to prove
that an unknown polygon can be explored by a route of
length at most 4 times that of the shortest watchman
route through s. This gives a significant improvement
upon the previously known 26.5-competitive strategy,
and confirms a conjecture due to Hoffmann et al [5].
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2 Preliminaries

Let P be a simple polygon and s a point on the bound-
ary of P. A vertex is reflez if its internal angle is strictly
larger than 7; otherwise, it is convez. The shortest path
tree of s consists of all shortest paths from s to the ver-
tices of P. The vertices touching a shortest path from
the right are called the right reflex vertices, or shortly,
right vertices. The left reflex vertices or left vertices can
be defined accordingly.

The polygon P can be partitioned into two pieces by
a “cut” C that starts at a reflex vertex v and extends an
edge incident to v until it first hits the polygon bound-
ary. The piece of P containing s and including C itself
is called the essential piece of C. We denote by P(C)
the essential piece of the cut C, and call v the defining
vertezr of C. See Fig. 1(a). A cut C; dominates C; if
P(Cj;) contains P(C;) (Fig. 1(b)). We also say a point
p dominates the cut C if p is not contained in P(C).
A cut is called the essential cut if it is not dominated
by any other cuts. The watchman route problem is then
reduced to that of finding the shortest route intersecting
or visiting all essential cuts.

@ ®

Figure 1: Essential cuts.

For ease of presentation, we denote by Wy the short-
est watchman route through s, and Wy, the watchman
route which is computed by the v/2-approximation al-
gorithm [7]. For a route R inside P, we denote by |R|
the length of R.

In the following, we briefly review the off-line /2-
approximation algorithm [7], and then give the defini-
tion of angle hulls.

2.1 The off-line approximation algorithm

The reflection principle is used in most of the watch-
man route algorithms (3, 7, 9]. Let a and b denote two
points on the same side of a line L. Then, the short-
est path visiting @, L and b in this order, denoted by
S(a, L,b), follows the reflection principle. That is, the
incoming angle of S(a,L,b) with L is equal to the out-
going angle of S(a, L, b) with L. The reflection point on
L can be computed by reflecting b across L to get its
image b', and then reporting the intersection point of L
with ab’. See Fig. 2(a). Let L(a) denote the point of
L closest to a. The path consisting of aL(a) and L(a)b,
denoted by S'(a, L,b), gives a +/2-approximation of the
path S(a, L,b), since the angle Za L(a) b is at least
m/2 (Fig. 2(a)). The same result also holds for a line
segment !. See Fig. 2(b).

Figure 2: Approximating the reflection principle.

The idea of the v/2-approximation algorithm is to re-
peatedly apply the approximation scheme designed for
the reflection principle to essential cuts [7]. Let Ci,
Cs, -+ -, Cr, be the sequence of essential cuts indexed in
clockwise order of their left endpoints, as viewed from
s. Let s = sy = 8Sp+1. Given a point p in the polygon
P(C), we define the image of p on the cut C as the point
of C that is closest to p inside P(C).

Beginning with the starting point s, we first compute
the images of s on the cuts in the polygon P (or P(Ch)
[7])- Let s; denote the image of sp on Cj, s2 the image
of sp on Cy and so on. The computation of s¢’s images
is terminated when the image s;y; does not dominate
the cuts Cy,Cy,...,C; before it (Fig. 3). Then, we
select a critical image from s1,89,...,8; as follows. If
there exists an image sp (h < ) such that the image
of sp on Cjy1, which is computed in P(C}), dominates
Chi1,.--,Ci, we take the image s (e.g., the image s;
in Fig. 3(a)) as the critical image. Otherwise, we take
3; (e.g., the image s in Fig. 3(b)) as the critical image.
Let s, denote the chosen critical image. The images
of s on the following cuts as well as the next critical
image in the polygon P(Cj) can similarly be computed
[7). This procedure is repeatedly performed until the
image 8, on Cp, is computed. See Fig. 3.

Let W,y denote the route which is the concatena-
tion of the shortest paths between every pair of adjacent
critical images (including sg and $pm41). Clearly, Wy is
a watchman route. A remarkable property of the route
Wopp is that the reflection points (i.e., critical images)
of Wapp on essential cuts are guaranteed to be to the left
of those of the shortest watchman route Wop; through s.
See also Fig. 3.

Figure 3: Critical images and routes Wops, Wopp.

Lemma 1 (See [7]) Suppose that the image s; on the
cut C; is critical. If the route Wop reflects on Cj, then
s; is to the left of the reflection point of Wop on C;
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2.2 Angle hulls

In an unknown polygon, exploring a reflex vertex v re-
quires a little care. Since we do not know the cut defined
by v, the point on the cut closest to the current posi-
tion of the robot, say, a, cannot simply be found. This
difficulty is overcome by using the circle spanned by v
and by a (see also Fig. 2(b)). Clearly, the intersection
point of the circular arc with the cut is the point on the
cut closest to a. This property leads to a study of angle
hulls [5].

Let D denote a convex region in the plane. Suppose
that a photographer follows a path to take a picture of
D that shows as large a portion of D as possible but no
white space or other objects, using a fixed angle lens,
say, of 90°. All points enclosed by the photographer’s
path, and no other, can see two points of D at the right
angle; we call this point set the angle hull of D, and
denote it by AH(D). See Fig. 4(a).

®

Figure 4: Angle hulls.

For the polygon exploration problem, the region D
is defined as a relative convez polygon in P. That is,
the shortest path between any two points of D inside P
has to be contained in D. The photographer does not
want any edges of P to appear in pictures; thus, the
photographer’s path may touch a vertex of P or overlap
with a portion of the polygon edge. See Fig. 4(b).

In the outdoor setting, the perimeter of the angle
hull is at most 7/2 times the perimeter of D. In the
indoor setting where D is contained in a simple polygon
whose edges give rise to visibility constraints, we have
the following result.

Lemma 2 [5] Suppose that P is a simple polygon, and
D is a relatively convez polygon (or chain) inside P.
The length of the perimeter of AH(D), with respect to
P, is less than 2 times the length of D’s boundary.

3 The 4-competitive strategy

In this section, we present a 4-competitive strategy for
exploring an unknown polygon. It improves upon the
strategy of Hoffmann et al. in the following two ways.
First, we develop a 2-competitive strategy for exloring
a subset of only right vertices or only left vertices. Our
strategy resembles the off-line approximation algorithm
[7], and thus, the robot roughly walks along the angle
hull of the off-line approximation route. It then fol-
lows from the left-visiting property of the approximation

route (Lemma 1) that the length of the robot’s route is
at most twice the length of the shortest watchman route
that visits the cuts defined by that subset of reflex ver-
tices. Second, we recursively reduce the polygon explo-
ration problem to two groups of subproblems: one for
exploring only right vertices and the other for exploring
only left vertices. Qur strategy selects a subproblem to
solve as soon as it is possible. This gives the other factor
2.

For ease of presentation, we impose an ordering on
the boundary points of P by a clockwise scan of the
boundary, starting at s. When we say a boundary point
u is "smaller” (resp. ”larger”) than the other point v, it
implies that u is encountered before (resp. after) v by
a clockwise walker on the polygon boundary, starting at
s.

A vertex is said to be discovered if it has ever been
visible once from the robot. A left or right vertex is
unezplored as long as its cut has not been reached, and
fully ezplored thereafter.

We call a polygon, the right polygon, if any clockwise
tour that starts at s and always selects the smallest of
the discovered right vertices to explore or visit gives a
watchman route. Clearly, all essential cuts of a right
polygon are defined by the right vertices, but the poly-
gon with all essential cuts defined by the right vertices
may not be a right polygon. (The concept of right poly-
gons originates from a basic motion of our strategy that
the robot makes a clockwise tour to explore as many as
possible of the right vertices. See Section 3.2.)

In the following, we first propose a 2-competitive
strategy for exploring a right polygon, and then describe
in detail the 4-competitive strategy for exploring a sim-

ple polygon.

3.1 Exploring a right polygon

Let P, denote a right polygon, and let s be a point on the
boundary of P,. An intuition of our exploration strategy
is to explicitly compute all critical images in P,. For this
purpose, the robot makes a clockwise tour to explore all
right vertices, in the order of them on the boundary of
P,. Clearly, whether a cut is essential can be determined
when its defining vertex r is fully explored.

We denote by C'P the current position of the robot,
whose initial value is the point s. Denote by Right-
Target the list of the right vertices ordered in clockwise
order, which have already been discovered but not yet
explored. Clearly, the list RightTarget has to dynami-
cally be maintained, when the robot walks to explore a
right vertex. Denote by r the head of RightTarget, which
is the target vertex that the robot is going to explore.
The value of 7 changes as soon as a smaller right vertex
becomes visible from the robot.

In order for the robot to follow the off-line approxi-
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mation algorithm (7], we further denote by CI the cur-
rent critical image, whose initial value is also the point
s. As in [7], the point CI will be considered as a local
starting point in our strategy. Denote by C the visibility
cut currently reached by the robot, and denote by T'T
the image of CI on the cut C. Since T'I is the image of
CI on C, we have CI # T1, except for the start setting
where the very first right vertex is explored (see below).

A main difficulty arises in the polygon exploration
problem is that we do not know the exact equation of
the cut of the vertex being explored. More prepcisely,
an on-line method for computing the set of critical im-
ages has to be given. For this purpose, we make use of
the following two angle hulls, or circular arcs for short.
Denote by Cir(TI) the angle hull, defined in the region
P,(C), of the line segment connecting r and the last ver-
tex on the shortest path from T'I to r. Recall that this
shortest path is known to the robot, as a shortest path
is always known between two points that have already
been seen. Also, denote by Cir(CI) the angle hull, de-
fined in the polygon P,, of the shortest path between
r and the last vertex on the shortest path from CI to
CP. When the robot (CP) moves, the last vertex on the
shortest path from CI to CP dymanically changes, and
thus, Cir(CI) may dynamically be changed. As we will
see below, the robot selects only the portion of Cir(CI)
in the region P, — P,(C) to walk on.

Figure 5: Basic motions in exploring the vertex r.

In the following, if no confusion is introduced, we
simply refer to Cir(TI) or Cir(CI) as the clockwise
oriented semicircle, which is spanned by r and by the last
vertex described above. Let us consider how to explore
the target vertex r. Suppose first that the right vertex
' has just been explored, and thus the cut of 7' is taken
as C. Assume that the target vertex r is visible from
the robot, and the robot is now walking on the cut C
to explore r, starting from the point T'I. See Fig. 5.
What should the robot do when Cir(CI) or Cir(TI)
is encountered? If Cir(CI) is met, the robot has to
change its route to walk along the portion of Cir(CI)
in the region P, — P.(C). This is because the image
of CI on the cut of 7 may dominate the cut C. See
Fig. 5(a) for an example, where the route of the robot
is drawn in thick, dotted lines. The intersection point
of Cir(CI) with C has to be to the right of the (local
starting) point T'I, because r is larger than the defining
vertex ' of C. On the other hand, while walking along
Cir(CI), the robot may encounter a cut that has been

reached before (but it differs from C). In this case, the
variable C is set to the encountered cut, the variable T'I
is maintained accordingly, and then the robot walks on
the new cut C. This is because the old value of T is
known not to be a critical image [7]. For the example
shown in Fig. 5(b), when the robot reaches the point z
along Cir(CI), the variable C is renewed to the cut of
the vertex r”, the variable TT is renewed to the image
of CI on the cut of v/, and then the robot walks on C
(the cut of 7). It is also possible that the value of C is
not changed, after the portion of Cir(CI) in P, — P.(C)
has been traversed. See Fig. 5(d) for an example.

When Cir(TI) is met during the walk on C, the
robot changes its route to walk on Cir(TI). This is
because the point T'I is a candidate for the next critical
image. See Fig. 5(c). Since we have assumed that r is
visible from the robot, Cir(TI) is definitely encountered
when the right endpoint (i.e., the defining vertex) of C is
reached. Also, while walking along Cir(TI), the robot
may reach a cut (it may be C itself). In this case, the
variable C is set to the encountered cut and the variable
T1I is maintained accordingly. See also Fig. 5(d) for an
example.

The remaining case we have to deal with is that the
robot reaches an intersection point ¢ of C' with a prior
cut C’, when it walks on C. In this case, if the point i is
contained in the clockwise oriented semicircle spanned
by r and by the last vertex on the shortest path from
the image of CI on C' to r, the variable C is renewed to
the cut C', and the variable T'I is renewed to the image
of CI on C'. This is because the new value of T'I might
be a critical image [7]. (If the point % is not contained
in the semicircle described above, nothing is changed.)
For the example shown in Fig. 6, when the robot walks
along the cut of 74 to the intersection point i of the cuts
of 73 and r4, the variable C is renewed to the cut of 3,
and the variable T'I is renewed to the point s3 (which is
a critical image in the example shown in Fig. 6).

To complete the task of exploring the target vertex
7, we assume that the variable T'I is initially set to the
point s, and that s is a special cut of P, and its essential
part P,(s) is the whole polygon P,. This assumption
helps explore the very first target vertex r, starting from
s. That is, the robot repeatedly walks on the circle(s)
Cir(TI) to explore the first target vertex 7. See the part
of the robot’s route from s to a in Fig. 6, which shows
how to explore the very first target vertex r9.

Assume now that the target vertex r has fully been
explored. What should we do next? Clearly, after the
vertex r is fully explored, it is deleted from RightTarget.
Note that on the way to explore r, the robot may cross
the cut of the other right vertex; this vertex (which is
larger than » and whose cut is dominated by CP) has
to be removed from the list RightTarget, too. See Fig. 6
for an example, where the cut of 78 is crossed when the
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robot moves from ¢ and sl.

Whenever the cut of r (that has just been explored)
is known to be essential, we determine whether a new
critical image can be found. A critical image is found
when the current point CP does not dominate all the
cuts explored or visited by the part of the robot’s route
between CI and CP [7]. See Fig. 6 for an example,
where the point s1 is recognized as a critical image when
the robot reaches the point s2. As soon as a critical im-
age is found, the variable CI as well as T'] is maintained.

As our strategy explores as many as possible of the
right vertices, it may happen that the robot loses sight
of the next (discovered) right vertex, after the current
target 7 is fully explored (i.e., r is the only right vertex
visible from the robot at that time). In this case, the
robot walks along the shortest path toward the head
of RightTarget until it becomes visible again. For the
example shown in Fig. 6, when the robot reaches the
point s2, it loses sight of the target vertex r4. The robot
then moves along the shortest path to the point e, so as
to recover its view to r4.

Figure 6: Exploring a right polygon.

The procedure for exploring the right polygon P,
denoted by P,-Ezploration, is given below. The start-
ing point s and the list RightTarget of right vertices,
which are visible from s, are input of the procedure P,-
Ezploration.

Procedure P,-Ezploration (in RightTarget, in s)

1. Set CI,TI,C <+ s. Assume that s is a special cut
and the essential part P,(s) is P,.

2. While RightTarget is not empty do

(a) The current target vertex is set to the head
r of RightTarget. As soon as a smaller right
vertex becomes visible, the value of r dynam-
ically changes to the smaller one.

(b) To explore the vertex 7, the robot walks along
(i) the portion of Cir(CI) in P, — P.(C) or
Cir(LI) (in P,(C)) as soon as it is possible,
(ii) the cut C if the robot is on C and visible
from 7, or (iii) the shortest path toward the
vertex blocking the view of r.

As soon as the last vertex on the shortest
path from CI to CP (resp. from TI to )
changes, the circle Cir(CI) (resp. Cir(TI))
is recomputed. When a cut is reached in the
walk along Cir(TI) or Cir(CI), the variable
C is maintained to the cut met by the robot,
and the variable T'I is also maintained. When
an intersection point ¢ of C with a prior cut C’
is reached during the robot’s walk on C, and
when ¢ is contained in the clockwise oriented
semicircle spanned by r and by the last vertex
on the shortest path from the image of CI
on C' to r, the variable C is renewed to the
cut C’ and the variable T'I is renewed to the
image of CI on C'. Finally, RightTarget is
maintained during the robot’s walk.

When the cut of r (that has just been ex-
plored) is known to be essential, whether a
new critical image can be found is computed.
To be precise, a critical image is found when
the current point CP does not dominate all
the cuts explored along the route between CI
and CP. After a new critical image is found,
the variable CI (as well as T'I) is maintained.

()

3. The robot returns to the starting point s along the
shortest path.

Let us explain a little more on why Step 2 of P,-
Ezploration works well. Step 2(a) specifies which vertex
the robot is intending to explore. Step 2(b) gives the
method to approach the cut of the target vertex and
deal with the special case in which a cut intersection is
encountered or the view of the robot to the target vertex
gets blocked. Generally, the robot moves along the cut
C to explore the target vertex r. As soon as the portion
of Cir(CI) in P, — P,(C) or Cir(TI) (in P.(C)) is met,
the robot changes its route to follow the encountered
circle. On the other hand, when a cut is met during the
robot’s walk on Cir(TI) or Cir(CI), the variable C is
maintained to the encountered cut, and the variable T'T
is maintained accordingly. Finally, Step(c) devotes to
the computation of critical images. Fig. 6 gives an ex-
ample to demonstrate how P,-Ezploration works (whose
details are omitted here).

Lemma 3 The set of critical images computed by the
procedure P,-Ezploration is the same as that by the off-
line approzimation algorithm [7].

Proof. Whether a cut of a right vertex is essential in the
right polygon P, can be determined when it is reached.
In P.-Ezploration, the circle Cir(CI) is used to compute
the images of CI on the following cuts, and Cir(TI) is
used to determine whether T'I is a critical image. More-
over, the variable C is dynamically maintained to the
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cut, which is currently encountered by the robot and
the image on it (i.e., TI) is a candidate for the next
critical image. Hence, the lemma, follows. O

Lemma 4 Suppose that P, is a right polygon with o
point s on its boundary and RightTarget is the list of
right vertices, which are visible from s. A call of P,-
Exzploration(RightTarget, s) explores the polygon P, by
outputing o watchman route of length at most 2|Woy|.

Proof. The main idea is to show that the robot roughly
walks along the angle hull of the route Wypp or Wep
(Lemma 1). See Fig. 6 for an example. Due to space
limit, the detail of the proof is omitted in this extended
abstract. O

3.2 Exploring a simple polygon

We present our competitive strategy for exploring a sim-
ple polygon P in a top-down manner. It mainly consists
of two steps. At the first step, the robot makes a clock-
wise tour to explore as many as possible of the right
vertices, with no attention to the exploration of the left
vertices of P. The procedure P, - Ezploration can be used
for this first tour, with a slight modification that the es-
sential cuts and critical images are defined with respect
to the set of explored right vertices. Clearly, all right
vertices cannot be explored, as the left vertices of P are
not explored.

The second and main step of our strategy is a recur-
sive procedure for exploring the rest of the reflex ver-
tices. Basically, the robot makes a counterclockwise tour
to explore the left vertices. The left vertices, which were
already discovered during the first tour of the robot, are
initially put into the list LeftTarget in counterclockwise
order. (Probably, some vertices of Left Target have been
fully explored during the first tour.) Some of the right
vertices having not yet been explored may become vis-
ible from the robot during this counterclockwise tour.
Another idea of our strategy is to explore the newly dis-
covered right vertices, as soon as it is possible.

Suppose that the current left vertex [ is fully ex-
plored, and some right vertices have been discovered
but not yet explored. (Note that some right vertices
(e.g., 75 in Fig. 7) may fully be explored on the robot’s
way to the cut of [.) When should the robot switch to
explore the right vertices? As the robot returns to its
counterclockwise toure after a break for exploring right
vertices, we define the switching condition to be that the
non-essential part of the cut of [ contains at least one
newly discovered right vertex, but does not contain the
head of LeftTarget (i.e., the next target left vertex).

Whenever the switching condition is satisfied, the
symmetric procedure is called several times, so as to
explore all the right vertices discovered up to now. It
can be done as follows. First, find the shortest paths

from s to the right vertices which have been discovered
but not yet explored. Only those left vertices which are
highest up in the shortest path tree of s are considered
as the starting points for exploring the newly discov-
ered right vertices. (Since the right vertices have been
discovered, this portion of the shortest path tree of s
is known to the robot.) Denote by StartPoint the list
of those starting points. Next, the robot walks on the
shortest paths to the points of StartPoint in counter-
clockwise order, and calls the symmetric procedure at
each point of StartPoint. Note that during the robot’s
walk along these shortest paths, some left vertices (e.g.,
{3 in Fig. 7(b)) may be fully explored. After these pro-
cedures for exploring right vertices are terminated, the
robot continues its counterclockwise tour to explore the
remaining vertices of LeftTarget. In this way, the whole
polygon P can eventually be explored.

Figure 7: Exploring an unknown polygon.

Fig. 7 shows an example for exploring an unknown
polygon. The routes R1 and L1 represent the first two
routes for exploring the right vertices and the left ver-
tices, respectively. At the time that the cut of I2 is
reached (Fig. 7(b)), the robot switches to the route R2
so as to explore the right vertex r4 (Fig. 7(a)). Also, at
the time that the cut of 74 is reached, the robot switches
to the route L2 so as to explore the left vertex [1. Next,
the robot moves to [4, switches to the route R3 so as to
explore the right vertex r3, and so on.

Denote by P-Ezploration the procedure for exploring
a simple polygon, and LeftEzplorationRec (resp. Righ-
tEzplorationRec) the recursive procedure for exploring
left (resp. right) vertices. To simplify the presentation,
we omit the treatment for the left (resp. right) vertices
that have been discovered but not yet explored during
a clockwise (resp. counterclockwise) tour. Also, we as-
sume that the procedure P,-Ezploration, which is used
to complete the first clockwise tour, has been modified
such that the essential cuts and critical images are de-
fined with respect to the set of explored right vertices.

Procedure P-Ezploration (in P, in s)

1. Initially, set RightTarget to the list of the right
vertices, which are visible from s and ordered in
clockwise order.
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2. Call P,-Ezploration(RightTarget, s).

3. Sort in counterclockwise order all the left vertices,
which are visible from the first clockwise tour of
the robot, and then, put them into LeftTarget.

4. Call LeftEzplorationRec(LeftTarget, s).

Let us further give the recursive procedure LeftEz-
plorationRec. The point, at which LeftEzplorationRec
is invoked, is denoted by s;. Note that the symmetric
procedure RightEzplorationRec is identical to LeftEzplo-

rationRec, except that left /right and clockwise/counterclockwise

are exchanged. Also, the essential cuts and critical im-

ages computed by LeftEzplorationRec or RightEzplorationRec

are defined with respect to the set of the left or right
vertices explored in the same level, or by the same pro-
cedure LeftEzplorationRec or RightEzplorationRec.

Procedure LeftEzplorationRec (in LeftTarget, in
81)

1. Set CI,TI,C + s;. Assume that s; is a special
cut and the essential part P(s;) is P.

2. While LeftTarget is not empty do

(a) The current target vertex is set to the head !
of the list LeftTarget. As soon as a larger left
vertex becomes visible, the value of I dynam-
ically changes to the larger one.

To explore the vertex [, the robot walks along
(i) the portion of Cir(CI) in P — P(C) or
Cir(TI) as soon as it is possible, (ii) the cut
C if the robot is on C and visible from [,
or (iii) the shortest path toward the vertex
blocking the view of .

As soon as the last vertex on the shortest
path from CI to CP (resp. from TI to )
changes, the circle Cir(CI) (resp. Cir(TI))
is recomputed. When a cut is reached in the
walk along Cir(TI) or Cir(CI), the variable
C is maintained to the cut met by the robot,
and the variable T'I is also maintained. When
an intersection point ¢ of C with a succeed-
ing cut C’ is reached during the robot’s walk
on C, and when 7 is contained in the coun-
terclockwise oriented semicircle spanned by r
and by the last vertex on the shortest path
from the image of CI on C' to I, the variable
C is renewed to the cut C’ and the variable
T1 is maintained to the image of CI on C'.
Finally, LeftTarget is maintained during the
robot’s walk.

(c) When the cut of ! is known to be essential,
whether a new critical image can be found
is computed. To be precise, a critical im-
age is found when the current point CP does

not dominate all the cuts explored along the
route between CI and the point CP. After a
new critical image is found, the variable CI
(as well as T'I) is maintained.

(d) Whenever the switching condition is satisfied,
do the following:

i. Set StartPoint to the list of the left ver-
tices in counterclockwise order, which are
highest up in the shortest path tree of s
to all newly discovered right vertices.

ii. for each vertex s, of StartPoint do

A. walk along the shortest path to s,
and then set RightTarget to the list
of right vertices in clockwise order,
which are larger than s, and have
been discovered but not yet explored.

B. Call RightEzplorationRec (RightTar-
get, sr).

3. The robot returns to s; along the shortest path.

It is clear that neither left vertices nor right ver-
tices can newly be discovered during the walks (Step
A) in the for loops of LeftExzplorationRec and RightEz-
plorationRec. Except for the original point s, the local
starting point s; for RightEzplorationRec (resp. s, for
LeftEzplorationRec) is always a right (resp. left) vertex.
Moreover, we can show that these starting points have
to be visited at least once by the route Wop;.

Lemma 5 All local starting points at which LeftEzplo-
rationRec and RightEzplorationRec are called have to be
visited at least once by the shortest watchman route Wy,
through s.

Prof. By symmetry, we only show that any local start-
ing point s, for calling RightEzplorationRec has to be
visited by Wop:. Recall that the left vertex s, is high-
est up in the shortest paths from s to the right ver-
tices, which are newly discovered by the previous call of
LeftEzplorationRec. So the cut of s, has to be visited
once by Wo,; otherwise, the cuts of the right vertices r,
which are explored by calling the procedure RightEzplo-
rationRec (RightTarget, s;), cannot be visited by Wop;,
a contradiction. To visit the cuts of these vertices r, the
route Wyy: has to pass through the left vertex s, (see
Fig. 7); otherwise, moving the point of Wy, toward s,
on the cut of s, produces a shorter watchman route, a
contradiction again. Hence, the lemma follows. O

Let us now give a method to bound the total length
of the robot’s route. Observe that the robot’s paths
reported by a single call of P,-Ezploration, RightEz-
plorationRec or LeftEzplorationRec, without consider-
ing further calls within it, always form a closed curve.
See Fig. 7 for an example, where the routes Rl to

-47 -



R4, L1 and L2 denote the curves output by a single
call of P,-Ezploration, RightEzplorationRec or LeftEz-
plorationRec. Also, we say that a call of P,-Ezploration,
RightExplorationRec or LeftEzplorationRec outputs a lo-
cal watchman route, which is restricted to visit the cuts
explored along the curve output by itself.

In the following, denote by R the route output by
a call of P,-Ezploration, RightExplorationRec or LeftEx-
plorationRec. Also, denote by R,y the shortest route
that visits all the cuts and the local starting points (at
which further recursive calls are made within the proce-
dure that reports R), which are visited by R.

Lemma 6 For any route R, |R| < 2|Rops| holds.

Proof. The route output by a recursive procedure Righ-
tEzplorationRec or LeftExplorationRec differs from that
by P,-Ezploration only at the very first walk in its for
loop. (Note that the walk in the for loop contributes
to the last part of the route reported by RightEzplo-
rationRec or LeftEzplorationRec.) Since this walk is
along a cut C that has just been reached, and since
the defining vertex of C has to be visited by both routes
R and Ry, the portion of C walked by the robot can be
counted as a part of the angle hull of the route Ryp;. It
then follows from the proof of Lemma 5 that any route
R cannot exceed in length the perimeter of the angle
hull of R,ps. Hence, we have |R| < 2|Rop|. O

Lemma 7 Let R and R' denote the routes output by two
calls of P.-Ezploration or RightEgplorationRec (resp. Lef-
tEzplorationRec). Then, Rops and Ry are mutually in-
visible, with a possible exception for their starting points.

Proof. Observe that the route R or R' output by a call
of P,-Exploration or RightEzplorationRec (vesp. LeftEz-
plorationRec) explores as many as possible of the right
(resp. left) vertices, and that they are separated by at
least a route that explores the left (resp. right) vertices.
The lemma follows from the switching condition and the
optimality of the routes Rypt, Ry (see Fig. 7). O

Lemma 8 Let Wy denote the shortest watchman route
through s. Then, the total length of the routes output
by all calls of P,-Ezploration and RightEzplorationRec
(resp. all calls of LeftExplorationRec), is at most 2|Wopy|.

Proof. The following two observations on the shortest
watchman routes can easily be made. First, the route
Wopt is longer than the shortest route that visits only
the cuts defined by right (resp. left) vertices. Second,
any two routes R,y and Rﬁ,,,t, which are mutually in-
visible, cannot exceed in length the shortest route that
visits the union of the cuts and the local starting points,
which are visited by Rop: and Ry, It then follows from

Lemmas 6 to 8 that all the routes output by calling P, -

Ezploration and RightEzplorationRec (resp. calling Lef-

tEzplorationRec) cannot exceed in length the perimeter

of the angle hull of W, It completes the proof. O
Now, we obtain the main result of this paper.

Theorem 1 For a polygon P and a starting point s on
the boundary of P, a call of P-Ezploration(P, s) ez-
plores the polygon P, which outputs a watchman route
of length at most 4 times the length of the shortest watch-
man route Wy through s. ‘

Proof. A call of P-Ezploration(P, s) produces two
groups of routes, which explore the right vertices and
left vertices, respectively. It follows from Lemma 8 that
the total length of these routes is at most 4|Wyp|. O
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