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Abstract This paper gives a simple algorithm to generate all multi-dimensional partitions of a positive integer
N. The problem is one of the basic problems in combinatorics, and it includes generations of integer partitions and
plane partitions. For a given integer d as dimension, our algorithm generates each partition of a given integer in
O(d) time for each without repetition. The known algorithm is complicated and includes many “goto” statements,
while our algorithm is simple and efficient. Also, we propose an algorithm to generate all exactly d-dimensional
partition in O(d) time for each.
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In this paper we consider the following generation problem.

1. Introduction o o
For a positive integer N, a d-dimensional partition A4 of N is

It is useful to have the complete list of objects for a par-
ticular class. One can use such a list to search for a counter-
example to some conjecture, to find the best object among
all candidates, or to experimentally measure an average per-
formance of an algorithm over all possible inputs.

Many algorithms to generate all objects in a particu-
lar class, without repetition, are already known [6], [15], [16],
[18], [22], [30], [33]. Many excellent textbooks have been pub-
lished on the subject [11], [13], [14], [32].

a kind of d-dimensional array of nonnegative integers 7], [8].
Let each element of the array be denoted by Aalis,...,i4].
An array is d-dimensional partition of N, if

E A¢[‘i1,...,‘i¢] =N 1)
i1,emrig
and
Ad[‘h,...,‘ik,...,‘id] > Ad[il,...,‘ik+l,...,id]

for all k. (2)
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Figure 1 An illustration of a plane partition.

Let S(N,d) be the set of all d-dimensional partitions
of N. For example, (A4[1,1,1,1] = 2,A4[1,2,1,1] =
1,A402,1,1,1] = 1,A4[2,2,1,1] = 1) is in 5(5,4). How-
ever, (As[1,1,1,1] = 2,44[1,1,1,2] = 1,44[2,1,1,1] =
1,A4[2,2,1,1] = 1) is not in S(5,4), since A4[2,2,1,1] =1
and A4(l,2,1,1] = 0 violate the decreasing condition (2).
Note that we write a d-dimensional partition by omitting
zero value elements.

If d = 1, the partition is called integer partition: For a
positive integer N, a partition of N is a sequence a1a2...am
of nonnegative integers a1 2 - 2 am such that N =
a1 + -+ am. Let S(IV,1) be the set of all integer parti-
tions of N. For instance, for N = 5 there are seven such
partitions: 5, 41, 311, 2111, 11111, 32, 221 and |S(5,1)| = 7.
Partitions above are rewritten by our notation: (Ai[1] =5),
(A1[1] = 4,A1[2] = 1), (A1[1] = 3,A1[2] = 1,A1(3] = 1),
(A1l] = 2,A41[2] = 1,A[3] 1,A:[4] = 1), (A1]1] =
1, A:[2] = 1,A:1[3] = 1,A:1(4] 1,A:[5) = 1), (Ai[1] =
3, A1[2] = 2), (A1[l] = 2, A1[2] = 2, A:[3] = 1). The asymp-
totic number of integer partitions of an integer N, |S(N,1)],

is given by the Hardy-Ramanujan-Rademacher asymptotic
formula [2, p.70]

1 x
ISl ~ eV,

If d = 2, the partition is called plane partition[3], [5], [17].
A plane partition is illustrated by stacking by cubes. For
1 represents a plane partition (Az2[1,1] =
3,42[1,3] = 2,42(2,1] = 4,A2[2,2] =
2, A2[2,3] 2,A2(3,1] = 2,A42(3,2] = 1,As[4,1] =
1,A3[5,1] = 1). For N = 5, there are |S(5,2)] = 24
plane partitions: (A42[1,1] = 5) (A42(1,1] = 4, A2[1,2] = 1),
(A2(1,1] = 3, A2[1,2] = 1, A3[1,3] = 1), (As(1,1] = 2,
A2[1,2) = 1, A[1,3] = 1, Az[1,4] = 1), (42[1,1] = 1,
As[1,2] = 1, A3[1,3] = 1, Ag[1,4] = 1,4,1,5] = 1),

example, Fig.
5,A2[1,2] =

(A2[1,1] = 3, A2[1,2] = 2), (A2(1,1] = 2, A42[1,2] = 2,
A2[1,3] = 1), (A2(1,1] = 4, A2[2,1] = 1), (A2[1,1] = 3,
Aq(2,1] = 1, A3[3,1] = 1), (A2[1,1] = 2, A2[2,1] = 1,
A3 = 1, As4,1] = 1), (A2L,1] = 1, As2,1] = 1,
Aaf31] = 1, Asf4,1] = 1, Ag[5,1] = 1), (A2(1,1] = 3,

A2(2,1] = 2), (A2[L,1] = 2, A2(2,1] = 2, A2[3,1] = 1),
(A2[1,1] = 3, A[1,2] = 1, A2[2,1] = 1), (42[1,1) = 2,
A3[1,2] = 2, A3[2,1] = 1), (A2[L,1] = 2, A2(1,2]
A3(2,1] = 2), (A2(1,1] = 2, A2[1,2] = 1, A2[1,3]

1
1
A3(2,1] = 1), (A2[1,1] = 2, A2[1,2] = 1, A42[2,1] = 1,
A2[2,2] = 1), (A2[1,1] = 2, A2[1,2] = 1, Az[2,1] = 1,
A2[3,1] = 1), (A2[1,1] = 1, A3[1,2] = 1, A2[2,1] = 1,
A2[2,2] = 1, A2[3,1] = 1), (42[1,1] = 1, A[1,2] = 1,

A3[1,3] = 1, A3[2,1] = 1, Ap[2,2] = 1), (42[L,1] = 1,
A21,2] = 1, A2[1,3] = 1, A[2,1] = 1, Az[3,1] = 1),
(A2(1,1] = 1, A2[1,2] = 1, A5[1,3] = 1, A2[1,4] = 1,
Az[2,1] = 1), (A2[1,1] = 1, A2[1,2] = 1, A3[2,1] = 1,
A2(3,1] = 1, A2[4,1] = 1). For plane partitions, there is
MacMahon’s generating function [17] and Bender and Knuth
gave a simple proof of the generating function [5).
Multi-dimensional partitions are a natural extension of in-
teger partitions and plane partitions. An asymptotic result
for the number of multi-dimensional partitions is known.
Bhatia et.
ber of d-dimensional partitions of an integer N goes as

al.[7] showed that asymptotically the num-

exp(CN¥/@+1)) where C is a positive finite constant inde-
pendent of N but dependent on d.

Many algorithms to generate all integer partitions have
been proposed.  See([1],[8]~[10], [19], [20], [25]~[29], [31],
[34]~[36]. The algorithm in [8] is for multi-dimensional parti-
tions but complicated and includes many “goto” statements.
On the other hand, we propose a simple and efficient algo-
rithm to generate all multi-dimensional partitions.

Our main idea of the algorithm is as follows. We first define
a rooted tree such that each vertex corresponds to a partition
in S(N, d), and each edge corresponds to a relation between
two partitions. Then by traversing the tree all partitions
in S(N,d) are generated. This technique is called the re-
verse search and first proposed by Avis and Fukuda [4] and is
applied to various generation problems [15], [21]~{24]. Note
that our algorithm outputs each partition as the difference
from the preceding one. With a similar technique we have al-
ready solved some generation problems for graphs [15], [21]~
[24], set partitions [12] and integer partitions [34]. This paper
extends the technique for d-dimensional partitions.

Above idea was applied to an algorithm for integer parti-
tions in (34], then this paper extends their algorithm. Their
algorithm generates all integer partitions for an integer in
constant time for each in worst case. In other word, their al-
gorithm outputs the partitions with constant time delay[36].

Our algorithm generates all d-dimensional partition of an
integer in O(d) time for each in worst case. For fixed dimen-
sion, it generates all d-dimensional partitions “in constant
time” for each in worst case, including integer partitions and

plane partitions.

-24-



In this paper we give a simple algorithm to generate all
d-dimensional partitions of an integer N. Our algorithm em-
ploys addition and subtraction for non-negative integers. We
assume that n + 1 and n — 1 can be calculated from given
non-negative integer n in constant time.

If N = 1, then generating all partitions is trivial. Hence
we assume N > 1 in this paper.

The rest of the paper is organized as follows. Section 2
shows a tree structure on the d-dimensional partitions of an
integer. Section 3 presents our first algorithm. The algo-
rithm generates each partition in S(N,d) in O(d) time on
average. In Section 4 we improve the algorithm so that it
generates each partition in O(d) time in worst case. By
slightly modifying the algorithm we give one more algorithm
to generate all partitions of an integer with some additional

property in Section 5. Finally Section 6 is a conclusion.
2. The Family Tree

In this section we define a tree structure among partitions
in S(N,d).

We define a d-dimensional partition Ag € S(N,d) of a
positive integer N as follows. Let A4 be a d-dimensional in-
teger array. Each element of Aq is denoted as Agfis, ..., %d).
Ag4 is a d-dimensional partition of an integer N if N =
E‘hmﬂ'd Aglta, ..., %4 and

Adlis, ... yik, ... 8a] 2 Adftr, ..., 5+ 1,...,44] for all k.

The nonzero elements of Ay are called the parts of Ag.
Throughout this paper, we denote Aq as a sequence of the
parts such that each part appears in lexicographical order of
its index. For convenience, we omit zero value elements. If
the number of parts of Aq is 1, then A4 = (A4[l,...,1] = N)
holds. We call it the root partition of S(N,d).

Then we define the parent partition P(Ag) of each par-
tition A4 in S(N,d) except for the root partition as fol-
lows. Suppose A4 = (A4[l,...,1],...,Adll1,...,ld]) is a par-
tition in S(N,d), and Ag4 is not the root partition. Note
that Ag4[l,...,1] and Aglli,...,ls] are the first and the
last part of A4 in lexicographical order, respectively. For
some k and a part Agfii,...,%%,...,%q) of Aqg, the part
Aglir, ...,k + 1,...,14] is the k-th lower neighbour part of
Agli, ..., %k, ...,%4] and the part Agfi1,...,5c —1,...,%4] is
the k-th upper neighbour part of Aglii,...,%%,...,%]. We
have the following two cases.

Case 1: A4fly,...,la)=1.

We define P(Aq4) as the partition derived from Aq by re-
moving Agfly,...,ls] and adding one to Ag4[l,...,1]. Note
that the number of parts of P(Aq4) is one less than that of
Ag.

Case 2: Ag[ly,...,ld) > 1.

We define P(A;) as the partition derived from Ag
by subtracting one from Ag[li,...,ls] and adding one to
A4[l,...,1]. Note that the number of parts of P(Aq) is equal
to that of Ag.

A d-dimensional partition A4 is called a child partition of
P(Aq). Note that Ag has a unique parent partition P(Aqg),
and on the other hand P(A4) has at most d + 1 child parti-
tions, say d Case 1 children and a Case 2 child. We have the
following lemma.

[Lemma 2.1] If Aq € S(IV,d) and A4 is not the root parti-
tion, then P(Aq4) € S(N,d).

By the lemma above, given a d-dimensional partition A4 in
S(N,d), where Aq is not the root partition, repeatedly find-
ing the parent partition of the derived partition produces
a unique sequence Aq, P(Aag), P(P(Ag)),... of partitions in
S(N,d), which eventually ends with the root partition. By
merging these sequences we have the family tree of S(N,d),
denoted by Tn,q, in which the vertices correspond to the par-
titions in S(NV,d), and each edge corresponds to the pair of
each Ay and P(A4). For instance, Ts,2 is shown in Fig. 2.

3. Algorithm

This section gives an algorithm to construct Tn,4 and gen-
erate all partitions in S(N, d).

If all child partitions of a given partition in S(N,d) can
be generated, then T4 can be constructed in a recursive
manner, and all partitions in S(V, d) can be generated. How
can we generate all child partitions of a given partition?

Let Ag = (A4[l,...,1},...,Adll,...,la]) be a partition in
S(N,d). We are going to give a method to generate all child
partitions of Aq4.

We now need some definitions. Let Ag[+] be a partition
derived from A4 by subtracting one from Ag4(l,...,1] and
adding one to Ag[ly,...,la]. Intuitively A4[+] is a possible
Case 2 child of Ag. Also, let A4[+i] be a partition derived
from Aq4 by subtracting one from Ag4[l,...,1] and adding one
to an element Ag4[mi,...,mq] suchthat m; =1;,...,mi_1 =
lici,mi =i+ 1,miq1 = -+« = mgq = 1. Intuitively Ad[-l-i]
is a possible Case 1 child of A4. Note that Ag[m,,...,m4)
is the last part of Ag4[+i] in lexicographical order. Thus,
Agl£] = (AdlL,...,1=1,..., Agfl, ..., la)+1) and Ag[+i] =
(Ad[l, ey 1] - 1, e ,Ad[ll, e ,ldl, Ad[m1, o ,md]).

If Aq is the root partition, then we can observe that it has
exactly d Case 1 children. Otherwise we have the following
two cases.

Case 1: Ag4[l,...,1] is equal to a lower neighbour of
Adll, ... 1]

Let Ag[ki,...,kd] be such a lower neighbour. In this case,
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Figure 2 The family tree T5,2.

Aall,...,1] and Aqglk, ..., kq) violate the decreasing condi-
tion (2) in Ag4[+] and Ag[+i]. Therefore Ag has no child
partition.

Case 2: A4[l,...,1] is larger than its every lower neighbour.
For each ¢ = 1,...,d, if every upper neighbour of
Ag[my,...,m4] is nonzero integer, Aqg[+i] is a partition in
S(N,d), and Ag[+i] is a Case 1 child of Ag. Note that Ag[+1]
is always a child partition of Aq4.
Let’s next consider Ag4[+]. There are the following two

cases.

Case 2(a): Ag[li,...,la] is equal to an upper neighbour of
Adlly, ..., L)

Let Aglki, - .., ka] be the upper neighbour of Ag[ls,...,l]
that is equal to Ag[ly,...,ld). In this case, Aa[la,...,ls] and
Aglki, ..., kq] violate the decreasing condition (2) in Aqg[£].
Thus Ag4[+] is not partition, then Aq has no Case 2 child.

Case 2(b): Ag[li,...,ld] is smaller than its every upper
neighbour.

If Aglli,...,la] is one of the lower neighbours of
Adll,...,1] and A4[l,...,1] — Agfl,...,ls) = 1, then
Aafl,...,1] and Agla,...,ld] violate the decreasing condi-
tion (2) in Ag[+]. Thus, A4[+] is not a partition in S(N, d),
and Ag has no Case 2 child. Otherwise, Aq[+] is the Case 2
child of Aqg.

For instance, for Ay = (A44[1,1,1,1] = 5, A4[1,1,2,1] =
4, A41,1,3,1] = 2, A4[1,2,1,1] = 3, A4[2,1,1,1] = 3,
A42,1,2,1] = 2, A4[2,1,3,1] = 1) in S(20,4), Ad[]
(Aal,1,1,1] = 4, Aa[1,1,2,1] = 4, A41,1,3,1] =
Ad1,2,1,1] = 3, A42,1,1,1] = 3, A4[2,1,2,1]

i
oo

A4[2,1,3,1] = 2) is the Case 2 child and A4[+1]
(A4[1,1,1,1] = 4, A4[1,1,2,1] = 4, A4)1,1,3,1] = 2
Ag1,2,1,1] = 3, Aq2,1,1,1] = 3, A42,1,2,1] = 2
Ad[2,1,3,1] =1, Aa[3,1,1,1] = 1), As[+2] = (4a[1,1,1,1] =
4, A41,1,2,1] = 4, A4[1,1,3,1] = 2, A4[1,2,1,1] = 3,
Ad2,1,1,1] = 3, A4[2,1,2,1] = 2, A42,1,3,1] = 1,
A4[2,2,1,1] = 1) are the Case 1 children of As. How-
ever, A4[+3] = (A4[1,1,1,1] = 4, A4f1,1,2,1] = 4,
Ay[1,1,8,1] = 2, A4[1,2,1,1] = 3, A42,1,1,1] = 3,
Ad2,1,2,1] = 2, A42,1,3,1] = 1, A4[2,1,4,1] = 1) and
Ag[+4] = (Aa[1,1,1,1] = 4, Ag[1,1,2,1] = 4, A4[1,1,3,1] =
2, Ad[1,2,1,1] = 3, A4[2,1,1,1] = 3, Aq[2,1,2,1] = 2,
A42,1,3,1] = 1, A4[2,1,3,2] = 1) are not the Case 1 child
of As. They are the three child partitions of As.

Based on the case analysis above, we now give an algo-

rithm to generate all partitions. Note that the array in the
argument is passed by its pointer, so we use the array during
the execution of the algorithm.

Procedure find-all-children (44 = (44[,...,1],...,
Adlly, ..., L))
{Aq is the current partition.}
begin
01 OQutput Ag
{Output the difference from the preceding partition.}
02  if Ag4fl,...,1] is larger than every lower neighbour of
A4ll,...,1] then
03  begin {m.,...,mq are uniquely defined from Iy, ..., la}
04 foreachi=1,...,d
05 if every upper neighbour of A4[ma,...,m4] is
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nonzero then

06 find-all-children(A4[+i])
{Cases 2(a) and 2(b)}

07 if Ag[mi,...,mq) is smaller than every upper neigh-
bour of Agfma,...,mq4] and (Aa[ma, ..., m4] is not
a lower neighbour of A4[l, ..., 1] or Ag[ma,...,ma|—
Agl,...,1] > 1) then

08 find-all-children(Aq4[+])  {Case 2(b)}

09 end

end

Algorithm find-all-partitions(N, d)
begin
01 Output the root partition Ry = (R4[l,...,1] = N)
02  for each i =1,...,d find-all-children(R[+i])
end

We have the following theorem.
[Theorem 3.1] The algorithm uses O(N?) space and runs
in O(d|S(N, d)|) time.
Proof.
each partition at each corresponding vertex of T 4, we can

Since we traverse the family tree Tiv,4 and output

generate all partitions in S(N, d).

For the part A4[l,...,1] of A4, we maintain the maximum
lower neighbour of Ag4[l,...,1]. With a help of the part we
can check the condition in Line 02 in constant time.

In naive way, we take O(d) time to check the condition in
Line 05 for each i = 1,...,d. Thus we take O(d?) time in
total in Lines 04 and 05. However, with the following data
structure, the condition in Line 05 can be check in constant
time as follows. For each part Ag[i1,...,%4] of A4, we main-
tain the number of nonzero upper neighbours, denoted by
u(Agli1,...,1a]). Note that u(Aqgli1,...,id]) = d if and only
if all upper neighbours of Agfi1,...,%4] are nonzero. This
number can be update in O(d) time for each generation of
a child partition. With a help of the above number, we can
check the condition in Line 05 in constant time. Thus all
Case 1 children for each partition can be generated in O(d)
time.

The running time of the other parts is bounded by O(d)
time except recursive calls. Thus all child partitions of Aq
can be generated in O(d) time. Note that the algorithm takes
O(d) time even if Aq has only one child partitions. There-
fore the algorithm runs in O(d|S(N, d)|) time. Note that the
algorithm does not output each partition entirely, but the

difference from the preceding partition. Q.ED.

Thus, the algorithm generates each partition in O(d) time
“on average.” Note that our algorithm outputs only the dif-
ference between a partition and its preceding one. In the next

section we improve the algorithm to generate each partition

in O(d) time “in worst case.”
4. Modification

The algorithm in Section 3. generates all d-dimensional
partitions in S(N,d) in O(d|S(N, d)|) time. Thus the algo-
rithm generates each partition in O(d) time “on average.”
However, after generating a partition corresponding to the
last vertex in a large subtree of T4, we have to merely
return from the deep recursive call without outputting any
partition. This takes much time. Therefore, each partition
cannot be generated in O(d) time in worst case.

However, a simple modification [24] improves the algorithm
to generate each partition in O(d) time. The algorithm is as
follows.

Procedure find-all-children2(Ag4, depth)
{ A4 is the current partition, and depth is the depth of
the recursive call.}

begin
01 if depth is even then
02 Output Ag {before outputting its child partitions.}

03 Generate child partitions by the method in Section 3,
and recursively call find-all-children2 for each child

partition.
04 if depth is odd then
05 Output Ag {after outputting its child partitions.}
end

Note that the above algorithm outputs only the difference
between a partition and its predecessor.

One can observe that the algorithm generates all partitions
so that each partition can be obtained from the preceding
one by tracing at most three edges of Tv,s. Note that if Ag
corresponds to a vertex v in Tn,g with odd depth, then we
may need to trace three edges to generate the next partition.
Otherwise we need to trace at most two edges to generate
the next partition.

[Theorem 4.1] The algorithm generates each d-dimensional

partition in O(d) time in worst case.
5. Exactly d-dimensional Partitions

For a given integer N, the following three partitions:

(A4fl,...,1] = N), (Aq1,...,1] = N - 1,A4)2,1,
...,1] = 1) and (A4qf1,...,1] = N —2,A42,1,...,1] =
1,A4[3,1,...,1] = 1) can be regarded as one-dimensional

partitions, thus integer partitions. Similarly, the follow-
ing two partitions (Aq4[l,...,1] = N — 2, A44[1,1,...,1,2] =
1,A41,1,...,2,1] = 1) and (A4[L,...,1]] = N -

2,Aq4(1,2,1,...,1] = 1,A4[2,1,...,1] = 1} can be re-
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garded as two-dimensional partitions. In other words,
we can identify (Aqfl,...,1] = N —2,A44[1,2,1,...,1]
L,Ad2,1,...,1] = 1) as (42[1,1] = N — 2,45[1,2]
1, A2(2,1] = 1,}, thus plane partition. We may consider

that the algorithm in Section 3. generates “at most” d-
dimensional all partitions for given N.

This section deals with “exactly” d-dimensional partitions.
A d-dimensional partition Aq is a ezactly d-dimensional
partition if A4[l,...,1,2] > 0, A4l,...,1,2,1] > 0O,...,
Agl2,1,...,1] > 0 hold. For instance, for d = 3 and
N = 17, (43[1,1,1] = 3,43[1,1,2] = 2,A43[1,2,1] =
1, As[2,1,1] = 1) is a exactly 3-dimensional partition. How-
ever, (As[1,1,1] = 5,43(2,1,1] = 1,A43[3,1,1] = 1) and
(As[1,1,1] = 4,A3(1,1,2] = 1, As3(1,2,1] = 2) are not ex-
actly 3-dimensional partitions.

This section gives an algorithm to generates exactly d-
dimensional partitions. Let S(N,= d) be the set of all ex-
actly d-dimensional partitions of a positive integer N.

If N =d+ 1, then S(N,= d) contains exactly one parti-
tion. In this case generating all partitions in S(N,= d) is
trivial. Otherwise, if N < d+ 1, there is no partition. Hence
we assume N > d + 1 in this section.

We set Ry = (R4[l,...,1] = N - d,R4[1,...,1,2] =
LR41,...,1,2,1] =1,...,Ra[1,2,1,...,1] = 1,R4[2, 1,...,
1] = 1) as the root partition of S(N,= d).

Then we define the parent partition P(A4) of each parti-
tion A4 in S(N, = d) except for the root partition as follows.
Let Ag = (A4[l,...,1], ..., Aql1,...,ld]) be a partition in
S(N,= d), and assume that Ay is not the root partition.
Let Aglka,...,kq) be the last part of A4 in lexicographical
order and except the parts included in Rq. We can observe
that Aq always has a part except the parts included in Rg if
|Ag| > d+ 1 holds, where |A4| is the number of parts of A4.

We have the following three cases.

Case 1: |A4] > d+ 1 and Aglks, ... ykal = 1.

We define P(Aq4) as a partition derived from Aq by remov-
ing Aglki, ..., k4] and adding one to A4[l,...,1]. Note that
the number of parts of P(Ag) is one less than that of Aq4.
Case 2: |Agq| > d+1 and Aglky, .. .yka] > 1.

We define P(A) as a partition derived from A4 by subtract-
ing one from Aglk: ...,kq) and adding one to A4fl,...,1].
Note that the number of parts of P(Aq4) is equal to that of
Ag.

Case 3: |[Ag| =d+ 1.

We denote Aaj1,...,ja] as the part such that
Aqglj1,.--,44) > 1 holds and the last part in lexicographic
order of Ag. Then we define P(Aq4) as a partition derived
from A4 by subtracting one from Ag[ji,...,Jjq4] and adding
one to Ag4(l,...,1]. Note that the number of parts of P(Aq4)

is equal to that of Ag4.

Note that P(Ag) is also in S(N, = d).

Similar to Sections 2 and 3, by the definition of the parent
partition, we can define the family tree of S(N,= d), and
also generate exactly d-dimensional partitions in O(d) time
for each.

[Corollary 5.1] One can generate each exactly d-dimensional

partition in O(d) time in worst case.
6. Conclusion

In this paper we have given simple algorithm to generate
all d-dimensional partitions. We first define a family tree
in which each vertex corresponds to each partition with the
given property, then output each partition in O(d) time by
traversing the family tree. Also, we have given an algorithm
to generate all exactly d-dimensional partitions in O(d) time
for each. Our algorithms can be simply implemented using
a d-dimensional array.
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