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Abstract We consider a malicious adversary which generates multiple undetectable faults by local checks. Though
the possibility of such faults has ever been suggested, details of its influence and handling are unknown. We assume
the malicious faults in a self-stabilizing mutual exclusion protocol, a hybrid of previously proposed ones that com-
plement each other. In the hybrid protocol, we can cope with the faults by using optional strategies, sending a minor
token or not, where the minor token plays a role of preventing the contamination from spreading. We construct a
payoff matrix between a group of privileged processes and an adversary, and consider a multistage two-person zero
sum game. We interpret the game in two ways: whether or not it terminates when Dijkstra-like repair, i.e., moves
against malicious faults, occurs. For each case, we evaluate the ability of malicious adversary by using a mixed
strategy. Our idea is also considered as a general framework for strengthening an algorithm against malicious faults.

Key words self-stabilization, mutual exclusion, safety under convergence, malicious fault model, game theory,
multistage two-person zero sum game

. gence in self-stabilizing mutual exclusion. The requirement

1. Introduction L .

of mutual exclusion is to allow at most one privileged pro-
Motivation. Studies on self-stabilization have been ex- cess at any time, called legitimate configurations. Starting

tended to vast areas in recent years. One of the areas, which from an arbitrary configuration, it is difficult to keep it fully

we focus on here, is how to keep a system safe under conver- legitimate under convergence. For example, it is known that
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Dijkstra’s 3-state protocol [3] guarantees recovery from arbi-
trary initial configurations in an n-process ring as illustrated
in Fig. 1.

Dijkstra’s 3-state protocol

process po:
if (s0 + 1) mod 3 = s, then so := (so — 1) mod 3
Process prn—_1:
if 8p—2 = 50 and 8n-1 F (8n-2+1) mod 3
then s,_; := (8p-2 + 1) mod 3
process p; (0 <i<n-—1):
if (s; + 1) mod 3 = s;—; then s; := s;_,
if (3; + 1) mod 3 = 84 then s; := s;41

So
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1 Dijkstra’s 3-State Protocol

In the left hand of the figure, the four processes po,p1,p2
and ps forming a ring, have states (3o, 31, 82, 83) = (2,1,0,2)
and move one by one according to the protocol. An example
of state transition is depicted from (a) through (c), where
each state is represented by the location of nodes; and priv-
ileged processes by black nodes. We call the transition as in
Fig. 1 “Dijkstra-like repair”, where more than one privileges
are unexpectedly given to processes under repairing. Hence,
the requirement of mutual exclusion is violated temporar-
ily. Such violation of mutual exclusion occurs because each
process acquires a privilege by only the difference of states
between neighboring processes in a small domain {0, 1,2}.
Kiniwa et al.[13] ~ [15] solved this problem by enlarg-
ing the state space: Every non-faulty state must take a
value in B3 = {0,L,2L}, called bases, for a large integer
L > n. Furthermore, a non-faulty process acquires a privi-
lege when it has a state less than a neighboring state by L
(mod 3L). Thus, the state other than B3, which is easily
detected by local checks, is a faulty state. If we consider
the states (so, 31, 82, 83) = (2,1,0,2) in the large state space,
only s2 € B3 has a non-faulty state and other processes are
not given privileges. Since the three values are defined in a
large domain, the mutual exclusion is almost safe if we as-
sume that faulty states are uniformly distributed over the
range. Such an assumption is called a random fault model.
As far as we know, every conventional argument concerning
safety under convergence has used this model [10], [13], [21].
We can, however, only know the average safety of a system by
the random fault model. In contrast, we can evaluate how

little weakness the system has by a malicious fault model.

Yen [21] said that

“In the random failure model, a transient failure
can bring the system into any illegitimate state with
equal probability”,

and that

“In the malicious failure model, some faulty proces-
sors may maliciously try to violate the system legit-
imacy without being detected by local checks and
subsequently cause critical damages”.

In fact, the malicious fault may be possible if some intruder
intends to violate mutual exclusion or if some biased fault oc-
curs. In the Kiniwa et al.’s enlarged domain system [13], [15],
if faulty states are maliciously limited to the three predefined
values B3, they cannot be detected by local checks. Thus,
the malicious fault in the enlarged domain system is the at-
tack on the three predefined values Bs, called a base fault.
We should evaluate the previously proposed methods by the
malicious fault model, or improve them assuming the pres-
ence of malicious faults.

So we need an argument based on the malicious fault
model. To this end, we believe that a game theoretic anal-
ysis, two-person zero sum game, is useful. Since many pro-
cesses obtain a privilege in the long run, they are grouped
together, called player A. On the other hand, the malicious
adversary is called player B. The advantage of player A, cor-
responding to the disadvantage of player B, is shared by the
processes. In our system, the player A has two strategies,
whether or not sending a minor token, while the player B
has three strategies, not causing a fault, causing a base fault
and a non-base fault. The minor token [9],[12], introduced
as a coupled use with a major token, plays a role of checking
every process and repairing the base fault which is unde-
tectable by local checks. In contrast, the non-base fault is
detectable by local checks. With the help of game theory, we
derive optimal mixed strategies of player A and player B.

Related Work. As Dasgupta et al. [2] pointed out, only
little work mixing game theory with self-stabilization has
been done. We just know a technique, called a scheduler-
luck game, for analyzing the performance of randomized self-
stabilization (5]. In the context of distributed non-stabilizing
algorithms, however, the behavior of selfish agents has been
extensively studied[17], triggered by Koutsoupias and Pa-
padimitriou[16]. They used a term “price of anarchy” to
represent a ratio of the largest social welfare achievable to
the least social welfare achieved at any Nash equilibrium. A
similar framework was preserved in the study of selfish sta-
bilization [2]. Our work, however, owes its technical base to
the conventional game theory [11], [18].
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The mutual exclusion problem has been the main topic
in self-stabilization since Dijkstra’s work [3], [4]. Several new
ideas originated from the problem. One of them is the safety
under convergence, e.g., superstabilization [9], [12], cryptog-
raphy [21], fault containment [6] ~ [8] and enlargement of
state space [13] ~ [15], [21]. However, as stated above, the
safety of each protocol was measured by only the random
fault model.

Notice that the term “malicious failure” is sometimes used
in the sense of Byzantine failure [19] or intrusion detection
[20]. However, our malicious fault is different from Byzantine
failure because our adversary does not generate a Byzantine
node whose behavior is arbitrary, but attacks the states in
such a way that no local checks detect the fault. So we call
our model a “malicious fault which is undetectable by local
checks” to distinguish our topic from others.

Contributions. Our goal is not to propose a new proto-
col, but to develop a game theoretic analysis of the malicious
fault model. Our contribution includes

(1) the construction of a malicious fault model: We do
not assume that the faulty state takes any value over the
domain with equal probability. The malicious fault may give
any value to some states. The study on such a malicious
fault model is new.

(2) a game theoretic analysis: Grouping a set of priv-
ileged processes enables us to consider a multistage two-
person zero sum game. The formulation of this game in the
self-stabilization is new, and

(3) the suggestion of a framework: We propose a frame-
work for strengthening an algorithm against a malicious
fault which is undetectable by local checks. The method
of strengthening an algorithm is new.

The rest of this paper is organized as follows. Section 2.
states our model, and then presents an example of our pro-
tocol. Section 3. provides an analysis of the malicious fault
model. First, Section 3.1 considers that a game continues
after Dijsktra-like repair. Second, Section 3.2 considers that
the minor tokens can be sent only once. Third, Section 3.3
considers that the game terminates when Dijkstra-like repair
occurs. Finally, Section 4. concludes the paper.

2. Our Method

2.1 Self-stabilizing Model

In this section we describe our method for the mutual ex-
clusion problem on bidirectional rings. A ring consists of
n processes P = {0,1,..
where process i is connected with its neighboring process
i—1 mod n, called a predecessor, and ¢ + 1 mod n, called a
successor. In particular, {i—k mod n,... ,i—1 mod n} C P
are called k predecessors of ¢ € P. Each process ¢ has

.,n — 1} of finite state machines,

a state 0; € ¥; consisting of a shared set of states o; =
(magor,, minor;, dtoken:, atoken;, wait;) with its predecessor
and successor, where I; is the finite state space of process
i. Let Rk = [0,..., K] be a set of real values, over which
a primary variable major; ranges, and let a function ¢ map
magor; € R into h digits. That is, ¥(major;) is represented
by h integers which are stored in an array. In the domain Rk,
we define K specified integer values Bx = {0,1,... ,K—1},
called bases, such that every correct megjor; must take these
values (as a necessary condition). A secondary integer vari-
able minor; ranges over I, = {~k—1,... ,k+1} U L, where
L represents a normal state of minor;. The states of minor;
are classified as follows.

® Inactive : Every process ¢ has minor; =1.

e Testing : At least one process ¢ has minor; > 0 or
minor; = 0 A Privilege;, and other process j € P\i has
minor; £ 0.

® Responding : At least one process i has minor; < 0,
and other process j € P\i with ~Privilege; has minor; # 0.

® Resetting : At least one process ¢ with —Privilege;

has minor; = 0.
In addition, o; contains auxiliary boolean variables dtoken;,
atoken; and wait;, where dtoken; and atoken; are used to
prevent deadlocks independently, and wait; is used to let
a privielged process wait until admittance to a critical sec-
tion. A configuration c is an n-dimensional vector of states
¢ = (00,01,... ,0n-1). The set of all configurations, a global
state space, is denoted by @ = Zg x L1 X - -+ X ¥_1. Notice
that the computation for major; and minor; uses mod K
and that for process ¢ itself uses mod n. For simplicity, we
drop the notation of mod K and mod n in the sequel. We
assume a state-reading model as in [3], that is, process i can
directly read (but not write) the states from o;_1 and oi41.
We assume a C-daemon (central daemon) scheduler.

‘We consider a critical section in which only a process stays
for access to a single resource. We say that a process has a
privilege if it gains admittance to the critical section. Un-
like other papers[3],[12], we distinguish the terms between
enabled and privileged because not all enabled processes can
get into the critical section in our protocol. The C-daemon is
assumed to be fair, that is, every enabled process is selected
infinitely often. Let A C Q be a set of legitimate configura-
tions as given in the following definition.

[Definition 1] A configuration ¢ is legitimate (c € A) if

® every process ¢ has major; € Bk, dtoken; = false and
atoken; = 0,

® there exists at most one magjor; in ¢ such that major;+
1 = major,_,, and

e the state of minor; € I is one of Inactive, Testing
or Responding. [m]
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2.2 Underlying Protocols

Our protocol is constructed based on two protocols. The
first underlying protocol was proposed by Beauquier et al. [1].
Their method, called k-STAB, guarantees that the system
stabilizes in time that depends only on k from any k-faulty
configuration, in which the states of at most k processes differ
from a legitimate configuration. The feature of their method
is that the process with a major token sends an additional
token, called a minor token, to at most k + 1 predecessors
before acquiring a privilege as illustrated in Fig. 2. If there is
no faulty process in the predecessors, the minor token is re-
turned to the privileged process. On the other hand, if there
is some other privileged process in the predecessors, the mi-
nor token is deleted by the process. When the minor token
is returned to the process with a major token, the critical
section is excuted.

k-STAB for process i + 0

if (i has a major token) then
if (i has just received the major token) then
send minor token to a predecessor and wait it
if (i has been waiting for the minor token) then
perform critical section ;
send major token to a successor
else if —(i has a major token and a minor token) then
eliminate spurious major token
fi

send minor token to a predecessor (if any)

2 k-STAB

The second underlying protocol, called an enlarged domain
protocol (EDP), was proposed by Kiniwa et al.[14],[15].
Their method guarantees that faulty processes can be de-
tected and rapidly corrected with high probability. The fea-
ture is that the enlargement of a state space of Dijkstra’s K-
state protocol ®V. Every non-faulty state has to take on one
of K bases. Due to the large state space, most faulty states
take on some non-base value, called a non-base fault, with
high probability in the random fault model. Such a process
with a non-base state is enabled and reset to its neighbor-
ing base state without acquiring a privilege. Since a base

(1) : It was originally an extension of Dijkstra’s 3-state protocol.

fault violates the requirement of mutual exclusion and it is
undetectable by local checks, we consider the base fault as a
malicious fault.

EDP for process i (i # 0)

if (¢ has a non-base fault) then
reset to a neighboring base (if any) ;
send dtoken if ¢ receives it
else if (¢ has a privilege) then
perform critical section;
major; := major;_, and send major token to i+1
fi
‘We briefly summarize the characteristics of the underlying
protocols as follows.

advantage disadvantage

tly (minor toks
k-STAB tolerant to a base fault costly (minor token

circulation)

tolerant to non-base faults, weak against base faults

(Dijkstra-like repair)

EDP

cheap (no minor token)

£ 1 Characteristics of Underlying Protocols

2.3 Description of Our Protocol

Here we exemplify our protocol that combines the previous
two protocols. Our method guarantees both advantages in
the underlying protocols. The feature of our method is that
a privileged process has the option of whether or not sending
a minor token. If the minor token is sent, called a strategy
ST, the spreading of base fault contamination can be pre-
vented in any k-faulty configuration. However, ST is costly
because it requires to wait the minor token coming back. If
the minor token is not sent, called a strategy NS, the base
fault contamination may spread through the system. Notice
that a non-base fault can be corrected without any aid of
minor tokens. Our aim is to know optimal mixed strategies,
the probabilities of ST and NS.

Our protocol for process ¢ (i F 0)

if (i has a non-base fault) then
reset to a neighboring base (if any) ;
send dtoken if i receives it
else if (i has a major token) then )
if (i has just received the major token) then
choose ST with p and NS with 1 —p
if (¢ has been waiting for the minor token)
or (i chooses NS) then
perform critical section ;
major; := major;_, (send major token)

else if —(i has a major token and a minor token) then
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eliminate spurious major token
fi

send minor token to a predecessor (if any)
3. Analysis

In this section, we analyze the malicious fault which is un-
detectable by local checks in our protocol. We summarize
our setting as follows.

o We consider a multistage two-person zero sum game
played by a set of privileged processes, called player A, and
an adversary, called player B. Since a privilege is passed from
one process to another, the process playing the role of player
A also changes from one to another. We characterize a pro-
tocol as the multistage game because the conflict between
processes and an adversary continues repeatedly.

o  We call the time interval during which a process holds
a true privilege a stage. The unit stage begins when a process
obtains a true privilege and terminates when any fault is re-
moved and the new process obtains a true privilege. The
player B can generate faults at most once in each stage.
Though the faults may pertub values in any variable, we
analyze only the primary variable major;. Both the player
A and the player B cannot know other player’s strategy in
advance. A game is represented by the number of remaining
stages out of m stages in total.

e A privileged process makes a choice whether or not
sending a minor token. The minor token plays a role of pre-
venting contamination from spreading. If it meets a faulty
privilege, the process that has sent the minor token receives
no response. Otherwise, the process receives a response and
it confirms that there is no fault in the k predecessors. The
reward of detecting a base fault is @ and the damage of a
base fault is 3 relative to the cost 1 of not sending a minor
token when no fault occurs. On the other hand, the cost of
sending a minor token (ST) takes about 2(k+ 1) times larger
than not sending a minor token (NS). We assume the minor
token can correct the base fault with probability r because
some fault may occur after having passed a minor token.

e The goal of player A is to maximize the reward of
player A, shared by a set of privileged processes, through the
m stages. The mixed strategy of player A consists of send-
ing a minor token (ST) with probability p and not sending a
minor token (NS) with probability 1 —p. On the other hand,
the mixed strategy of player B consists of causing no faults,
base faults and non-base faults with some probabilities.

Since it is difficult to evaluate the cost of Dijkstra-like re-
pair, we consider it from two different points of view, (Sec-
tions 3.1 and 3.2) and (Section 3. 3). First, in Sections 3.1
and 3.2, we assume that the cost of Dijkstra-like repair can
be constantly evaluated as 8 and the game continues after

the repair. Next, in Section 3.3, we assume that the cost
cannot be easily evaluated, thus the game terminates when
the Dijkstra-like repair begins because it means player A’s
defeat. Thus, player B wants to increase the workload of the
algorithm in Sections 3.1 and 3.2, and wants to drive the
system to an unsafe state in Section 3.3.

3.1 Game Continuation after Dijkstra-like Repair

To begin with, we consider only one stage, i.e., m = 1. In
the payoff matrix below, each row means player A’s strategy
and each column means player B’s strategy.

non-fault base fault non-base fault
ST —-2(k+1) ra+ (1 —r)(-B) —2(k +1)
NS 1 —-B 0

# 2 Payoff Matrix

We can exclude the case of non-fault because it is domi-
nated by the non-base fault. Let a = (p,1 — p) be the mixed
strategy of player A, that is, player A takes the strategy
ST with probability p and the strategy NS with probabil-
ity 1 — p. Then the expected payoffs E(a,base fault) and
E(a,non-base fault) of player A against the pure strategies
{base fault, non-base fault} of player B are

E(a, base fault) = {ra — (1 —r)B}p - B(1 -p),(1)
E(a,non-base fault) = —2(k+1)p+0 (2)

B 3 Maximin Strategy (player B’s optimal counterstrategy :
dotted line)

Since player A is a maximizer, the maximin value (see
Fig. 3) derived from the intersection of (1) and (2) is

._ i _ B
a _(r(a+ﬂ)+2(k+1)’ 1 r(a+ﬂ)+2(k+1))'

The game value is —32(k + 1)/(r(a + B) + 2(k + 1)).
Since player B does not take the non-fault strategy, let

b = (0,9,1 — q) be the mixed strategy of player B, that is,
player B takes the base fault strategy with probability g and
the non-base fault strategy with probability 1 —q. Then, the
expected payoffs of player B against the pure strategies of
player A are

E®,ST) = {ra—(1-r)B}g—-2(k+1)(1 —¢g) and
E(b,NS) = —fq +0.
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Thus, the optimal strategy of player B is

b.=( 2(k +1) r(a+p) )
"rla+pB)+2(k+1) r(a+B)+2(k+1))

The minimax value is —20(k + 1)/(r(a + B) + 2(k + 1)).
Next, the game I'(m) for m > 1 can be expressed as fol-
lows.

ra—(1—-7r)p+T(m—-1)

rim) = [ g+ T(m-1)

—2(k+1)+T(m-1)
T'(m-1)

For simplicity, let & = 2(k + 1). Then, the game value vm
for I'(m) can be easily solved as follows.

]
3
Il

val [ ra—(1-71)8+ Um-1

— K+ Um-1
—ﬂ"" Um-1

Um-1

=vm_1+”al[ra—-(1-r)ﬁ —-n]
-8 0

_ —Br

- vm'l+r(a+ﬂ)+n

- __—Pms__

T rle+B)+r

Similar to the argument for m = 1, the optimal strategies of
players A and B are

o’ = ( : 1_1'(z>z+l7@)+:c) and

rla+pB)+x’
. K r(a+p)
b= (0’ rla+p)+£’ r(a+p) +n) ’
respectively.

3.2 Finite Sending of Minor Tokens

Here, we assume that we can send minor tokens at most
k times, represented by I'(m, k), by timing constraints. By
excluding the non-fault case as in Section 3.1, we have

ra—(1—-r)8 _ _ _
I(m,k)= | +T(m—1,k—1) ©+Dm-Lk-1)
—-B+T(m —1,k) I'(m — 1,k)

The game value vpm i is

ra—(1=r)8+vm-1k-1 —K~+Um-1,k-1
V& = val ,
_ﬂ + Um—1,k Um-1,k
where vs,0 = —hf and vo,« = 0 (h is an arbitrary positive

integer and #* is an arbitrary non-negative integer).
8.2.1 Casefork=1
Suppose that we can send a minor token at most k = 1.

Then, the game value is

ra—(1-7)8+ vm-1,0 — K+ Un-1,0
Um,1 = val
—B+vm-1,1 Um-1,1
rl@a+B)-mf —-k—(m-1)B
= val .
B+ vm-1,1 Um—1,1

For simplicity, we denote vm,1 by vm. The expected payoffs
of player A’s mixed strategy a = (p,1— p) against player B’s

pure strategies are

E(a,base fault) = p- {r(a + 8) — mB}
+(1-p)- (-B+vm-1) and
E(a,non-base fault) = p- (—k — (m —1)8) + (1 — p) - Vm—1.

Since the intersection of them is p = 8/(r(a + B) + &), we
have

vm = —p{(m-1)B+ &k} + (1 — p)vm-1.
Hence,

tm+(m-1)B+k=Q1-p{vm-1 +(m—-1)8+x}

= (1-p)™{vo+(m-1)8+r}

Since vo = 0 and p = 8/(r(a + B) + &), we obtain

vm=((m—1)ﬂ+n){(l—m)m—l}.

The player A’s optimal strategy a* until sending a minor
token once is

rla+p)+&’ rla+B)+x)’
The expected payoffs of player B’s mixed strategy b =
(0,q,1 — q) against player A’s pure strategies are
E(,ST) = g(r(a+B) —mp) + (1 —g)(—x — (m —1)B) and
E(b,NS) = g(—B+ vm-1) + (1 — g)vm-1.
The intersection of them is

_ (m—-1)8+ K+ vm1

rla+p8)+x
Thus, the player B’s optimal strategy b* for remaining m
stages is
. _ (m—1)8+ K+ vm-1 (m—1)8+ K+ vm-1
b = 0, ) - i)
rla+B8)+& rla+B)+k

where k = 2(k+1) and vm—1 = ((m—2)B+x){(1-B/(r(a+
B)+ k)™t —1}.
3.3 Game Termination when Dijkstra-like Repair
If Dijkstra-like repair begins, we consider here that our
game cannot be continued because the cost of Dijkstra-like
repair cannot be easily evaluated. Since the non-fault case
can be excluded as the previous section, the game I'(m) is

r(e+T(m—1)
+(1=1)(-B)
-8 T(m~1)

D) = —2(k+1) +T(m—1)

Let k = 2(k + 1). Then, the game value is represented by

-12-



r(@+vm-1) + (1 - 1)(-B)

Um = val
—,B Um-—1

The expected payoffs of player A's mixed strategy a =

(p,1 — p) against player B’s pure strategies are
E(a,base fault) = p{r(a+vm-1) — (1 —7)}
+(1 - p)(—p) and
E(a,non-base fault) = p(—k + vm-1) + (1 — p)Vm-1.
Then, the intersection of them is

Um-1+ ﬂ

p= r(Um_1+a+8)+&’

Since the game value is vm = V-1 — Pk,

_ __ K(vm-1+P)
Um = Um—1 r(vm_1+a+8)+k ®
K a+k/r K

I
e
3
L
+

By (3), notice that vm —
plicity, we use (x/r)(c + &/7)

—pB holds when m — oo. For sim-
= 4. By adding o+ 8+ &/r,
we have

Umtat BT = v ot

TUmata+ B+l T

Furthermore, if we use vm + @+ 8+ £/7 = um,

Um = Um-1 +

By taking the logarithm,

In%m = InUm—1 +ln(

Since —f < vm < 0, we have a + K/r < um < a+ B+ &/r.
Thus

- 1 5
rla+8+ K/’I‘)2 TU; <0
Letting 6/u} — k/ru; = —¢; and um =~ a + fe~™™ + x/r,

we obtain vy, =~ f(e”™™ — 1), where em = sfBe™ ™" [r(a+
Be~™¢m 4 k/r)?. Then, the player A’s optimal strategy a,
for remaining m stages is

. Be—(m=Dem—1
= (1'([38‘("“‘)""-l +a)+2k+1)°

ﬁe—(m—l)em-—l
- r(ﬂe—(m—l)tm-l + a) + 2(k + 1))

The expected payoffs of player B’s mixed strategy b =
(0,9,1 — g) against player A’s pure strategies are

— K+ VUm-1 ]

) —E=um_1(1+ 26 K )
Um—1 T U1 TUm-—1

E(b,ST) = g{r(a+vm-1) + (1 —r)(-8)}
+(1 - g)(—K+ vm-1) and
E(b,NS) = g(—8) + (1 — q)vm-1.
Then, the player B’s optimal strategy by, is
b~ ( 2(k +1)
i r(Be~(mVem-1 4 a) +2(k+1) ’

) 2k + 1) )
r(ﬂe_(m—l)em—l +a)+ 2(k +1) '

4. Conclusion

In this paper, we developed not only a game theoretic anal-
ysis for a malicious fault, but also a general framework for
strengthening an algorithm against the fault. The method is

(1) develop two algorithms that complement each other,

(2) combine them and specify their strategies to be ex-
ecuted with some probabilities,

(3) construct a payoff matrix against an adversary, and

(4) determine maximin values and an optimal strategy.

In our analysis, we assumed a general setting that includes
probability r of repairing a base fault and rewards a and S.
If we simplify them, e.g., 7 = 1 and o = 8, we obtain an
intuitive result. That is, in the case the game is continued
after Dijkstra-like repair, player A’s optimal strategy is

. a a+2(k+1)
a (2(a+k+1)’ 2(a+k+l))

Thus, if o is sufficiently larger than k+1, the optimal strategy

(1/2,1/2). Orifais

almost equal to k+1, the optimal strategy is ™ ~ (1/4, 3/4).
X [

[1] J.Beauquier, C.Genolini and S.Kutten, “Optimal reactive
k-stabilization: the case of mutual exclusion,” In Proceed-
ings of the 18th Annual ACM Symp on Principles of
Distributed Computing, (1999) 209-218.

[2] A.Dasgupta, S.Ghosh and S.Tixeuil, “Selfish stabilization,”
In Proceedings of the 8th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems,
(2006) LNCS 4280:231-243.

[3] E.W.Dijkstra, “Self-stabilizing systems in spite of dis-
tributed control,” Communications of the ACM, 17, 11
(1974) 643-644.

[4] E.W.Dijkstra, “A belated proof of self-stabilization,” Dis-
tributed Computing, 1 (1986) 5-6.

[5] S.Dolev, A.Israeli and S.Moran, “Analyzing expected time
by scheduler-luck games,” IEEE Transactions on Software
Engineering, 21, 5 (1995) 429-439.

[6] S.Ghosh and A.Gupta, “An exercise in fault-containment:
Self-stabilizing leader election,” Information Processing
Letters, 59 (1996) 281-288.

[7] S.Ghosh, A.Gupta, T.Herman and S.V.Pemmaraju, “Fault-
containing self-stabilizing algorithms,” In Proceedings of the
15th Annual ACM Symposium on Principles of Distributed
Computing, (1996) 45-54.

[8] S.Ghosh and X.He, “Fault-containing self-stabilization us-
ing priority scheduling,” Information Processing Letters, T8
(2000) 145-151.

[9] T.Herman, “Superstabilizing mutual exclusion,” Dis-

in our protocol is approximately a* ~

-13-



tributed Computing, 13, 1 (2000) 1-17. Our protocol for process i:

[10] T.Herman and S.Pemmaraju, “Error-detecting codes and if ~OnBase; then HandleFault(i)
fault-containing self-stabilization,” Information Processing
Letters, 73 (2000) 41-46.

[11] R.Hohzaki, “A compulsory smuggling model of inspection

else if Privilege; A MinPriv; then
if FirstGet; then wait; := true (with probability p)

game taking account of fulfillment probabilities of players’ else wait; := false (with probability 1)
aims,” Journal of the Operations Research Society of Japan, if (~wait;) then
49, 4 (2006) 306-318. perform critical section ;

[12] Y.Ka.ta.ya.ma., E.Ueda, H‘.}‘?lfjiwara and T.Ma,'suzawa, “A lfx- SendMagor (i) ;
tency optimal superstabilizing mutual exclusion protocol in .
unidirectional rings,” Journal of Parallel and Distributed SetVar(i) i
Computing, 62, 5 (2002) 865-884. else if ~(Privilege; A MinPriv;) then

[13] J.Kiniwa, “Avoiding faulty privileges in fast stabilizing SendMagjor(s) fi ;
rings,” IEICE Transactions on Fund tals, E85-A, 5 SendMinor(i) ; AntiDlock(s)
(2002) 949-956.

[14] J.Kiniwa, “How to improve safety under convergence using Function HandleFault(i):
stable storage,” IEEE Transactions on Parallel and Dis- if OnBase;_; V OnBase; 41 then BaseReset(s)
tributed Systems, 17, 4 (2006) 389-398.

[15] J.Kiniwa and M.Yamashita, “A randomized 1-latent, time-
adaptive and safe self-stabilizing mutual exclusion proto-

else if (i = 0) A (dtokeno = false) then dtokeng := true
else if (i = 0) A ReturnDtokeng then BaseReset(0)

col,” Parallel Processing Letters, 16, 1 (2006) 53-61. else if LeftDtoken; then dtoken; := true
[16] E.Koutsoupias and C.H.Papadimitriou, “Worst-Case Equi-
libria,” In Proceedings of the 16th Annual Symposium on  Function BaseReset(i):
the Theory of Computing (STACS), LNCS:1563, (1999) if (i & 0) A OnBase;_1 then major; := major;_,
404-413. else if (i + n — 1) A OnBase;41 then major; := major,

[17] N.Nisan, T.Roughgarden, E.Tardos afnd V.V.Yazirfmi (ed.), else if (i = 0) A ReturnDtokeng then
“Algorithmic game theory,” Cambridge University Press R .
(2007). majorg := base; for some j € Bfi;
[18] R.B.Myerson, “Game theory : analysis of conflict,” Harvard SetVar(i)
University Press (1991). . .
[19] M.Nesterenko and S.Tixeuil, “Tolerance to unbounded Function SetVar(i):
byzantine faults,” In Proceedings of the 21st IEEE Sym- dtoken; := false ; wait; := false ; minor; :=1; atoken;:=0

posium on Reliable Distributed Systems, (2002) 22-29.
[20] Y-S.Wu, B.Foo, Y-C.Mao, S.Bagchi and E.H.Spafford, “Au-  Function SendMajor(i):
tomated adaptive intrusion containment in systems of inter- if ({ = 0) then
acting services,” Computer Networks, 51, 5 (2007) 1334- if Privilegey then majorg := major,_, + 1
1360. . . else if (0 <i<n—1) then
[21] I-L.Yen, “A highly safe self-stabilizing mutual exclusion al- . . ) X
gorithm,” Information Processing Letters, 57 (1996) 301- if Privilege; then major; := major; _,
305. Function SendMinor(i):
ﬁ ﬁ if MinInit; then minor; :=0 ;

if MinEztend; then
. if ~Privilege; then minor; := minor;y1 +1;
OnBase; = (major; € B) if Privilege; then minor; :=0 fi;
LeftDtoken; = (i 4 0) A (dtoken;—, = true) if MinShrink; then minor; := —minor; ;
A(dtoken; = false) if MinReset; then minor; :=0 ;

ReturnDtokeng = (dtokeng = true) A (dtokenn—1 = true) if MinReturn; then minor; =L

FirstGet; = (wait; = false) Function AntiDlock(i):

MinPriv; = (minor;—; = —1) A (minor; = 0) if (minor; > 0) V (minor; = 0 A Privilege;) then
if (atokeno = 0) A (atokenn—1 = 0) then atokeno := 1
if (atoken;+1 = 1) A (atoken; = 0) then atoken; := atoken;y)

Privilege; = OnBase; A (major; + major;_;) A (i $0)
Privilegeo = OnBaseo A (majoro = major,_,) if (atokenog = 1) A (atokenn_1 = 1) then atokeng := 2
MinInit; = Privilege; A (minor; =1) if (atoken;—1 = 2) A (atoken; = 1) then major; := major;_, ;
MinEztend; = ((Privilege; ., A minor;11 =0)V (0 < minor; :=1
minorit1 < k)) A (0 2 minor; + minoriy; + 1)else atoken; :=0
MinShrink; = (minor; = k + 1) V (minori—1 < 0 A minor; > 0)
MinReset; = (minor; 1) A (minor;—1 =0V (minor;4; =0
A~ Privilege; 1))
MinReturn; = (minor; < 0) A (minor;41 < 0V minor;y; =1)

A-Privilege;

14 -



