B o B 17-4
(1982. 1. 22. 23)
Comments on PROLOG from the function class point’s view
Toshiaki kurokawa

‘Information Systems Laboratory, TOSHIBA R¥D Center, Kawasaki, 210, JAPAN

INTRODUCTION

In this paper, we consider about a "logic programming language" which has suitable proper-—
ties in developing very large practical artificial intelligence programs.

First, we will briefly review the background of logic programming in AI. Although there
are disputes between those who promote logic and those who advaocate experience accumulation, it
is widely recognized that a programming tool which can utilize the logical feature is necessary
for the further pursuit of Al experiments. Even if one claims that the logic is useless and the
accumulation of specialists® knowledge is vital for the knowledge engineering program, one
needs some logic to organize the obtained knowl edge.

To summarize the debate, it is helpful to read both Winograd’s paperts: and Hayes™ crit-
icsré]. Hayes precisely explained that logic is nmot a programming system itself, instead it
underlies any programming system. He also criticized Winograd®s view of the accumulation of
independent logical piece and single determined logical meaning. From Hayes® point of view,
there would be strong interactions between logical clauses and that the meaning of the logical
sentence is more abundant and more complex than that of the instruction of procedural languages
such as Lisp.

13

Today, PRDLDG[would be the best-known "logic programming language" for Al research. It

has been developed and used mainly in Europe for several years. Recently, United States and
Japan started to accumulate the experience on PROLDB.E7’B’qJ

From ours, however, it is known that PROLOG has several problems for our purposes.’

PROBLEMS ON PROLOG

In the 4ollowinq’discussions, we use Edinburgh version of PROLOG as the typical PROLOG
lanquagetzj, mainly because the author’s experience is limited to it and partly because plenty
of information is available on it. We miss that the origial FROLOG developed at Marseille lacks
for these information.

From our point of view, FPROLOG has the following problems:

1

perator is a too primitive and too dangerous operator to avoid the infinite loop or to
achieve efficiency. Further, it implicitly destroys the two-way, equational property of the
logical program.

2) Backtracking is, as is well known in the 70°s, not a good tool to realize non—deterministic

search. The arguments against the late micro—PLANNER[aJ are applicable to the present FPROLOG

programming.

3) Integer arithmetic operation, such as +, -, %, /, breaks the harmony of the simple and
beautiful wunification scheme in PROLOG. The novices are perplexed when he encounters unex-
pected results owing to the arithmetic operations. Moreover, the arithmetic primitives cannot
be defined in the FROLOG programs, although other primitives are user definable.

4) FROLOG }acks pattern-directed

process ‘invocation, controlled pattern matching, etc. Although they can be deliberately

incorporated by users, it is not a very easy task.

NEW WAY TO ...
Considering above problems, we must find a new language for kKnowledge Utilization and
Representation Oriented LOGical programming which has the following specialities:
1) Choice of the basic unification strategy.
2) High-level primitive covering wider range including sequential/parallel processing.
3) Introducing a new value based upon the open world assumption.
4) Data abstraction and argument evaluation through the function class.

5) Introducing user-accessible short-term-memory to support very high-level controls.

ELIMINATION OF CUT OFPERATOR
Cut operator, denoting "!", is used for the following purposes in FPROLOG:
1) To realize the primitive not, i.e.
nat{X) :— X,!',false.
not (X).
2) TJo implement if_then_else clause. In the special case, this is to avoid the infinite loop.
An example is given below:
if_then_else(F,&,R) - F,!,08.
if_then_else(F,0,R) - R.
3) For the efficiency's sake, i.e. (i) elimination of‘useless backtracking in sequential opera-
tion. (ii) elimination of information space for the possible backtracking. For example,
d U+, X, DU+DV) - !, d(U, X, D, d{V,X,DV).
d -V, X, DU-DV) :~ !, d(U,X,DU), d{V,X,DV).

d (UXV, X, DUXV+UXDY) :— !, d(U,X,DU), d{V,X,DV).

J

d (LN, X, NKU~N1XDU) :- !, integer (N), N1 is N-1, d(U,X,DW.

d(=V,X,~-IV) = !, d(V,X,D\).

diexp(V), X,exp(VIXDV) - !, d(V,X,DV).

d{log(V),X,DV/V) = !, d{V,X,DV).

diX,X,1) == !,

d{C,X,0) :~ atomic(C), C ¥== X, !,
is the differential program, where cut-operator, !, is used to eliminate further back-
tracking useless in the format selection.

In the new language, however, not-operator will be a system primitive over the FBoolean

value, true

unknown. There is another primitive, undefined,.

to check the unknown-value. undefined (unknown) is true, and undefined (true/false) is false.

If_then else is included in the special case of select primitive such as select[@;R]

The reader ;hauld note that the if_then_else defined by the cut operator is ambiguous;
using the new language’s select primitive, there are two different versions, i.e. when
[Pinot{F)] and when [Fjundefined(P)l. To be more precise, the definition should be
selectlO;R;51 when [P;not(P);undef&ned(P)J.

as for the efficiency, such primitives as select, sequence, iterate, will bring the
efficient coding in the new lanquage. For example, the differential program above can be
written as the following:

d{Form, X, fnswer) &-

select [dnswer = DU+DV3 Answer = DU-DV; dAnswer = DUXV+UXDY;

it

Answer -DV; Answer = exp(V)¥DV; Answer = DV/V3
fnswer = 13 Answer = 0]
when [Form = U+VYs Form = U-Y; Form = U¥V; Form = U"Nj
Form = VY3 Form = exp{V); Form = log{(V¥); Form = X3
Farm = ©1 <d(U,X,DlH, div,X,D¥), integer (N),
N1 is N-1, atomic{(C), C ¥== Xl.
The concise and more readable notation can be given below:
d{Form, X,Answer) -
Lif

11 Form = U+V ———3 d(U,X,Dl), d(V,X,DV), Answer = DU+DV;

]

' Form = U=V ———3 d(U,X,DU), d{(V,X,DV), Answer = DU-DV;
'l Form = USV ———3> d(U,X,DU), d(V,X,DV), Answer = DUXV+UXDV;

it Form = U™N ——» d(U,X,Dl), integer (N), N1 is N-1,

7]

Answer = NALFN1XDU;
'! Form = -V —-» d{(V,X,DV), Answer = -DVi

i1 Form = exp(V) ——> d(V,X,DV), Answer = exp (V)¥DV;

1 Form = log(Y) ——=3 d{¥,%X,DV), finswer = DV/Vj

{4 Form = X ——=r Answer = 1;
il Form = C —~-F atomic(C), C ¥== X, Answer = (3
fil.

STRUCTURE OF STM
8TM (short term memory) is a working environment in the new language. Nheﬁeveﬁ a clause is
activated, the generated‘instance has a STM where the following elements are contained:
1) initial condition (initial environment)
Ta activate the clause or the primitive, this condition is used. Arquments of the clause
are included here as well as the top-level environment.
2) final results (final value)
ﬁfter‘execution (unificationy, the results are sst. In case of arithmetic operétion, for
example, the computed value is set here. -

Iy history of the execution

Intermediate values are stocked here. The candidates for the non-deterministic operations
are also stored here. A copy of the program counter and control sequence would be sét here
when the parallel processing were assumed.

4) mail-box {commonicaticn channel)

This is a media of process coordination. Through this mail-box, execution units of the new

language can cooperate with others. Also the daemons set emergent order, and read the special

Casne.

FUNCTION CLASS

The new language intwoduces the data type capability to the clause. The key concept is the
function classcq] where a‘part of data abstraction is realized.

Each clause identifier employs a function class where the following eléments are included:
1) Frocessing of arguments.

There are four options for each argument:
i) Without evaluation ——kin the defau;t‘case.
ii? Conditional evaluation —- wﬁeﬁ’tha céndition is satisfied then the argument will be

evaluated. For example, +(x,y) will evaluate arguments if they are composed from numeri-—

cal atoms.

iii) Evaluate anyway —— do evaluation. Errors which occur during evaluation will be han—

dled in the evaluation procedure. ‘

iv) Evaluate with undoing information -- evaluate, but preparing the undoing when the

failure occurs hereafter.
2) Data type confirmation.

This is what we call data abstraction support facility. Described here are the type
information each argument should satisfy. For example in append(_1,_ 2, %), _i must be a list
element. In case of add(_1, 2, _7), they'are numbers. The arguments of gcd(_1,_2Z, 3) must be
natural numbefs, i.e. positive integers.

Accompanying data type conditions is the returning state when the type violation occursg
it ghould be handled as an ervor or a failure.

4) Returned value.

This is the post-unification item.

i} Special value should be returned or default value, i.e. true or undefined, would be

returned. This item is necessary for the functional primitive.

ii} Form of the value jh casg of the functional. #ll possible values are returned, or only

e candidate is enough, or returning one and prepare others for further computation.

COMMENTARY ON PROLOG CONCERNING FUNCTION CLASS

Several commerts on PROLOG relating function class are given here.

1) PROLOG is ambiguous on assignments of variables when plural choices exist.

For example, append([1!X1,Y,f1,2,31) has three possible solutions for X and Y: ([2,31,
[, (L21, 31, and (L1, ‘[2,3]). It is nbt easy to describe whether the user wants all, or
only one, or temporally one with candidates left.'ﬁctually, ite is known only after the unifica-
tion, i.e. if there appeafs cut symbol,' then only one is enough. If forcing fail comes, then
all are necessary.

In PROLOG, one is returned with others stored for later use even if they are unnecessary.
2) In FROLOG, false is retwned unless the matching clause exists.

However, it is ambiguous when the explicit (forcing) false occurs or the appropriate
clause cannot be found. Think, for ecxample, about the case when a careless user forget to
include a clause.

1f the closed world assumption does not hold, the explicit false and the failure to prove
should be distinguished clearly.

%) It is ambiguous in FROLOG that the form of the argument implies a pattern or value. For

example, in d{U-V, X, DU-DV) - ..., "U-V’ means a pattern or a structure where a *-° combines
‘two substructure ‘U and “V°.

In the case of d{XkkN, X, NEKXXX(N-1)) :— ..., N-1 means a value one less than N. Actually,
PROLOG avoids this ambiguity by restricting the evaluation in the special pre-defined primi-
tives.

However, this will be a fatal weakness when one tries to extend the pattern. matching

4) Function class concept is developed originally for Lisp-like functional computation where
the number of formal arguments are pre-determined according to the function.
In PROLOG, however, the number of slots are fixed but the number of variables are not

fixed. Variables are embedded into the input pattern without data type declaration.

RELATING WORKS

There are several works other than ours which tries to extend the some features of FROLOG,
which are briefly reviewed here. 4
1) Prolog/kR by Nakashima[gl

Frolog/kR is & PROLOG dialect embedded in UTILISPEIO]. Included are high—level determinis~
tic sequencing primitives, data base daemons, »» type input arguments which should be evaluated
to atomics, and context—switching by WITH statement.

Frolog/kR tries to incorporate realistic featqres}into FROLOG, although sqmewhat ip arbi-
trary fashion. The strategy seems to peculiar in Lisp community, i;e. leé’s,tf;witmaﬁd_thinkm—
it later fashion. Actually, the new language will bé indebted thic strategy‘tu Frolog/ER.

2) DURAL by Gnta[aj

DURAL is a simple language embedded in Maclisp on DEC-20. Its syntax depends wholly on
Lisp just as Prolog/kKR. DQRAL employs both depth-first and unit—resolqtinn for thé basic
mechanism. Its speciality is the modal operator based on the natural deduction such as LK;

3) Uniform by Kahntlz]

Uniform intends to unify Lisp, Frolog, and actor languages. It is again embedded in Lisp.
The basic mechanism is, Kahn claims, augmented unification which does pattern—ﬁatching, evalua-—
tipn, and message-sending.

However, it lacks for versatile control mechanisms. The usage of environments instead of
pure instances brought evaluation facility just as STM in the new language. kahn claims that

the present state of the Uniform is not a perfect one, s0 we had better to wait for the

ultimate version of Uniform, where much will be changed.

ACKNOWLEDGEMENT
The author would like to acknowledge the members of the logic programming committee for
the Fifth Generation Computer Systems, especially Mr. Yokoi at ETL, Mr. Goto at ECL. Special
thanks are also due to Mr. Takei at TUSHIBA R¥D for his helpful discussions. Mr. Maeda kindly

helped in enhancing the word processing facility for this document.

REFERENCES
[11 Kowalski, R.,"Algorithm=Logic+Control",CACM,22,7,424-436, (Jul. 1979).
[2] Pereira L.. M., F.C.N. Pereira, and D.H.D. Warren,"USER’S GUIDE to DECsystem—10 PROLOG", &0,
University of Edingburgh, (Sep. 1978).
[31 Sussman, G.J.,"Why Conniving is better than Flanning”, MIT Al Memo 255, (Feb. 1972).
[4] kurokawa, T., “The Function Class", Conference Record of the 1980 LISP Conference, 38-45,
(1980) .
[5]1 Hayes, F. .J.,"In Defence of Logic", IJCAI 77, S559-565 (1977)
[41 Winograd, T., "“Frames and the declarative-procedural controversy",in Representation and
Understanding, Academic Fress, (1975
[71 Sowa, J. F., “"A PROLOG TO PROLOG", IBM Systems Research Institute,32,(Jan. 19681)
[81 Goto, 8.,"jutsugo-gata programming gengo DURAL to sono shori-kei",ECL Report 16892, 46,
(May 1981).
[93 Nakashima, H., "Frolog/kr", Univ. of Tokyo, Memo, (1981)
L10] Chikayama, T., "UTI-LISF Manual®, Univ. of Tokyo, Memo, (1981)
[111 Andrews, F.EB., "Theorem Froving via General Hatings", JACHM, 28, 2, 193214, (Apr. 1981)
[121 Froc. of International Conference on Fifth Beneration Computer Systems, Oct. 19-22, from
JIFDEC JAFAN, (1981)
[131 Kahn, K. M., "Uniform -— & Language based upon Unification which unifies (much of) Lisp,

Prolog, and Act I", Proc. 7th IJCAI, {Aug. 1981)

~

