ECIR =R I

28 — 3

(1984 6. 15)

Design of a 32-bit Virtual Machine for Smalltalk-80%

Norihisa Suzuki, Ichire Ogata, and Minoru Terada

Department of Mathematical Engineering
The University of Tokyo

ABSTRACT

The Smalltalk-80 virtual machine is
specified by Goldberg and Robson based on a
16-bit-word machine.Thus,the number of
objects that can exist at the same time is
32,768 and the range of Smalllntegers,the
most basic numbers,is from -16,384 to
16383;this is a severe limitations on the
scope of application programs that can be
written and on the performance of the
system.Most computers on which we are now
planning to implement Smalltalk-80 have
byte-addressable,24 to 32-bit address busses.
Thus,we designed a Smalltalk-80 virtual
machine based on 32-bit computers.

1. Introduction

We created a Smalltalk-80 system[5]
based on a virtual machine specification by
Goldberg and Robson[3]. After several itera-
tion of the implementation,the system is now
running on a SUN workstation(SUN-1) with
10 M Hz MC68000 as a central processing
unit.The performance of the current version
is comparable to that of Dolphin implementa-
tion[4].

Following is some observations from
our experience. We have now 1.25
mega-byte main memory. These are not
enough space with this configuration.The sys-
tem goes into the garbage collection too fre-
quently with a moderate application program.

We used a mark-and-sweep garbage
collector.This decision is made by some of us
who never have created an interactive sys-
tem. Even though the time to complete the
entire garbage collection phase is only 3-5
seconds,it still blocks the interactive activities
of the users completely.The system that we
are now implementing uses a real-time gar-
bage collector based on the Deutsch-Bobrow
algorithm[1]. This problem is some-
what lessengd by our innovation to change
the cursor style to indicate the garbage collec-
tion phase. The user quickly notifies this and
suspends his activity. Another problem of the
mark-and-sweep garbage collector is that the
all the objects are touched.Smalltalk-80 virtu-
allmage is a large system;over 500k bytes of
objects are system objects that are used to
implement the basic system and,
therefore,are seldom modified. They will
hardly ever become garbage However, a
mark-and-sweep garbage collector always

tSmalltalk-80 is a trademark of the Xerox Cor-
poration.

marks and touches these objects. On the
other hand a reference-counting garbage col-
lector only touches those objects that are
changed,so it is a good choice for a large
object-oriented system.

The first version allocated con-
texts in-the heap and they are collected. this
caused severe performance penalty, since the
allocation and deallocation costs are very
high.the second version used a linearized
contexts[5].This single technique gained
three-time speed up.

The speed of BitBlt operation is
very crucial to the overall performance of the
system.In the published benchmark tests and
performance measurements[4] BitBlt opera-
tions occupy a minor portion of the entire
computation time. So when we created a
BitBlt that can more 1 million pixels in 900
milli-seconds, we decided to put our efforts
in tuning other parts.However, in the last
version we put a 500-millisecond BitBlt,and
the performance of most programming activi-
ties doubled. This is because when we use
Smalltalk-80,we are rewriting ‘windows most
of the time, and BitBlt computation occupies
a significant parts.It is, however,hard to
measure these activities.This is another
example that the performance measurement
on some particular examples have very little
meaning in practice.

16-bit Oop are too short.Oops
run out very often.Furthermore,the object
table is allocated somewhere in the memory,
and the Oop starts from 0,it is the offset
from the start of the table.One addition
always has to take place to access the object
table Therefore, We decided to design a 32-bit
virtual machine in which the Oop directly
points to the entry in the object table, and,
therefore, an addition is not necessary for an
access

We also opﬁmized the whole
architecture to suit MC68000.

2. A 32-bit Virtual Machine

The objective of this architec-
ture is to create a very fast virtual machine
on a demand-paged MC68010. Some of the
data structures are not suitable for other
microprocessors such as MCB88020. How-
ever, the modifications can be easily done.

2.1. Representation of Objects

Unlike the Smalltalk-80 virtual
machine specified in the book[3],our virtual
machine uses 32 bits to represent object
pointers. This change had effects in all the
representations of objects.

(1)

2.1.1. Object Pointer

The most common data mani-
pulated by a Smalltalk-80 interpreter are
object pointers. The virtual machine
specification uses a 16-bit object pointer.
Object Pointers are 1 bit tag-coded that indi-
cates how the rest of the bits are to be inter-
preted. The tag bit is placed in the least
significant bit. If the tag bit is 0,then the rests
are to be 15 bits represents an object refer-
ence (commonly referred as Oop in the
Smalltalk book). If the tag bit is 1, then the
rest of 15 bits represents a 2's complement
integer value (referred as Smalllnteger).

Oop is a unique name of the object.
If we want to know the real address of the
object, we must look up the object table
using the Oop as an index.
Smalltalk requires the memory as large as 1
mega byte, so the address field occupies 20
bits or so in the object table. It means that
one entry of the object table uses at least 32
bits.

These standard formats are the
problem. When we want to test whether a
pointer is an Oop or a Smalllnteger,we expli-
citly test the LSB by using machine instruc-
tion "bit test”. And more, when we want to
get the real address of an object, we must cal-
culate the object table entry address by using
shift and add instruction This is not
the case for the Xerox machines upon which
the Smalltalk-80 system was originally
developed. They reflect the LSB’s value as
the machine flag,so they do not need any
explicit test to know the pointer's tag. And
they use word addressing,and can use the
absolute address from 0, they do no conver-
sion to get the object table entry.So we
decided not to use this standard format,
instead we use new 32-bit format. (see
fig-1)

As MC68000 reflect MSB's
value in his sign flag, We have no need to
explicitly check whether a pointer is an Oop
or a Smallinteger. When we move the pointer
to one of MC68000's register, sign flag tells
us which the pointer is. Placing tag
bit in the LSB eliminates the overhead asso-
ciated with checking whether the Oop is an
Smalllnteger, because if we access the object
table by Smalllnteger,it causes address excep-
tion. So we are now free from illegal access

checking. The merits of using the
32-bit formats are:
(1) This format enlarges the number of

Oops greatly. In standard 16-bit
format,the number of Oops are only
32k. And about 24k Oops are used by
the system,so users are allowed to use
only 8k Oops. This will limit the scope
of application to the large Al problem.

We use the entry address of an Oop as

its Oop. i'e. the entry address of any
Oop is the Oop itself. We can get the

(2)

entry address of the object table without
the overhead of conversion.

(3) This format also enlarges the Smallln-
teger range.This lessen the need to run
the Largepositivelnteger’'s method in
Smalltalk. This also makes the array
indexing code simple and fast. Because
the largest possible index of an array is
64k, and the largest possible Smallln-
teger value in the 16-bit version is 16k,
the original code must handle the Lar-
gePositivelnteger as an index. It makes
original array indexing code rather com-
plex.

2.1.2. Object Table

Oops are the real addresses of
the entries in the object table. These entries
contain information such as the actual loca-
tion of objects in the heap, the reference
counts,and garbage collection information.

The format of the object table is
shown below. {$)5.7) Each entry occupies
aligned 4 bytes;therefore, the valid Oops
have zeros in the least significant two bits.

The valid Oops are allocated
Oops;the most significant byte contains the
reference count and the other three bytes
contain the real address of the object. This
format allows both reference count and the
address to be accessed in one instruction with
the least amount of time. The least significant
bit of a free Oop is one;even if a free Oops is
considered to be a valid because of bugs in
the virtual machinethe memory access

operation will be trapped. According
to the original Smalltalk-80 virtual machine
specification,there are three flag fields O.P
and F. The O field indicates whether the size
of the byte object is odd length or not. This
is no longer necessary,since the size of
objects is measured in terms of bytes. The P
field indicates whether the object is a pointer
object or not, but this field is stored along
with the object as indicated in section
2.1.3. The F field indicates whether the
Oop is free or not,but this is indicated by the
least significant bit of the entry.

2.1.3. Object

Objects occupy at least two 4-byte long
words; the first long word contains the
pointer bit and the size of the object in terms .
of bytes. The second long word is the Oop
for the class of the object. There are four
kinds of object: a pointer object, a word
object a byte object, and a compiled
method. The formats of these four objects
are shown belows. ({yig_ 3 '\.'7)

2.2. Context

Contexts are Smalltalk-80 terms
for procedure activation records.They are
treated as first-class objects;pointers can point
to them and messages are sent. The strength

(2)

LR J

31 30 24 23 (X X 2 1 0
OooP | 1 | unused valid | 0 I 0 l
Smalllnteger [0 | valid | 1 I
(unused) } X XX X | 1 [0 1
(unused) ’ 1 ' X (XX} X l 1 I
fig. 1 Object pointer
31 (X X 24 23 see 2 1 0
valid Oop ‘ ref. count l address (in 32bit word) ‘ 0 ‘ 0 |
free Oop | unused ' link (in 32bit word) 1 0 ‘ 1 |
fig. 2 Object table entry
31 30 eee 0 31 L XX 0
| P ‘ size {in bytes) f header
class
fig. 3 Object header byte 0 | byte 1 | byte 2 | byte 3
byte 4 | byte 5 | byte 6 | byte 7
31 [X 0
* fig. 8 Byte Object
header
class
field 0 31 (XX 0
field 1 header
class (CompiledMethod)
fig. 4 Pointer Object method header
literal 0
LE N]
31 [XX 0 -
header literal n
code 0 | code 1| code 2| code3d
class
word 0 word 1 code 4 | code 5| code 6 eoe
word 2 word 3

fig. 5 Word Object

of Smalltalk-80 system comes from treating
contexts as objects;complex control structures
such as process switching can be easily imple-
mented in the language,and a powerful
debugger has been implemented using this
feature. However, the overhead for allocating
and deallocating objects is the major perfor-
mance bottleneck. . We came up with
the idea of linearly allocating contexts on the
stack until either reference are made, mes-
sages are sent to or process switch occurs[5]
independently. Peter Deutsch also used
similar,but more complex treatment of con-
text[2]. We adopt Deutsch’s terminology to
describe our algorithm.

tig-7 a Compiled Method

We call the linearized contexts
in the stack volatile.Volatile contexts are not
objects. the evaluation stack part of a calling
side is shared with the parameter part of a
called side to eliminate copying of parame-
ters. Information in the volatile context such
as the stack pointers and the instruction
pointers are stored as the real address to
achieve very efficient context switching.On
the other hand the contexts allocated in the
heap and treated as real objects are called
stable. In our first implementation
we have only two representation of contexts:
volatile and stable. When a context has to be
treated as an object, a volatile context is con-

(3)

verted to a stable context.

In our current implementation
we have another representation of contexts
call hybrid. Hybrid contexts are similar to
volatile contexts in that reference counts are
not done for Oops in these contexts.Correct
counts are restored when transactions
finish[1]. However,hybrid contexts are simi-
lar to stable contexts in that they are allo-
cated in a heap area. It is,however,necessary
to enumerate all the hybrid contexts at the
end of transactions to restore all the refer-
ence counts. So we have a special heap area
that only contains hybrid contexts. Hybrid
contexts are transformed to stable contexts
when messages are sent to that contexts.

2.3. Garbage Collection

We use a reference counting
garbage collection based on Deutsch-Bobrow
transaction garbage collection[1].

2.4. Register Allocation

Some of the 16 registers of
MC68000 are used for special purposes. We
cached real address of some important
Oops,such as Instruction pointer Stack
pointer , home contexts in machine register.
And also we allocate the receiver’s Oop and
method’s Oop in machine register.

3. Conclusion

We specified a Smalltalk-80 vir-
tual machine for 32<bit,bytevaddressable com-
puters. We have MC68000 particularly in
mind so that this virtual machine is most
suitable if used for MC68000-based comput-
ers.

We also described other tech-
niques we are using for our new virtual
machine implementation.

Acknowledgement We appreciate
the assistance from Takashi Aoki for imple-
menting a disk system.

(4)

References

[1]

[2]

(3]

f4]

[]

Deutsch,L.P.,and Bobrow ,D.G.,

"An efficient,incremental real-time
garbage collector”, CACM 9,9
(Sep.1976) pp.522-526
Deutsch,L.P.,and Schiffman, A.M.
"Efficient Implementation of the |
Smalltalk-80 System"”, Proc. of 1984
ACM POPL conference pp.297-302
Goldberg , A. , and Robson,D.,
"Smalltalk-80:The Language and

its implementation", Addison-Wesley,
Reading, MA,1983
Kransner,Glenn,Ed.,
"Smalltalk-80:Bits of History,

Words of Advice", Addison-Wesley,
Reading, MA,1983

Suzuki,N.,and Terada,M.,

"Creating Efficient Systems for
Object-Oriented Languages”, Proc. of
1984 ACM POPL conference pp.290-296

