V7 by = PEMH 10-1
(1984. 9. 28)

. ecLR-attributed Grammars:)
Attr1bute Grammars Sultable for LR Parsing

‘Masataka Sassa and Harushi Ishizuka
(Univ. of Tsukuba)

1. Introduction

Attribute grammars [Knu][Wai] are an extension of context-free grammars
which unify syntax and semantics of programming languages. They are becoming
widely used in compilers, interpreters and in other fields [Sas82].

This note concerns attribute grammars for Wthh attributes can. be evaluated
during LR parsing without making a syntax tree. Such grammars make up a subset
of the general attribute grammmars for which evaluation is made after making a
syntax tree. But they are becoming attractive due to their efficiency and
practicality and the fact that most modern programming languages are now
designed around the easier one-pass processing . technique.

A class of attribute grammars called LR-attributed. grammars has been
proposed by Jones and Madsen as a (practically) maximum elass_for which
attributes (occurrences) can be evaluated during LR parsing [Jon]. It can deal
with a sub set of inherited attributes as well as synthesized, attributes..
However, the original definition of LR-attributed grammars was rather
theoretical, and cannot be applied d1rect1y to practical comp1lers- evaluatlon
of attributes was assumed to be made in a way that all inherited attributes
related to an LR-state are evaluated and stored separately causing space and
time inefficiency; the definition lacked cons1derat10n of stack conflguratlon,
an algorithm for checking the "LR-attributed" property was not given.

We have developed an LR-attributed grammar class for whlch t1me and space
of evaluation can be compet1t1ve with those of hand—wr1tten comp11ers, hopefully
as in many one-pass Pascal compilers. It is based on certaln equ1va1ence
classes of inherited attributes and hence named ggL_(gqulvalence class LR) -
attributed grammars. Attributes belonging to the same equivalence class are
evaluated and stored only once. .

In defining the ecLR-attributed grammars, the def1n1t10n of Jones et al.
was re-formalized to remedy the problems mentioned above.

Two algorithms for checking the "ecLR-attributed" property are developed,
and a practical compiler generator was made according to this ecLR-attributed
grammar [Ish]l. Preliminary results obtained by this compiler generator seem to
be favorable. (ThlS note is a development of [Sas83] and [Sa584]. A full
version will appear as [Sas84bl.)

2. Related works (omitted)

3. Attribute Evaluation during LR-Parsing

In this section, an analyzer for LR- and ecLR- attrlbuted grammars is
presented, which evaluates attributes during LR-parsing [Jon]. Before that, some
preparation is made:. For details of attribute grammars, see, for example , [Knul
[Wail.

(1)

In the following, the system is explained using an example attribute
grammar Gl as shown in Fig. 1. Semantic rules are enclosed in { and }.
Attribute occurrences of inherited attribute a and synthesized attribute b of
symbol X are represented by X4a and Xtb, respectively. The set of inherited and
synthesized attributes of symbol X are represented by AI(X) and AS(X),
respectively. We assume that the attribute grammar is well-defined [Wail.

Def 3.1 (omitted)

Def 3.2 For the‘productioh Xg => X7 ... X4, AI(X() and AS(Xj) (3=1, ... sn)
are called input (applied) attributes. ‘ '

In the following, we assume L-attributed grammars in canonical form.

For a given grammar, LR states can be constructed as usual ‘(Fig. 2(a)). AS
in [Purl, we subdivide an LR-state into (LR-) partial states according to look-
ahead terminal symbols (Fig. 2(b)).

‘For a partial state PS, we define IN(PS) as follows.

Def 3.3 Given a partial state PS,
IN(PS) = { a | a is an inherited attribute of nonterminal B such that
A->d.Bp 1is an LR item of PS }

Ex 3.2 'IN(PS) for the partial state PS of Fig. 2(b) is {Elenv,Tiénv,Plenv}

The conflguration of syntax and semantlc analysis for LR— attributed
grammars is as shown in Fig. 3.

parsing,

In addition to the usual parsing stack for LR
attribute stacks which behave synchronously with the parsing stack are

used. The stack 'ias' 1s for inherited ‘attributes, and the stack 'sas'
synthe31zed attrlbutes.

is for
(The type of elements in these stacks is a union of

ASST > v := g3

{ V Jenv = ASSTNenv
E'®Venv = ASSTienv }
E20 _y g2 4 mp23
{ E>'lenv = E*°{env
T3 yenv = E** venv }
E3,0 -> T),l
{ *' yenv = E*°
v = E*"lenv }

T%% -> p%l wx il ASST -> V := . E
{ P*' yenv = T*°yenv E -> . E + T
T*yenv = T* yenv } E =~ . T
T 50 5 pi! . (a) T => . P k% T (b)
{ P yenv = T""yenv } T ->. . P . J
P %° —> name P -> . name
{ condition nameftag in P*ienv } P -> . (E)

P" > (E")

{ E"%env = P"Jenv } , (a) is an LR state (S)

: ’ ‘ (b) is an LR partial state(PS)
(superscripts are only for explanation) (state=S, look-ahead=name)
Fig. 1 Attribute grammar Gl Fig.2 An LR state and partial state of Gl

(2)

records, each record cons1st1ng of -a set of attributes.) .

More formally,. let an attributed parse configuration (abbreviated as
configuration) of the analyzer be

(PSy PSy X xo e PSp_3 PSp-1 Xpe1 Xmo1 PSm P aj cos an$)
where PS;(i=0,...) is a partial state, PS; is a set,of all inherited attribute
values in IN(PS;) (on the stack ias), X is a . grammar. symbol, XE is a set of all
synthesized attribute values of X3 (on the stack sas), and a eee.@p - is the
remaining input. (Note that in practice, grammar symbols X;'s need not be
stored as in Fig. 3.) _

An attribute evaluator which evaluates attributes during LR-parsing is
shown below. Note that attribute evaluation occurs in processing the grammar
symbols of the RHS of a production, This is in contrast to conventional bottom-
up syntax-directed translation where semantic analysis is made only at reduction

time, .
top L
AR
parsing stack I «e. IPS,_;IPS,|
attr. stack ias l) .;.»'IPSﬁﬁllﬁg;l
attr. stack sas [AR s

let PS be {Xo -> cee Xk 2 Xk-1 .Xk cee 7 see }
PSm contains values of inherited attributes in IN(PS)
N 1 contains values of synthe51zed attributes of Xy_j .

| e

Fig. 3 Configuration for analysis of LR-attribufed grammmars

proc An attribute evaluator during LR- parsing == - B
begin - ‘ S "
configuration := (PSO ’ al...an$), '
loop
let configuration be
(PSgPSXgXg ... PSp_1PSy_1Xp_1Xn_1PSp » a4e..eap$);
action := ACTION{PSy, aj] i :
{ACTION in the parse table: ACTION([PS,, ajT‘is similar to
ACTION[Sp, aj] where partial state PS, in state Spl:
if action = accept or action = error then exit;
§§; := compute values of inherited attributes in IN(PSm) {see section 4};
configutation := (... PSmPSm 1 @je.say $), i
case action of
shift PS: .
55 := compute values of synthesized attributes>of»aj
{from lexical analysis},
configuration := (... PSmPSmaJ JPS ; aj;i{;;aﬁ$){
reduce by "X -> A " : -
kos= Il 1s ' B
PS := GOTO[PS,_y, X, aj]l ‘ '

(3]

{GOTO in the parse table: GOTO[PS;_y, X,] is similar to
GOTO[Sp_i, X] where partial state PSp_p 1n state Sm-k' but
with look-ahead aj }; : !

pop configuration down to (PSqy +.. PS _kPS -k r @jee@p $);

X :=' compute values of synthesized attributes of X;

configuration := (... PS; PS X X PS , aj...25$)

end case
- end loop
end

4. LR-attributed Grammars

LR attrlbuted dgrammars are defined as follows, with some refinement to
[Jonl:i ~ o

Each inherited attribute a in IN(PS) can be considered as a function of
input (applied) attributes of the Kernels of PS. Let the function be named
Epg(a). ‘)

Def 4.1 For a partial state PS of :a grammar, EPS(a) is defined recursively by
the following.
(1) If a is an input attribute of the kernels of PS,
Epgl(a) = {(a, 0,)}
where 9o, is the offset (from top) of a in the attribute stack (cf. Fig. 3).
(2) If @ is in IN(PS), :
Eps(ﬁ.) = {f(vﬂlﬂrﬂz;-..)-
such that "a=f(ay,a,,...)" is a semantic function for defining a, and g; in
Epgla;) for i=l1,... }.

Ex 4.1 For the partial state PS of Fig. 2(b),
Epg(Elenv) = {(ASSTVenv,-2)},
since EPS(E1'3¢env) = Epg(ASSTenv) = {(ASST4env,-2)}, and
EPS(E2'1¢env) = EPS(E2'°¢env) = ee. = EPS(El'3¢enV) = Epg(ASSTienv)
= {(ASSTVenv,-2)}.
Similarly, ‘
Epg(Tlenv) = {(ASSTenv,-2)},
Epg(Plenv) = {(ASSTlenv,-2)}.

Ex 4.2 (omitted)

Def 4.2 A grammar G is LR—attributed if

(1) G is L-attributed, and

(2) For any partial state PS of G, Epg(a) contains just one expression for
any inherited attribute a in IN(PS). -

Ex 4.3 Grammar Gl is LR-attributed since

(1) Gl is L-attributed, and

(2) FPor the partial state PS of Fig. 2(b), Epg(Elenv) contains exactly one
expression {(ASSTenv, -2)} (cf. Ex 4.1). Similar reasoning holds for
Epg(Tenv), Epg(Pienv) and other partial states. '

(4)

In LR-attributed grammars, the value of each inherited attribute is unigue
in each partial state. Thus, each inherited attribute can be evaluated
consistently and stored in the 'ias' stack. ‘

Ex 4.5 For Gl, and at the partial state PS of Fig. 2(b), Elenv, Tenv. and
Plenv can be copied from the ASSTlenv field of ias[top-2]. A snapshot of the
configuration in the analysis is, in Fig. 3,
PSS, = Fig. 2(b)
BS_ = record value of Elenv, value of T&env, and
value of Pienv end record

=6

I
|

>
-~
|
i}

5. ecLR-attributed Grammars

In LR-attributed grammars, inherited -attributes are assumed to be evaluated
and stored separately. But as pointed out in a remark in [Jon], the values of
several attributes may often coincide. By taking this fact into account, we
have defined ecLR-attributed grammars based on the equivalence class of Epg.
Let EC= {Ecl,Ecz,".} be a (disjoint) partition of the set of all inherited
attributes, namely, _1 EC; = AI (AI is the set of all 1nher1ted attributes)
and EC;N EC =g (i # j, 1< i,j <n). We assume that EC; # 4 (1515n),

leen a partition, we define E'pg(a) similarly to EPS(QL

Def 5.1 For a partial state PS and a partition EC of é grammar,
E'pg(a) is defined recursively by the following.
(1) If a is an input attribute of the kernels of PS,
E'ps(a) = (EC4a/,05)
where EC4, is a set in EC to which a belongs, and o, is the offset (from
top) of a in the attribute stack.
(2) Same as in Def 4.1. '

Ex 5.1 For the partial state PS of Fig. 2(b) and the partition EC={EC;} where
ECy = {ASSTienv, Elenv, Tlenv, Plenv},))

E'pg(Evenv) = {(ECypgsT.env’ OASST.env)} = {(EC1,-2)1.
Similarly,

E'pg(Téenv) = E'pg(Plenv) = ... = {EC4agsT.envr QassT.env)} = {(EC1, -2)1.

Def 5.2 A grammar G is ecLR-attributed wrt. a partltlon EC= {ECl,ECZIHQ}I if

(1) G is L-attributed, and

(2) For each EC; (i=1,...) and for eaqh partial state PS, E'PS(Q)'S are the same
and contain just one expression for all inherited attributes a in EC; N
IN(PS).

Ex 5.2 Grammar Gl is ecLR—~attributed wrt. EC={EC1} where Eél = {ASSTNenv,

Elenv, T4env, Plenv}, since

(1) G is L-attributed, and L] .)

(2) for a partiail state PS5 of Fig. 2(b), E'pg(a) contains exactly one
expression {(ECy, -2)} for all inherited attributes a in ECjn IN(PS) =
{Elenv, ..., PVvenv} (cf. Ex 5.1). Similar logic holds for other partial
states. :

(5

Note that in (2) of Def 5.2, no condition is imposed on g which are in EC;,
but do not belong to IN(PS). Thus, ECj is an extension of the equivalence class
in the sense that an EC; can include mutually "independent" inherited attributes

Ex 5.3 (omitted)

Our method of dealing with ecLR-attributed grammars is to evaluate the
value of inherited attributes belonging to the same EC; only once and to store
it in a single location in the attribute stack. The configuration for analysis
of ecLR-attributed grammars is shown in Fig. 4. 1Inherited attribute stacks
iasy, ..., ias,, each corresponding to EC;, are used. (The type of the elements
of a stack ias; is in general the union of the types of attributes in EC;.)

Bx<5.4 For Gl and the partition EC of Ex 5.1, a snapshot of the configuration
of Fig. 4'is
Fig. 2(b)
= value of ECjn IN(PSp)
value of Elenv = value of Tlenv = value of Plenv of PSy (= iasjltopl)
PSp-1; = { ASST -> V . :=E } ‘ : '
Ejp1 = # (= ias;[top-1])

g1 == =8

PSp_g = { ... -> . ASST, ASST -> . V := E, V => ... }

Ejp—2 = value of ASSTienv = value of Vienv (= iasj[top-2])
By Ex 5.1, the set of all semantic rules El/3jenv = ASSTvenv, E2rlienv. =
E2:0{env, T3+/llenv = E3/0ienv, P4rlienv = T4r0lenv, P5rlienv = T5/04env in the
partial state of Fig. 2(b) is converted into a single assignment ias;[top] :=
iasj [top-2]. :

1
)
8

I

m
[
]

[}
[
|

For the class of ecLR-attributed grammars, the following proper£y~is clear.

Property 5.1 If a partition EC is such that each ECj corresponds to a single
inherited attribute, ecLR-attributed grammars coincide with LR-attributed
grammars.
top
. -
parsing stack | ... IPS,_;IPSy
attr. stack iasy ' eee |Eppop lE1gpl

attr. stack ias, [. lfzm_llﬁzal

e« o . . e r

attr. stack sas eee | Xpgl I

let PSy be {Xo => vee Xgog Xpog Xk eee 4 oeen }
E;E contains values of inherited attributes in ECjn IN(PS;)
Xp-1 contains values of synthesized attributes of Xy_;

Fig. 4 Configuration for analysis of ecLR-attributed grammmars

(6]

6. Algorithms for checking the "ecLR-attributed" property

We give two algorithms for checking the "ecLR-attributed” property. The
first is based on the recursive definition of E'pg(a). The second checks the
"ecLR-attributed” property during the making of the closure of LR items. The
latter was adopted in the compiler generator we developed [Ish].

The first algorithm borrows the concept of PSPG (part1a1 state positon
graph) from [Pur]l. A PSPG is a directed graph of a partlal state whose nodes
represent LR items and edges represent "direct derivation" in the closure.
Special nodes I, SHIFT, and REDUCE represent an initiéi node,ba shift operation
(in parsing), and a reduce operation (in’ parsing), respectively. (For details,
see [Pur].) Purdom et al. uses a labeling method to'check the LR-attributed
property. Biit the method of [Pur] can no longer be’ adopted in ecLR-attributed
grammars since the ecLR-attributed grammars 1nvolve equ1va1ence classes.
Theréfore, a new algorithm was ‘developed. ’

Ex 6.1 The PSPG for the partial state of Fig. 2(b) is shown in éig. 5 ((1),
©(2), -etc. will be explained. soon).

L

(1){ASST => V. := . E |

(-4) P'~> . hame.

(5) [BHLFT |

Fig. 5 PSPG of LR partial state of Fig. 2 (b)

The first algorithm checks the "ecLR-attributed" property, by recursively
traversing the PSPG like a list marking algorithm.

Algorithm 1 (using PSPG)
Input: Grammar G and partition EC={ECy,...,ECh}.
Output: Whether the given G is ecLR-attributed or not, and
semantic expressions E'pg(a) at each partial state. .
{main}
for each LR state S of G do
for each partial state PS of 5 do
begin
make the PSPG;
epsljl:=empty (j=1,...,n);
for each kernel k of PS do trav(k):;
write out eps[jl (j=1,...,n) as semantic expressions at PS
end;

(7]

proc trav(i:LR item);
if (i=REDUCE) or (i=SHIFT) then return;
let i bed > d . Bf;
for each inherited attribute a of B do
begin
let "a=f(ay,ay,...)" be the rule defining a;
let #a, #aj; +... be the number of the equivalence
class to which a, aj;,... belong;
if i is a kernel then e:=f((EC#a1,oal),(EC#az,oaz),,.J
else e:=f(epsi#ajl,epsl#aygl,s...);
if eps[#al=empty then eps[#a]:=e
else if e<>eps[#a]l then "ecLR-attributed propérty is violated";
if not marked(i) then
begin mark(i); for each item ni derived from i do trav(ni) end
end;

Characteristic features of this algorithm are that the check is made by
stepwise traversing of the "direct derivation” relation (in the closure), and
that semantic expressions are obtained in eps[]j]'s. -

Ex 6.2 For the partial state PS of Fig. 2(b), ‘PSPG is already shown in Fig.5.
The algorithm traverses the PSPG, for example, in the order (1), (2),; ..oy (7)
shown in Fig. 5. At (1), e becomes (ECy, —-2) and since eps[l] is empty, eps[1]
becomes (ECl, -2). At (2) and so on, ¢ always becomes (ECy, -2) and is equal to
eps[1], thus the ecLR-attributed property is not violated in this partial state
and eps[l]=(EC;,-2) is obtained as the semantic expression.

Usually, the use of LR states instead of partial states will suffice. The
second algorithm uses LR states and checks theé "ecLR-attributed" property
simultaneously with the construction of closures of LR items. This algorithm is
" non-recursive and does not require the PSPG.

Algorithm 2 (using closure)
Input, Output : same as Algorithm 1
{main}‘
for each LR state S of G do
begin
closure := empty;
epsl[jl:=empty (j=1,...,n);
for each kernel k of S do
begin check(k); closure := closure U k end;
repeat
select item i from closure;
let i be A -> d . Bf;
for each production p with B as LHS do
begin
let p be B ->);
check(B => . ¥);
closure := closure U { B => .¥ }

(8]

end
until (all LR items in closure checked);:
write out eps[j]l (j=1,...,n) as semantic expressions at S
end;
proc. check(i:LR item);
let i be A -> 4. B§;
for each inherited attribute a of B do
begin
let “a=f(a1,a2,...)" be the rule defining aj;
let #a, #aj ,... be the number of the equivalence
class to which a, aj,... belong;
if i is a kernel then
- e:=£((ECya7,051) r (ECp22+052) re-.)
else e:=f(eps[#aj],eps[#ajl,...);
if epsl[#al=empty then eps[#a]:=
else if e<>eps|[#a] then
"ecLR~attributed property is violated"
end;

7. Preliminary Results

Preliminary experience with ecLR-attributed grammars seems favorable. The
statistical data in Table 1 and 2 were obtained by describing a subset of Pascal
using our compiler generator based on ecLR-attributed grammars [Ina] [Ish].

‘ As seen from Table 2, the necessary space for inherited attributes is 13.2

k bytes when the ecLR-attributed grammar method is used. On the other hand, the
space will be 95.4 k bytes if the LR-attributed grammar method is used. Thus,
in this example, the space for inhented attributes in ecLR-attributed grammérs
shows a reduction by a factor of 7 compared to that of LR-attributed grammars.

The time of overall analysis in ecLR-attributed grammars is estimated to be
about 10% less compared to that of LR-attributed grammars.

Table 1 Results in a Description Table 2 Space Comparison of LR- and
of a Subset Pascal ‘ ecLR-attributed grammars

no. of input lines 2963 | LR- | ecLR-
no. of productions 165 . —— n ;

no. of nonterminal symbols 64 no. of stacks for] 145 i 14
no. of terminal symbols 66 inh. attr. | | :
no. of synthesized attributes 128 space for stacks | 95.4 I 13.2

for inh. attr. | (kbyte) | (kbyte)

no. of inherited attributes 145

(maximum no. of fields in the

stack for inh. attr. in LR-

attributed grammars)
no. of equivalence classes 14

(maximum no. of stacks for

inh. attr. in ecLR-attributed

grammars)

(9]

8. Concluding Remarks

We have presented a practical class of attribute grammars called ecLR-
attributed grammars suitable for evaluation during LR parsing. Our method is
based on certain equivalence classes of inherited attributes and overcomes
space and time inefficiency of LR-attributed grammars. Two algorithms for
checking the "ecLR-attributed" property of a given attribute grammar were
presented. A compiler generator has been made based on this class.

Automatic partition of inherited attributes into equivalence classes is a
future problem,.

Acknowledgements
The authors wish to thank Ikuo Nakata for helpful discussions, and Rie
Inada for the description of a Pascal subset in our compiler generator system.
This work is supported by the Grant in Aid form the Ministy of Education
and Culture, No. 59780016.

References

[Jon] Jones,N.D.and Madsen,M., Attribute-influenced LR Parsing, Lecture Notes
in Comp. Sci. 94,393-407(1980).

[sas83] Sassa,M., One-pass Attribute Grammars Suitable for LR Parsing, 27th
Conv. IPSJ, 7E-7 (Oct. 1983) (in Japanese).

[Sas84] Sassa,M. and Ishizuka,H., ecLR-attributed Grammars : Attribute Grammars
Suitable for LR Parsing, 29th Conv. IPSJ, 4D-11 (Sep. 1984).

[Sas84b] Sassa,M. and Ishizuka,H., ecLR-attributed Grammars...,Tech. Rep.,
Univ. of Tsukuba, Inst. of Inf. Sci. and Ele. (1984).

[Ish] Ishizuka,H. and Sassa,M.,. A Compiler Generator Based on "ecLR-
attributed™ Grammars, 29th Conv. IPSJ, 4D-12 (Sep. 1984).
[Ish] Ishizuka, H.,, A Compiler Generator based on An Attribute Grammar

Suitable for LR Parsing, Bachelor Thesis, College of Inf. Sci., Univ.
of Tsukuba (1984) (in Japanese).

[Pur] Purdom, P. and Brown, C.A., Semantic Routines and LR(k) Parsers, Acta
Informatica, Vol. 14, pp. 299-315 (1980). ‘
[Isb] Ishibashi, H., Studies on Parsing Techniques Considering Semantic

Analysis, Master Thesis, Dept. of Inf. Sci., Tokyo Inst. of Tech.
(1980) (in Japanese).

[Wail] Waite,W.M. and Goos,G., Compiler Construction, Chap. 8, 1984
(Springer) .
[Ina] Inada, R., Design of A Semantic Description Language Based on Attribute

Grammars and its Application to Pascal, Bachelor Thesis, College of
Inf. Sci., Univ. of Tsukuba (1984) (in Japanese).

[Knu] Knuth, D. E., Semantics of context-free languages, Math. Syst. Theory,
Vol. 2, No. 2, pp. 127-145 (1968) and (correction) ibid, Vol. 5, No.l1,
pp. 95-96 (1971).

[Sas82] Sassa, M., Compiler Generators, Johoshori, Vol. 23, No. 9, pPp. 802-817
(Sep. 1982) (in Japanese).

[Wat] Watt, D. A., The Parsing Problem for Affix Grammars, Acta Informatica,
Vvol. 8, pp. 1-20 (1977).
[Tar] Tarhio, J., Attribute Evaluation during LR Parsing, Rep. A-1982-4,

Dept. of Comp. Sci., Univ. of Helsinki (1982).

(10

