vy by o 7EBR 11 -1
(1984 12 14)

Prolog Program Transformation of
Tree Manipulation Algorithm

Hiroshi Nakagawa
(Department of Information Engineering Yokohama National University
156 Tokiwadai Hodogayaku Yokohama 240 Japan 045-335-1451ext2902)

ABSTRACT

Since Prolog programs are regarded not only declarative predicates but
also procedural programs, it is a reasonable way that at first we write a
declarative clear Prolog program and transform it into a not clear but
efficient procedural program. In this paper we present a Prolog program
transformation method especially for a binary tree manipulation program.
With the notion of virtual 1list, we can get a procedural tree manipulation
program from a declarative one. In addition we find some heuristic
knowledge to write an tree manipulation algorithm from processes of Prolog
program transformation. Possibly they may be useful for automatic
programming. k

1. Introduction

In Prolog programming , declarative style programs are easy to write
and understand , but are possibly inefficient. On the other hand, a
procedural style Prolog programs are efficient but complicated and hard to
understand. The notion of Prolog program transformation is a programming
paradigm that gives one solution for this situation. Under this paradigm,
one writes a clear , declarative though possibly inefficient program, and
then transforms it into a program which is more efficient although probably
less clear. Some of the class of program transformations are unfolding,
folding for program written in a functional language [1], and the
continuation-based program transformation [5]. Program transformation for
programs written in a declarative language Prolog are proposed [4]. They
are all correctness—preserving transformation. Transformations of program
which manipulates data structures are also proposed [1],[2],[3].[3]
introduces a d-1ist structure for efficiency. [2] synthesizes a program
including abstract data types [1]. transforms tree manipulation programs,
In their system , fairly explicit intension for tree manipulation are given
a priori. ‘

In this paper , we present a different strategy for tree manipulation
programs transformation :The use of virtual 1list notion. Although tree
structures can be mapped to lists , the cognitive science tells us that
human can concentrate his attention only to less than 7 plus minus 2
elements in a list at a time. So in practice we regard some elements as one
abstract element (it is usually called chunk) to grasp whole list. We
‘will call this 1list including abstract elements as a virtual 1list
hereafter.

In declarative Prolog programming for tree manipulation, a tree is

transformed into a 1list and some tasks for example element insertion or
deletion are done on the 1list. Then the 1list is transformed intc a new
tree. This type of tree manipulation program is easy to write. In this
process, if we regard the transformed 1list as virtual in above described
sense, the tree manipulation program using a list can be transformed into
a direct tree manipulation program by program transformation. In this paper
we present this class of program transformation. The given program using a
list is as declarative one, and the transformed program that directly
manipulates a tree structure is as procedural one. From this standpoint,
our approach may reveal some kind of human mind's process of algorithm
discovering.

2. Tree insertion programs via lists

A declarative tree insertion program in Prolog consists of two parts.
One is a predicate that expands a tree into a list, Another is a predicate
that transforms a 1ist into a tree.In this paper we concentrate our
attention to a so called search tree: every subtree of a search tree has
such a property that any key valuesin a left subtree of it are less than
the. value of its root, and any key values in a right subtree of it are
greater than the value of its root. When we insert an element *a into a
suitable place in a given search tree t(*1, *x, *r), we usually use a well
known algorithm 'binary search'. In Prolog, a predicate 'tins' that
expands a tree t(*¥1, *x, *r) into a 1list and inserts *a into a suitable
place of the list using the binary search algorithm is defined as

tins([1, [], []) . (1.1)

tins(*a, [], [*a]) . (1.2)

tins([], t(*la *x, *r), *Y) <= tins([], *1 ’*1y)’tins([]: *r ,*rY),
append(*1y, [*x|*ry], *y). (1.3)

tins(*a, t(*1, *x, *r), *y) <- *alkx,)
tins(*a, *1, *1y),tins([], *r, *ry),
append(*¥ly, [*x|*ry], *y). (1.4)
tins(*a, t(*1, *x, *r), *y) < *ad=¥x, ‘
tins([]: *1! *1Y)ftins(*a9 *r! *rY)n
: - append(*¥ly, [*x|*ry], *y). (1.5)
where "¥x","*1",etc. denote variables. (1.1) and (1.3) expand a tree
t(*1,*x,%r) intoa list *y, (1.2) is for insertion of *a. The binary
search algorithm is expressed in (1.4) and (1.5). We use predicates 'tins'
as basic primitives in tree manipulation hereafter, Next, we are going
to define a predicate which makes up a tree from a given 1list, A
list-to-tree predicate 'bltree' is defined as
bltree([], [D) . (2.1)
bltree(*y, t(*1, *x, *r)) < append(*ly, [*x|*ry], *y),
‘ } bltree(*ly, *1),bltree(*ry, *r). (2.2)
The append in (2.2) generates lists *ly and *ry, and atom *x from the given
list *y. We use the predicate 'bltree' as a basic prototype to make up a
tree from a list.
With predicates 'tins' and 'bltree', a tree insertion predicate 'ins'
that inserts an element *a to a tree *t is defined as
ins(*a, *t, *ta) <~ tins(*a, *t, *y),bltree(*y, *ta). (3)
The variable *ta is the result tree. The predicate ‘'ins' is a declarative
version of tree insertion program that uses 1lists on the
intermediate stage. A procedural tree insertion program generates a result
tree whose structer ia as same to the original tree old tree as possible.

But this program generates a.result tree.of above described after some
backtrackings. .) : :

3. Transformation

In this section, a-Prolog program transformation with the notion of
virtual 1list is described along a transformation of the predicate
'ins'.. In the whloe course of transformation, we mainly use
unfolding,folding and sometimes introduce a new predicate. Besides these
method, we introduce heuristics Hl.-3. based .on the notion of virtual
list. -

At the first step of transformation, the literal 'tins' in the body of
the predicate 'ins' is unfold and the result is

ins([], [], *a) < Dbltree([], *a). . - : (4.1)

ins(*a, [], *b) 4 bltree([*a], *b). (4.2)

ins([1, t(*a, *b, *c) *e) < tins([], *a, *f),tins([], *c, *g),
append(*£, [*b|*g], *h),bltree(*h, *e). (4.3)

ins(*a, t(¥b, *c, *d), *f) < *al*c ,
tins(*a, *b, *g),tins([], *d, *h),
append(*g, [*c|*h], *i),bltree(*i, *f). (4.4)
ins(*a, t(*b, *c, *d), *f) <- *ad=%c , .
) tins([], *Db, *g),tins(*a, *d, *h),
append(*g, [*c|*h], ¥i),bltree(*i, *f). (4.5)
From (4.1)and(4.2), by unfolding bltree we get termination conditions as
follows : :
ins([], [1, [1) . : . : - (5.1)
ins(*a, [1, t([], *a, [])) . (5.2)
Here we introduce a heuristics based on the.notion of virtual list as next
stated.

Hl. When [] is inserted into or deleted from a tree, the
structure of the tree does not change.

It is intuitively valid because an abstract element which is a
component of virtual 1list remains unchanged if we apply no operation.
Hereafter we use H1. as true hypothesis. If we apply the Hl. to (4.3), we
get the next clause directly. .

ins([], t(*a, *b, *c), t(*a, *b, *c)) . (5.3)

‘The rest .is transformations of (4.4) and (4.5) into a direct tree
manipulation programs.

If unfolding is applied to 'bltree' of (4.4), we get the next clause.
ins(*a, t(*b, *c, *d), t(*f, *g, *h)) <- *al¥c,
tins(*a, *b, *i),tins([], *d, *j),
append(¥i, [*c|*j], *k),
append(*1, [*g|*m], *k),
bltree(*1, *f),bltree(*m, *h). (5.4)

The first 'append' appends *i and [*c|*j] and give the result *k, On
the other hand, the second 'append' generates *1, *g and *m from *k.
Usually, the first solution of *1 is [] and [*g|*m] is *k, and in the next
solution *1 is the first elemnt of *k, etc. But there is-a special
solution in which *i,*g and *m correspond to *i, *1 and *j respectively.
Here we adopt a heuristics that the first solution of the second 'append'
is this special one. So, the second heuristics is as follows.

H2. Instances bound to varibles in the second 'append'
for generator correspond to the instances bound to
variables in the first 'append' for append.

If we use H2. we lose the equivalence of programs. But on the other
hand we get algorithm and efficiency. In (5.4), renaming of *1 < *i, ¥g <~
*c, and *m <- *j is applied to the whole assertion including the variables
in the head. After this renaming, two 'append's are the same and have no
effect in this predicate, therefore we eliminate these two 'append's.

H3. After renaming for variable's name unification in two
'append's, these 'append's are eliminated.

The result is

ins(*a, t(*b, *c, *d), t(*f, *c, *h)) <- *al*c ,
tins(*a, *b, *i),tins([], *d, *3),
bltree(*i, *f),bltree(*j, *h). (5.6)
Since there is no side effect between variables in the first 'tins' and
'bltree' (*a,*b,*i,*f) and variables in the second 'tins' and 'bltree'
(*d,*j,*h), we can interchange the second 'tins' and the first 'bltree'.
Then by folding two pairs of 'tins' and 'bltree' with 'ins' we get
ins(*a, t(*b, *c, *d), t(*f, *c, *h)) < *al*c ,
ins(*a, *b, *f),ins([], *d, *h). (5.7)
By virtue of Hl. , the second 'ins' 's *h is replaced by *d. After this
replaceing, the second 'ins' is also eliminated and the final result is
ins(*a, t(*b, *c, *d), t(*f, *c, *d)) <- *adl*c,ins(*a, *b, *f). (5.8)
If we trace the same course of program transformation about (4.5), the
result is as
ins(*a, t(*b, *c, *d), t(*b, *c, *f)) < *ad=*c,ins(*a, *d, *£).(5.9)
The final results program of above described transformation (5.1),
(5.2), (5.3), (5.8) and (5.9) is a procedural type program of direct tree
insertion. We can also get a program that effciently delete an element from
a tree by the almost same transformation described above.

4. Program transformation for a tree of special property

There are many kinds of tree that satisfies a special property, for
example a condition for heights or number of nodes of subtrees. We have"
named them as a perfect balanced tree or as AVL-balanced tree and so on. In
our declarative programs we can write tree manipulation programs for these
trees only by adding a test predicate 'test' to 'bltree' as follows:

bltree([], [], *n) <~ .

bltree(*z, t(*1,*x,*r), *n) <- append(*ly, [*x|*ry], *z),

bltree(*1ly, *1, *m),bltree(*ry, *r, *k),test(*m , *k, *n). (6.1)
The third argument of 'bltree' presents a property of this tree. If we use
the virtual linear list notion, our main problem is that when 'test' failes
and backtracks to 'append', what kind of other solution we must pick up. It
is very difficult problem because it may be done by human heuristic
knowledge. The first thing we have to do for this problem is to find and
list up candidates of other solutions in a combination of 'append's. The
candidates we know so far are 1) one element shift and 2) associative law
of 'append'. 1) is that one element of the left part *1ly is shifted to the
root *x and the old *x is shifted to the right part *ry and vice versa. The

one elemnt shift can be used for a perfect balanced tree. 2) is that if
there are more than two append's, we apply an associative law to the
'append's to transform 'append's. For example, append(*a,*b,*e),
append(*e,*c,*f) is transformed into append(*b,*c,*e), append(*a,¥e,*f),
Since it is obvious that a. tree structure corresponds to a form of
'append's combination, when we pick up other 'append's form we have to
transform a tree structure according to the transformed 'append's, and also
have to transform the predicate 'test' to be consistent to the new
'append's. If we consider these matters, the original 'bltree' is
transformed into a next program in an abstract fashion as

bltree(*z,f(*x)) < append(*),append(**),bltree,bltree, testl(*x)

bltree(*z,g(*x)) < append(*1),append(’*1), bltree bltree, test2(*x)

: ‘ : (6. 2)

This transformation seems to be an implicit case split technique. .

H4: According to a backtrack caused by 'tset' predicate,
we . add assertions for other solutions that include
other 'appennd's forms (for example one element shift,
associative law of 'append's etc.) and tree structures
as shown in (6.2)

After applying H4, we eliminate 'append's. by H3 and apply unfolding and/or
folding sometimes to eliminate list manipulation predicates 't1ns ("tdel')
and 'bltree'. Suppose that our original program is as
p(*a,*b,¥c) <~ tins(*a,*b,*1), bltree(*l *c). ("tins' is replaced
by 'tdel' for tree deletion. program)
By these transformations, from (6.2) we get a result as follows (in
abstract fashion)
p(*a,*b,£(*z)) <- g,r(*a,*b,*z),testl(*z).
(*aa*b’g(*z)) < qyr(*as*b *z),test2(*z).
(6.3)
Usually r(*a *b,*%z) is a predlcate for transforming the tree *¥b into *z,
therfore very time cosumlng. For efficiency we want to reduce the times of
calling time consuming r(*a,*b,*z). By intrducing a new predicate s(*z,*x),
the assertion (6.3) is transformed into an assertion which calls
r(*a,*b,*z) only once as
p(*a,*b,*x) < q, r(*a’*b’*z)ys(*ZJ*x)o
-8(*z,f(*z)) <~ testl(*z).
s(*z,g(*z)) < test2(*z).
: : (6.4)

‘HS: Assertion of the (6.3) type is transformed into
assertion of the (6.4) type for efficiency.

5. AVL-balanced tree insertion

In this section we shall do a fair-sized example of a program
transformation for a tree of special property : AVL-balanced tree
insertion. In this transformation we introduce a new heuristics which maps
an associative law of 'append' into a pointer rotation of sub-trees.

5.1 Declarative AVL-balanced tree insertion program
An AVL-balanced tree is one kind of search tree and has such a
property for every sub-tree that a difference of a height of its left sub-

tree and a height of its right sub-tree is less than two. From this static
property we write a program that inserts an element into a AVL-balanced
tree as
brins(*a, *b, *c, *n) < tins(*a, *b, *d),bltree(*d, *c, *n). (7.1)
- where anelement *a is inserted into a tree *b and the result tree is *c,
and the height of the tree *c is *n, A variable *d is a linear list made
from *b., A new predicate 'bltree' is based on 'bltree' and added a
condition for AVL-balanced tree as ’
bltree([], []1, 0) <. (7.2)
bltree(*z, t(*1, *x, *r, *n), *n) < append(¥1l, [*x|*rl], *z),
bltree(*11, *1, *m),bltree(*rl, *r, *k),test(*m, *k, *n). (7.3)
where 'test' is a predicate to test wether difference between *m (the
height of the left sub-tree) and *k (the height of the right sub-tree) is
less than 2 , and to caluculate a height of the tree t(¥1,%x,%r) as follows
test(*m, *k, *n) <- *m>*k, add(*k, *d, *m),2>*d,add(*d,*m ,*n).
test(®*m, *k, *n) <- *m<¢*k , add(*m, *d, *k), 2>*d ,add(*d,*k, *n).
test(*m, *m, *n) <- add(*m, 1, *n). (7.4)
(7.1)-(7.4) are a declarative version of AVL-tree insertion program.
5.2 Transformation for tree rotation
By unfolding 'tins' of (7.1) and furter unfolding, we get
termination conditions as

brins([], [], [1, 0) <-. (7.5)

brins(*a, []1 t([]9 *a9‘[]s *b)’ *b) <~ teSt(O’ 07 *b)- (7-6)
By the heuristics Hl. we get an assertion for no operation as

brins([], t(*1, *x, *r, *n), t(¥1, *x, *r, *n), *n) <. (7.7)

The rest of unfolded (7.1) is as
brins(*a, t(*b, *c, *d, *e), *f, *g) <- *al*c ,
tins(*a, *b9 *h)rtins([]a *dl *i),aPPend(*h’ [*Cl*i], *j)s
bltree(*j, *£, *g). (7.8)
brins(*a, t(*b, *c, *d, *e), *f, *g) < *ad=¥c ,
tins([], *b, *h),tins(*a, *d, *i),append(*h, [*c|*i], *j),
bltree(*j, *f, *g). (7.9)
Here we will examine a transformation of (7.8) since (7.9) will be
transformed by the same way of (7.8) because of ‘a symmetry of (7.8) and
(7.9). By unfolding the first 'tins' and 'bltree' of (7.8) we get a n
assertion as ‘ ’
brins(*a, t(t(*b,*c,*d,*e),*f,*g, *h), t(*i,*j,*k,*l), *1) <«
*a¥f, *alkc, tins(*a, *b, *m), tins([], *d, *n),
append(*m,[*c |*n], *o0), tins([], *g, *p),append(¥o, [*£|*p], *q),
append(*r, [*j|*s], *q), bltree(*r, *i, *t), bltree(*s, *k, *u),
test(*t, *u, *1). (7.10)
Using the virtual linear list notion namely H2 , *r,*j and *s are renamed
*o0,*f and *p respectively. In order to examine *o further more we unfold
the first 'bltree' once more and rename variables in 'append' according to
Hl , then we get as follows)
brins(*a, t(t(*b’*ca*dt*e):*f!*gy*h)y t(t(*i,*c,*k,*l),*f,*m,*n), *n)
<- *ac*f, *al*c, tins(*a,*b,%o), tins([],*d,*p),
append(*o, [*c|*p],*q), tins([],*g,*r),append(*q,[*£|*r],*s),
append(*q, [*£f |*r],*s),append(*o, [*c|*p],*q),bltree(*o,*i,*v),
bltree(¥p,*k,*w),test(*v,*w,*1),bltree(*r,*m,*y), test(*1,*y,*n),
‘ (7.12)
Before 'append's elimination by H3. we apply H4 to (7.12) to make an other
assertion for the next solution. Using an 'append's associative law we get
a candidate of the next solution in a form of third and fourth 'append's as
append(*o,[*c|*q],*s),append(*p,[*f|*r],*q) =--(7.13) from

append(*q, [*£|*r],*s),append(*o,[*c|*p],*q). The result of transformed tree
according to (7.13) is as t(*i,*c,t(*k,*f,*m,*1),%*n)-~-(7.14). The
results are as ' ‘ '
brins(*a’ t(t(*b,*c,*d,*e),*f,*g,*h), t(t(*i,*c,*k,*l),*f;*m,*n),*n)
<~ *acC*f, *al¥c, tins(*a,*b,%o0), tins([],*d,*p), tins([],*g,*r),
bltree(*o,*i,*v), bltree(*p,*k,*w), bltree(*r,*m,*y),
test(*v,*w,*1), test(*¥1,%y,*n), : - (7.15)
brins(*a, t(t(*b,*c,*d,*e),*f,*g,*h), t(*i,*c,t(*k,*f,*m,*1),%n), *n)
<- *ac*¥f, *al¥c, tins(*a,*b,*0), tins([],*d,*p), tins([],*g,*r),
bltree(¥*o,*i,*v), bltree(*p,*k,*w), bltree(*r,*m,*y),
test(*w,*y,*1), test(*1,%v,*n). ‘ (7.16)
From a knowledge of what variables are used for input/output, 'tins's and
'bltree's are interchanged suitably, for example the first 'bltree' comes
to the place between the first and second 'tins's, and we get a pattern as
tins(*a,*b,%*o0),bltree(*o,*i,*v) etc. Now by folding these patterns with the
original 'brins' (7.1) we get assertions that include neither 'tins' nor
'bltree' from (7.15) and.(7.16). Using the knowledge that [] insertion
dose not change a tree structer (in this program (7.7)), patterns
brins([],*a,*b,*c) can be transformed into brins([],*a,*a,*c). After all
these transformations we get assertions as follows
brins(*a, t(t(*b,*c,*d,*e),*f,*g,*h), t(t(*i,*c,*d,*1),*f,*g,*n),*n)
< *al*f, *al*c, brins(¥a,*b,*i,*v), brins([],*d,*d,*w),
brins([],*g,*g,*y), test(*v,*w,*1), test(*1,*y,*n), - (7.17)
brins(*a’ t(t(*by*ci*d’*e)9*fv*gs*h)1 t(*i’*cit(*d:*f’*g’*l)!*n):*n)
< *al*f, *al*c, brins(*a,*b,*i,*v), brins([],%*d,*d,*w),
brins([],%g,*g,*y), test(*w,*y,*1), test(*v,*1,*n), (7.18)
These assertions show the sigle LL-rotation algorithm. In these assertions,
assertions having a pattern brins([],*x,*x,*y) are unified only once with
(7.6), therefore not time consuming. In the case of *a>=*f,*al*c, to get
the right assertion we must unfold 'tins' and 'bltree' appeared inan
assertion corresponding to (7.12) once more. Then we apply associative law
to rotation rule H4. twice. So we get double rotation algorithm. The final
results will be shown latter. : '
5.3 Introduce a new predicate for efficiency
In (7.17) and (7.18) '‘a very time consuming assertion
brins(*a,*b,*i,*v) is called again when 'test' failed. For efficiency we
apply H5. to transform (7.17) and (7.18) into more efficiént assertions
and the result is as
brins(*a,, t(t(*b,*c,*d,%e),*f,*g,*h), *x, *n) < *aC¥f, *al*c,
brins(*a,*b,*i,*v), brins([],*d,*d,*w), brins([]a*g’*gv*y)!

s11(*i,%c,%d,*f *g,%y *m *y, *n, *x), (7.19)
s11(*i,%c,*d,*f, *g,*v *m,*y,*n, t(t(*i,%*c,*d,*k),*f,*g,*n)) <«

test(*v,*m,*k), test (*k,*y,*n). ‘ (7.20)
Sll(*i,*Ca*d,*f,*g,*V,*m,*Y,*n,t(*i,*c,t(*dv*f,*g,*k),*n)) <~

test(*m,*y,*k), test (*k,*v,*n). (7.21)

As to LL-rotation algorithm (7.19)-(7.21) are the final version
of transformed assertions. Other rotation algorithms are also transformed
along above mentioned course. For example transformed assertions of LR-
rotation are as
brins(*ar t(t(*bv*crt(*ds*e’*f:*g)a*h)’*ir*j9*k)' *x,*n) <

*al*i, *ad>=*c, *al*e, brins([],*b,*b,*o0), brins(*a,*d,*p,*q),

brins([],*£,*f,*r), brins([],*j,*j,*s),

slr(*b,*c,*p,*e,*f,%g,*h *i, *J,*k,*q,%r,%0,*s,%n,*x). (7.22)

brins(*a, t(t(*b,*c,t(*d,*e,*f,*g),*h),*i,%j,%k), *x, ¥0) <
*aki, *a>=%c, *ad=¥e, brins([],*b,*b,*p), brins(*a,*f,*¥1,%q),
brins([],*d,*d,*r), brins([],*j,*j,*s),
slr(*b,*c,*d,*e,*1,*g,*h,*i,%j,*k, *r,*q,%p,*s,%o,*x). (7.23)
slr(*pl,*p2,%*p3,%*pk,*p5,*p6,*p7,%p8,*p9,*p0, *a, *b, *e, *f,*],
t(t(¥pl,*p2, t(*p3,*p4,*p5,%p6),*p7),*p8,*p9,*p0)) <«
test(*a,*b,*d), test(¥*e,*d,*g), test(*g,*h,*j). (7.24)
slr(*pl,*p2,*p3;%*p4,*p5,%pb,*p7,%p8,*p9,*p0, *a, *b, *e,*f,*j,
t(t(*pl,*p2,*p3,*d),*p4, t(*p5,*p8,*p9,*h),*j)) <
test(*a,*e,*d), test(¥b,*f,*h), test(*h,*d,*j). (7.25)
5.4 The final result
We get an other termination condition assertion from (7.8) by unfolding
'tins' and 'bltree' of (7.8) some times and folding with 'brins'. The
result is as
brins(*a’ t([],*b,*c,*d), t(t([],*a,[],*e),*b,*f,*g), *g) <
*ac*b, test(0,0,%e),brins([],*c,*f,*i),test(*e,*i,*g). (7.26)
As to (7.9) which is an insertion *a into a right sub-tree, we get
assertions corresponding to (7.19)-(7.26) in the same course of
transformation described above (since it is too long, the result assertions
are not presented here). :

6. Conclusions -
We described transformations of some kinds of tree manipulation
programs. Our aim is discovering human knowledge used to create a new

algorithm., If we find them, a true automatic programming comes into our
perspective.

REFERENCES
[1] Burstall R.M. and Darlington J. , A Transformation System
for Developing Recursive Programs, J.ACM Vol. 24, No. 1, Jan. 1977,
[2] Darlington J. , The Synthesis of Implementations for
Abstract Data Types, Computer Program Synthesis Methodlogies Proc. of
NATO Advanced Study Institute, Oct. 1981 ‘
[3] Hansson A. and Tarnlund S.-A. , Program Transformation by
Data Structure Mapping, LOGIC PROGRAMMING , Academic Press, 1982,
[4] Sato T. and Tamaki H. , Unfold/fold transformation of logic
programs, Proc. of 2nd International Logic Programming Conference July
1984 B
[5] Wand M. , Continuation-Based Program Transformation Strategies,
J.ACM Vol:27, No.1l, Jan. 1980

