VIMY = 7EBR 20 -1
(1987 2 13)

HE 2R ABRCPT 2 EFRELTBUAMNBEER O B H

— EHEIME AT AL I AR EAE~OREEOE AT T —
[ii7} 53] *x 54
1Y)/ 4AKRFEarya—F5. 54z 2EH

AR OEWMTIEEFEERL VA TLOERTHERB IR TYVWLIEFRBSE L RE¥K
PRI BFBEOER LEOFE 2B REZBE b T A L DD, BRAalT
Ty r <~ BFBROKRELEFOBRIK—BILL, TOELTCZO—KILIA
e 7T v v YBEKF B OMK R L recursive path ordering, lexicographic path ordering,
semantic path orderingS O A H & A BR K H bh 2 BEFE B AL OBK%E B 5 5 C
T 5, EHRWEFBAIREZLFPLW TRANBER2KOD 2822 52 Cxt T
L HEOBHMYBEIOEELLTHEVWLOLhATRAD T, RA OL5 2B E» bEHE &
ME VAT L2RIDHBOERIRKDOWTOBFHRHAEB L 15,

Ordering Structures of Term Rewriting Theory and

Theory of Proof Theoretic Ordinals

Mitsuhiro Okada

Department of Computer Science, University of Illinois, Urbana, IL, USA

The purpose of this paper is to show a close relationship between proof theoretic
ordinals in logic and ordering structures used in term rewriting theory. We
generalize the system of Ackermann's ordinals as a theory of partial ordering, to
elucidate thereby its relationship with several orderings of term rewriting theory.
Since proof theoretic ordinals have been used as a measure of computational
complexity for a subclass of the recursive functions, as a corollary we have much

information on the computational complexity of term rewrite systems.

This work was partially supported by NSF Grant DCR85-13417. . .
The author would like to express his deep thanks to Prof. N. Dershowitz for valuable discussions
and encouragement on this work.



Introduction.

A term rewrite system R over a set T of terms is a set
of rewrite rules of the fam s t, where s and t are terms
of T which may contain varisbles renging over T (cf.
Huet-Oppen[14)). s *t denotes that s is cbyained by a
successive number of rewritings from t. A rewrite system is
called terminate if every successi rewriting sequence stops
in finite steps. The question whether or not a given rewrite
system terminates is called termination problem. The
termination problem is often reduced to the well foundedness
problem for a known ardering structure. For example, for a
partially ordered structure {D,<), if we find a mepping
£:T > D, and if s3>t f(s)KE(t), we say "the term rewrite
system is embedable into {D,<). Then if a term rewite system
is embedsble into {D,<), the well fomdedness far <D,
implies the termination for the rewrite system. There are
meryy impartant ardering structures from this point of view.
In this peper we mainly consider the recursive'pa‘ch
ardering, lexicographic path ardering, sementic path order-
ing, and their variants.

The pwrpose of this paper is to show a close
relationship between proof thearetic ardinals in logic and
some ordering structures used in term rewrite theory. We
generalize the system of Ackermam's ardinals [1]which is
one of proof theoretic ordinals, to the theory of partial
ardering, to elucidate thereby its relationship with the
recursive path ardering of Dershowitz [ 6], the lexicogrephic
path ordering of Kamin-Levy [16], the semantic path ardering
of Plaisted (cf.[9]), and others. Since proaf theoretic
ardinals have been used in logic as a measure of computa-
tional camplexity for a subclass of the recursive functions,
as a corollary we have mfomatnm on conputational
complexity of term rewrite systems. For this purpose we
introduce from logic two notions; ordinal recursive func-
tions and provably recursive functions. We show that fairly
sinple term rewrite systems may have very strang computa-
tional power, which is much stronger than the camputational
power of the primitive recursive functions or the provably
recursive functions in Peano Aritlmetic. We also give an
exarple of the use of a stronger proof thearetic ardinals
than Ackermamn's ordinals, ‘which is called ‘'ordinal
diagrems' (cf. Okeda-Takeuti [23] ). Such stronger proof
theoretic ordinals seem very useful for further development
of term rewriting theory, like the cases of non-simplifi-
cation rewrite systems or conditional rewrite systems.

Kruskal theorem (on homeomarphic embedding) and its
variations are cammonly used for well foundedness poof of a
given ordering structure. This method was firstly introduced

by Dershowitz(6). There have been several attempts to extend
Kruskal thecrem, (independently Puel, Leeb{20), and Friedmen
[3). We show that Friedmen's extremely strong farm of
Kruskal thecrem is spplicable for well foundedness proof of
the system of ordinal diagrams. We also sketch an axiamatic
approach for proving well foundedness of Ackermann type
arderings. The usual proof of Kruskal thearems is based on
the "minimal bed sequence’ argument, which has strongly
non—constructive character. On the other hand, our axiomatic
approach provides not only mare constructive proof but also
a nice logical fremewark for well foundedness proof of a
given ardering structure.

§1. Besic Notations.
Now we give some basic notations and basic facts.

Definition. (1) < is a quasi ordering on a set D if (i) aga
for all a¢D and (ii)for a,b,ceD, acb and blc= ac.

(2) < is a partial ardering on D if < is a quasi ordering on
D and (iii) for a,beD, ab and kKaza=b.

(3) ¢ is a linear ordering on D if  is a partial ordering
on D ard (iv) for a,beD, a<b or bxa.

(4) A quasi ordering < on D is called a well quasi ordering
if for any sequence 485 ee from D, there exist i and j
such that i<j and agay.

(5) A quasi ordering < on D is called a well founded
ordering if for any descendeng sequence alza2 from D
there exist i and j such that i<j ardaisj.
(6) A linear ordering < on D is called well ordering if it
is well founded.

Fact. (1) If a quasi ordering is a well quasi ordering, then
it is a well founded ordering.

(2) If < is a linear ardering, then the notions of well
quasi ardering, well founded ordering, and well ordering are
equivalent.

(3) If < is a partial ordering, then the notion of well
fourded is the same as the following condition: Any strictly
descending sequence apa... from D stops in a finife steps.

In this paper we mainly consider so called precedence
orderings. These are ordering systems based on a given
precedence (ordering) on operators and constants: Such
precedence orderings ‘are orderings on a set T(F,C) of terms,
where each term in T(F,C) is constructed from constants from
C ad operatars from F. We are interested in the following
two types of thecrems.



(1) For any well quasi ordered sets C and F, T(F,C) is well
quasi ordered by a given ardering.
(2) For any well founded ordered sets C and F, T(F,C) is
well -founded by a given ardering.

Practically speaking, from the view point of termination
problem of term revrite system, (2) is enough. However, for
the most of term rewrite arderings in literature (including
all the orderings in this peper), (1) inplies (2) ( by using
Zam's Lema (cf.L6])).S0 in this peper we often consider
thearems of the form (1).

Examples. Let F= (*,...,*) , vhere (¥,...,*) is the n—tuple.
Let C be a given well qmi‘!xderai set of oconstants.
Consider the set T=T({()},0) of tems by the following
constructing rules: If céC then ce’l‘n; if tl,...,trs’l'n then
(tl,...tn)ETn.

The n-ordering < (tl,...,tn)fn(sl,...,sn) iff for some
permutation of (1,...,n), say (jl....,jn), tk<_sjk far all k&
n.

The lexicographic ordering <. (tseenat K (s, -+»8 ) iff
tlsl""’*](ﬁ( and tk+1 <Lsk+1 for same k n, ar 'ci=si for
all i<n.

Far both of the above orderings, c«d for c,deC is defined in
the sense of the precedence C, and for ceC, cg(tl,...tn)
always holds, but (t,,...,t )<c never holds.

Then for any well quasi ordered set C, Tn is well quasi
ardered by both of the above arderings.

Now we introduce the notions of direct system and
direct limit. Consider a sequeme-[sn}newqf sets of terms.
If there exists H Sl-),S for all i,j where i<j, such that
() Hy, is an 1denm;y function, (2) HyoH, H, then({s }
{ 1,36«:) is called a direct svstem Then we introduce
e LSn and D as follows.

(1) sst iff ik, IkH, (DH, (s).

(2) Take D18, /.

Then the following (D,{£} ) is called a direct Limit for the
direct system above; fi:Si—>D satisfies

(1) fchij=fi(i§j).

(2) For any set X and any g, :SpX such that gjuHij=gi(i5j),
there exists a unique f:D%X such that fot‘izgi.

Examples. We give same exanples of direct system and direct
limit.
(1) Consider the oxder:mgsn o Tn in the above exanple.

Define Hij:Ti-)TJ. (where i<j) by

Hij((tl,...,ti))=(t1,...,ti,O,..:,O).
3-1

Here 0 is a minimal elenent of C. Then {T} {1313 is
a direct system. Dd‘ineT=Ul‘n Define the ordering ¢ as
follows: (tl,...,t € (sl,...,s) iff n<m and for same
permutation of (1,...,m), say (jl,...,.) )y ts. for all k¢
n. Then{T <) is a direct limit (ar ({T} {H

(2) Corslderthelauoogratncordeﬁrg( onT Then again
.}, {H }) is a airect system. 'lhenatural extension of the
le(ioogxq:hlcadmtoT:Urn is the direct limit.

Category thearetic interpretation.

Quasi ordered structure <D,{) can be naturally
interpreted in categary theary. D is considered a set of
objects. s¢t is interpreted as " there exists a morphism
fis>t". Then the first candition of quasi orderedness "s(s
far all s in D" carresponds to the condition of category
"there exists an identity morphism IS far all s in D", ad
the second condition " i.fs_g_ta'dtﬁrﬂmsg"ccxmﬂs
 the condition of category "for any fisot amd g:t<r,
there exists a marphism h:s-r''. A category D is called
"well" if for any sequence s. 155000 e of objects there exists.
a morphisn f and i,j such that i<j and f.si->sj. Then the
notion of well quasi oarderedness for a quasi ardering
carresponds to the notion of '"well” for the carrespading
category. Then our notion of "direct limit" above corres—
ponds to the usual notion of (the dual of) direct limit of a
direct system {Hij} of functors.

Q.Ammﬂum'smadm

Definition.
(F,C)).
Then
(1) If ceC then ceAn(F,C).

(2) 1If tl,...,tnE An(F,C), fe F, then f(tl,...,tm) € An
(F,C).

(3 If t,... st €A (F,C), then .. H € A (F,C).

Each element of An(F,C) is called an Ackermann term. An
Ackermann term of the form f(tl, ..tn) is called a cormected
term.

(The set ofgmeralizedAd«emmnwmsAn
Let F be a set of cperators, C a set of constants.

Definition. (The Ackermenn ordering on An(F,C)) Let F and C
be partially crdered.

Case 1. Let s=f(s yeessS) ), t=g(t.
(1) s, ;2 t for some i (1s i{n), ar
(2) f=g, 5= tl' o 8y = ti-l' s>t s>ti+1,...,s>tn,

for some i(1<ig<n),
(3) 38, 8>t for 1l {(1£1<n).

'""tn)' Then s > t if
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Case 2. If 5,t€C, then s>t is s>t in C. If s€C, t¢C,
then s<t holds, but s >t does not hold, for connected t.
Cose 3. Let s=s,#...45, tl##t 'nms>t1f{s1,... s\
))h,...,tk] mere» is the miltiset ordering induced by
>, in the sense of Dershowitz-Mama[7]. More precisely,

s={s1,....s“;'; > {tl""'tk}:t if

si>tj1’t' ""'tjh for same i

ad s} t-{t;; b0ty )

Theorem. (1) For any f and ¢, the system An({f}.{ch is the
same as Ackermamn's system of ordinal notation; more
precisely, Adeeramn's original systen [11 is A({f},{o})
ad its geeralizatin A({f}, {0}). a({ehlo}) is
Fefermen-Schittte's system (cf.[31]§14) of ordinal notations
less then I, For any finite total ordered set F and C, the
ardertype of A2(F,C) is alsol"o. Moreover, even if C is any
well ordered set of order type less then[?, the order type
of AZ(F,C) is l"o for any finite F.

(2) A(F,C) is the same as the multiset extension of
Dershowitz's recursive path ardering over the set of terms
TFUC). In other words, if we pay attention only to the
comected terms of Al(F’,C), the Ackermamn's ordering is
exactly the same as the recursive path ordering. Here a term
of the form £(t;,...,t )€ UF,C) in Dershowitz's system of
recursive path ordering is interpreted as f(tl#...#tm) in A1
(F,C).

(3) For any finite set C or for any well-ardered set C of
arder type less then &, A (#C) is a well ordered set of

mweo. Far ary well ardered set F of order typed

and C sbove, A/(F,C) is a well ardered set of order type
$4(0) (of Feferman-Schitte's ordinal[a]).

Derstowitz[9] noticed the ordering of [, as an extention of
his recursive path ordering. Hence we call AZ(F,C) the
exterded recursive path ardering.

Definition. The system A:(F,C) is cbtained from A (F,C) by
avoiding any use of #. More precisely, the set An(F,C) of
terms is obtained using only (1) and (2) of the definition
of An(F,C). (i.e., by deleting (3)).

Remrk. The set A *(F,C) is identified with the set of
n-brenching tress, and the set A (F,C) is identified with
the set of finitely brenching farests, ignoring the order of
branchings of each node.

From now on we assume F and C are well-quasi ordered. As
Dershowitz proved, for any s,t€(FUC) (or Al(E’,C)v).,

(*) ss}t}»#sﬁmt,

where émisl"ureuluﬂﬁc enbedding between trees (ar
farests), in the sense of Kruskal[19] (c£]9]). Then the vell
quai orderedness for £, o <(F,C) (or Al(F,C)) (which is
called Kruskal Theorem (cf.[19])) implies the well quasi
arderedness of Srpo o T(F,C) (ar on Al(F,C)). This
argment can be extended to the case of An(F;C), by
raturally extending the notion of homeomorphic embedding and
the Kruskal theorem. Hence we have

Thearem. (1) Far any well quai ‘ordered sets F ard C, A (F,C)
is well quasi ordered for each n.

(2) Far ary well fonded sets F and C, A (F,C) is well
fouded for each n.

Another commonly used method to prove well quasi
arderedness for a given precedence ordering is the so called
“minimal bed sequence ' argment", which wes criginally
introduced for a simple proof of the Kruskal thearem inf21).
However, the proof by "bad sequence argument' or by the
Kruskal thearem has a strongly non—constructive character.
In fact we cammot obtain any fairly small formal system in
vwhich these proofs are formulated. Now we introduce an
axiomatic method for proving well foundedness, to provide a
fairly small farmal system in which the proof is formulated.
This method would be useful when one would like to consider
an upper boud of the computational power of a given term
rewrite system (cf. §3).

We corsider the following system S. S is based on PA
(Peano Aritimetic). Here we assume that PA has a suitable
form of mathematical induction rule (like a form of
induction on the construction of terms (cf. [22)). Moreover,
S has the new predicate W(t),
founded", in other wards,
with t terminates'.

which means 't is well
“eny descending sequence begining
We have the following inductive
definition schemata for W, as axioms of S.

(1) Vx(x<toW(x))> W(t).

(2) For any formila F(x) of S,

Vy(Vx(x< y=>F(x))2 F(y) ) 2Vz(W(z) 5F(z)) .
S has the definition of < on An(F’,C), as axioms. We aslo

assume that F, C and their orderings are primitive
recursive. Then we have the following theorem.



Theorem. The following farmula is proveble in S.
- Wx(F(x)> W(x) AV x(C(x)o W(x) )oVaw(x) .

(1)4(2) above are considered a special case of the inductive

definition in the sense of [II] - Herce S is a subsystem ID,

of (non-iterated) inductive definition. On the other hand,

these schemata of inductive definition are provable in the

full second order arithmetic. For exanple, the predicate W

above can be defined in the secord arder arithmetic as W(a)=
VP(Yy(Yx(x< yoP(x)) = P(y))>P(a)).

Now we extend the Ackermann's ardering of An(F,C) to a
direct 1imit A,F,C). The set A,(F,C) is defined in the same
vay as A (F,C), except that for each f€F, f may have
m-argument place for any m, in other words, we have a term
of the form f(tl....,tm) for any m. The Ackermann's ordering
<’far A (F,C) is defined in the same way as befare, where,

when we carpare f(t ,...,t ) wiﬂ'xg(s seresSy ) and n<m, we
interprete f(tl -5ty ) as f(O, ..,O tl"' .t ), then follow

the definition of theordermgmA(FC) sbefore < is
the same as <’ but we interprete f(tl,...,tn) f(tl,....

0,...,0). Here O is a minimal element of C. In other words,
the direct limit <A (F,C),<"> is defined by H_(£)(t;,...,t,
)=£(0,...,0,t5.00,% ), and the direct limit (A (F,0), <) is
defined by Hm(f)(t yeee ,tn)—f(tl, ..,tn,o,...,o) A*(F,C)
and <, < for A*(F,C) are defined in the same way as before.

Thearem. (1) <A ({f},{c}),<')is the same as Schutte's system
of ardinals of §11 in (30],
(2) {A*F,C),<) is the same as the lexicogrephic path
ardering of Kamin-Levy [6].
(3) <A ({£},{01),<) (and {AH(F,C),<) for any finite sets
F,C has the order type €.

Thearem. (1) For any well quasi ardered sets F and C, AF,C)
is well quasi ordered by <.

(2) Far any well founded sets F and C, Ay(F,C) is well
founded by <,

(3) The above theorems do not hold for < . In fact, A (
{£.g},{0}) is not well fouded by < . On the other hand, each
An*(F.C) is well quasi ordered by < for any well quasi
ardered sets F and C.

In the rest of this section, we give a relationship
between the Ackermarn's ordering and the semantic path
ardering of Plaisted. The following is a formulation of the
semntic path ordering by Dershowitz[8], as the theory of
quasi-ardering.

Definition. (The sementic path ordering) Let } be a quasi
ardering an A (F,C).

Case 1. Let s=f(sl,...,sn) and tg(ty,.. % ). Then s 2gpot if
(1) si2smt for some i (Kisn), o

(2) sytads >SFOtj for all j(1£j<n), ar

sst and {sl""’snzzsm{tl""'tn"

Case 2 and Case 3 are the same as those of the definition of
the Ackermenn's ardering.

Definition. Consider the following arderings.

(1) £ls)yeenss) L@l enest) n A (F,C) iff £< g in the
precedence F.

(2) f(s#.. #5 )<glt,#.. #t ) o A (F,C) iff

(i) f<g in F, or

(ii) f=g and {sl,...,sn} ¢

Leroltrre+tal vhere &, 15 the
multisets extension orl’$

(3) f(s reeeS, )< g(t ,...,t ) n A (F C) iff

(1) f<ng,

(ii) f=g,

n), or

L,

Sl=t1""'si—1= a0 S5 <SFO ti’ for same i (1£i%

(iii) f=g, 8= 1""'sn=tn( n<m.

Thearem. (1) (Kamin-Levy[16)) If ve take < for £ +Lgpo @
A (F,C) is the same as the recursive path ordering on A
(F,0).

(ii) If we teke(l- for <, the sementic path ordering on A
(F,C) is the same as the recursive path ordering on Al(F,C).
(3) Ifwefake(l for <,

(1)< mA(FC)lsfhesaneastheMram'sordermg,
therefore

(i1) <gpy @ A *(F,C) is the same as the lexicogrephic path
ardering, and

(iii) <gp @ Al(F,C) is the same as the recursive path
ardering.

precedence arderings

In this section we only consider primitive recursive
rewrite systems i.e., rewite systems whose set of rewrite
rules is primitive recursive under a suitable coading (Godel
rumbering). This assuption is strong enough for any
practical rewrite systems in the literature.

Establishing a relationship between the rewrite struc—
ture of a given rewrite system ard a proof theoretic
ordinals is very useful because the notion of proof
theoretic ardinals is related to two impartant notions of
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corputational  camplexity; (1) ordinal recursiveness, and (2)
provably recursiveness. The both notions are considered an
exterision of the notion of primitive recursive functions,
and characterize subclasses of the (total)
functions.

recursive

Definition.(ordinal recursive functions) Let ¢ be an ordinal
number, and < a primitive recursive well ordering on the
natural numbers of order type ¢ . We are asauming the
structure{#, <*) is coded in the naturel nurbers. The class
of o -recursive functions is defined by the following
schemata:

(i) S(a)=a+l (Successcar)

(ii) Z(al,...,an)=0 (Zero)

(iii) Pjn(al""'an)*j (1< jsn) (Projection)

(iv) f(al,...,an)=g(hl(a1....al),...,hm(al,...an)), where g
and hj are already known to be d-recursive.

(v) (d-recursian)

h(f(k(al,...,an).a ,...,an),al,...,an),
flay,...a) =§ if k(a),...a )<ay,
glay,....a ), othervise

where g,h ard k are already defined d-recursive functions.

The idea of (v) is that f(a,a, ,...,an) is defined
either outright or in terws of f(b.az,...,an) for certain b<*
a.

If we take w for ot and the natural ordering of W for

&, the class oftl-recursive functions is exactly the same as
the class of primitive recursive functions.

Definition.(provably recursive functions) For a given
mathematical system G, the class of provably recursive
function in G is the subclass of the (total) recursive
functions for which termimation of the calculation procedure
of each imput (i.e., each natural number) is uniformly
proved in the system G. In other words, a recursive function
f(x) is provably recursive in G iff f(x)= U(MyT(e,x,y))
for same e in the sense of Kleene, and G + VxyT(e,x,y),
where U is a fixed primitive recursive function and T is a
fixed primitive recursive predicate. (called Kleene's predi-
cate)(cf.[27]).

Definition. A rewrite system R is conputable by a recursive
fuctionf jf (uder a suitable coding (Godel numbering) in

the natural numbers) we have a recursive functionf such that
for any groud term t, there exists a normal form s of t
(i.e., t—*s and no rewrite rule is applicable to s in the
rewrite system)  a0d  £("t")="5", where "t and ' are
Godel nunbers of t and s respectively. » A

From the result of §2, we have the following proposi-
tion. » '
Proposition. (1) For any finite sets F and C, any tem
rewrite system embedable into the exterded recursive path
ordermg on A (F,C) is camputable by alz)—rewrsive function.
(2) For any finite sets F and C, any term rewrite system
embedable to the lexicpgrephic path ordering on A,(F,C) is
computable by an Eo—recur'sive function. ’ ’
(3) Far any well founded set C whose rank is less then Eo.
ay tem rewite system embedsble into A ({f},C) is
computable by an EO—recux\sive function.

As well known - in proof theory, the class of(EO—
recursive functions (i.e., d—r’ecursivg functions for any o <
ED) is exactly the class of provably recursive functions in
the system PA (Peano Arithmetic), ard the class of < l"0
the class of
recursive functions in Predicative Analysis (of Feferman cf.

[31} ). On the other hand, Gentzen type reduction rules of

-recursive functions is exactly provably

proof trees for the consistency proof of Peano Arithmetic
(Predicative Analysis) (cf.[30], [34]) can be interpreted as
term rewrite systems when proof trees are regarded as terms.
It is known in proof theory that this rewrite system is
embedable into an ordering of order type Eo (order typel"o ,
respectively) but not embedable into any ordering of less
than EO (less than f‘o, respectively). Hence we have

Thearem. (1) There exists term rewrite system embedable to
the extended recursive path ordering on AZ( {f},{o}) such
that it is not computable by any provably recursive function
of Predicative Analysis.

(2) There exists a term rewrite system embedable into the
lexicographic path ordering on Ay({f},{0}) such that it is
not computable by any provably recursive function in Peano
Arithmetic.

(3) Ther exists a term rewrite system embedable into the
recursive path ordering on Al({f},(o}) such that it is not
computable by any provably recursive function in Peano
Arithmetic.

Since the recursive path ordering embedable into the
(partial order version of) path of subterm ordering of



Plaisted and also embedable into the recursive decomposition
ardering of Lescame “and into Kepur-Narendren-Sivalamer's

ordering (see Rusinowitch [28] for these facts),

"the

recursive path ordering" in'(3) above can be replaced by any

of thses orderings. ’

An example of (2) can also be found in Kirby-Paris|18].
We exterd this s_ystén in ,t.he‘ next éecﬁm. On the ;t‘ather
bend, as mentioned in §1, since the well foundedness of the
exterded Ackermann ordering for A(F,C) is proveble in 1D,
(the system of (non-iterated) inductive definition), we have

an upper bound for the camputational. caiple(ity.

Thearem. If F and C are finite (or if the well foundedness

of F and C is provable in IDl). any rewrite system embedable

into a segment of A (F,C),

recursive function of IDl.

§4. Aplication of other proof thecretic ardinals, and
concluding rewarks.

In the case of mare camplicated systems of term
rewriting, like a rewrite system for conditional equations
ar a system of non-sinplification rewriting (cf.[9] for
the notion of simplification), mare complicated well
founded ardering structures than the Ackermann ardering
should be required. For such cases, more stronger systemns
af proof theoretic ordinals, like the Howard ordinals,
the ardinal notations of Feferman-Schitte, or Takeuti's
ardinal diagrams seem very useful and promising.

Henewdnlysketnhmee&arpleofﬂ-.euseut‘the
system of ordinal diagrams, (for the precise definition
of ordinal diagrams, see Takeuti [34], Okada-Takeuti[23]
o Okada[24]).

Let F and C be quasi ordered. ¢, an A (F,C) denote
an ordering { in the sense of ordinal diagrens inl34],
[23], or [24]. Ten (1) for any well founded set C and
any well ardered set F, Al(F,C) is well founded by &
(2) for any finite set F and any well quasi ordered set
C, A (F,C) is well quasi ordered by 4

(1) is proved by a combination of the "minimal bed
sequence” argument (of[21]) and the transfinite induction
i F (cf.[23]). (2) is proved by establishing a similar
relation (*)' to (*) of §2, using the extended Kruskal
thearem in [33].

(*)' For ary s, téAl(F,C). s&_.t:}ssdt.

is computable by a provably

Extax:ledeskal Theorem (h‘iednm) For any ﬁmte set
Fandawwnq\zsxordenedsetc Al(l-'c) 1swellqms1
mderedby_F

Here s<t is the homeonorphic enbedding with the folloving
Gap Cordition. (We recall that any term of Al(F,C) can

be identified with a forest whose end nodes (leaves) have
labels rmnﬂ'nesetCandwmse inner nodes have labels
from the set F.)

(Gap Condition). Let f:s -t be a homeamorphic embedding.
For any inner node a of a forest s and its immediate
predecessor b in's, if f(b)<c<f(a) then 1(c) > 1(f(a)),
where 1(d) is the label of the node d in the forest t,
i.e., the element of F which is placed at the ndde d. And
for any root a of s, if c <f(a) then 1(c) > 1(f(a)).

Now we give an exanple of canditional non-simplifi-~
cation rewrite rules. This is essentially an extension
of the rewrite system of Kirby-Paris[187.

Consider T ;Al({f vee5},{0]), where £, is ordered by
f1< f2<... <f,. We consider the following rewrite rules
R anT.

(1) 1, (¢, 41, (tzlff Gl e, (t #f.(O)))...))) —

fl(tli/fkl( oty (6 - 1(t1#f‘&( - (L HE 0N ))
velif 1<J$k1.....km (m is an axbn'rary nunber) .

(2) t#fl(o) —>t

3) 1:#Eh,(0)———)t#fn (n is an arbitrary number).

— s
S
fl
s/ f1a
f
i PR —— f
Ifi<j< k, i
e V- —_— e
e — f, Nyt
t t
f [7&
—_——




Then s->* Ds 4> b therefore this rewrite system is
enbedable into ST .< ). Since {T <1t well founded, we can
see that the rewrite systen R an T = A’l({fl,..,f«;',{o})
terminates. However this type of rewrite system is very
powerful. In fact, by using the method of Buchholz (cf.[2))

we can see that termination of the rewrite system R

is

unproveble even inT[}-CA+BI of impredicative analysis. By
modifying the system - R , we can easily see

Thearem. There exists a rewrite system embedable into < T,
( )whxd\ is not conputsble by any provably recursive
f\nctmn m“ ~CA+BI.

Conclusiaon.

From the results in §2 we conclude that proof theoretic

ordinals in logic provide a very general basis for several

important ordering structures used

in term rewriting

theory. Since proof thearetic ordinals are casidered a
measure of computational camplexity ard logical camplexity,
as a corollary, we can get information on camputational

power of term rewrite systems and on logical complexity of
termination problem of term rewrite systems. The results of

§3 and §4 show that fairly simple rewrite systens may have
strong computational power.
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