Y7 MUz THBWR 21 —6
(1987 6. 26)

Unfolding Rules for GHC Programs

GHCZ7'B 5 7 LD unfoldEHaICDOWT

Koichi Furukawa, Akira Okumura, and Masaki Murakami

B, B 2. HEET

Institute for New Generation Computer Technology

(BBt 2 » & o — 7 BRI e tktE

Abstract

This paper presents a set of rules for transformation of GHC (Guarded Horn Clauses)

programs based on unfolding. The proposed set of rules, called UR-set, is shown to
preserve deadlock freedom and the set of solutions to be derived. UR-set will give a basis
for various program transformation, especially partial evaluation of GHC programs.

HoE L

AFRX T X GHC(Guarded Horn Clauses) 7' 0 7 5 A ¥ B9 5 72 Ounfold® £12 L

TEBBROEEE 52 5, I THZ 5HBIEE(URset)lZ, BELBLHBOES £ 1R

FL. 2ok dy Fay 2 Z8A L %w

ENREN S, URsetid, 710+ A&

REHSEE R EOGACT U ST LDEA DT AT LERO D OERYE 2 50k

Bbhs,

1. Introduction

It is expected that fruitful results will follow
program transformation research in parallel logic
languages such as GHC [Ue85], PARLOG [CG86] and
Concurrent Prolog [Sh83]. Several preliminary
results have been reported, including the application
of partial evaluation to meta-programs in FCP (Flat
Concurrent Prolog) to obtain a realistic operating
system [Sh86] and program transformation to fuse
two concurrent processes to increase efficiency
[FU85]. However, there are two problems caused by
the guard/commit mechanism in the program
transformation of parallel logic languages: synchro-
nization and nondeterminacy. In parallel logic
languages, causality relations exist between uni-
fications due to the guard/commit mechanism.
Therefore, careful handling is necessary for
transformation, such as changing not only body parts
but also guard parts of original programs. For
example, let us consider the following GHC program:

(CO) p([A}In],0) :~ true | q(A,In,0)
(C1) q(A,In,0) :- true | 0=[A|Out],r(In,0Out)
(C2) r([B|In],0) :- true | 0=[B]

By unfolding thé clause, (C1), by the goal, r(In,0ut),
the following clause is obtained. (The definition of
unfolding used in this note is in the next section.)

(C1)' q(A,[B}In],0) :- true |
" 0=[A]Out], Out=[B].

The problem is that the behavior of program
{(C0),(C1),(C2)} differs from that of {(C0),(C1)'}. In the
former program, the output variable, 0, of p can be
instantiated just after the instantiation of the first
element of p's first argument, whereas in the latter
case, it is delayed until both the first and the second
elements of the same argument are instantiated. The
delay of output variable instantiation may cause a
further problem. Let us add a clause

(C3) s([X|Xs],In) :- true | In=[b}Inl],
and consider the goal
(G) ?- p([a}in],0), s(0,In).

Then, the second element of p's first argument cannot
be instantiated before goal s(0,In) is executed and
In is instantiated to [bjInl]. However, the
instantiation of p's second argument, 0, is necessary
for the goal, s(0, In), to commit. Therefore, goal (G)
will cause a deadlock when it is executed under
program {(C0),(C1)' (C3)}.

Nondeterminacy is another source of difficulties
in unfolding. A careless application of unfolding may

limit some goals to commit to particular clauses even
if there are other alternatives, because determinacy
cannot be judged by its textual appearance during
program transformation.

Thus, the unfolding based transformation of
(JHC programs needs much consideration. We have
been researching this topiec, and have obtained a
plausible answer, UR-set. UR-set is a set of
transformation rules from one GHC program to
another. Each rule preserves a single step of the
transformation, and multiple application derives
further transformation. These transformations do not
change what solutions can be found or deadlock
freedom of the source program.

Section 2 introduces the rules of UR-set. Section
3 argues the correctness of UR-set. Section 4 gives an
example of transformation.

2. UR-set

UR-set is a set of transformation rules for GHC
programs. A program is a set of clauses, and UR-set
provides a plausible transformation from one
program to another. Each rule makes a single step of
the transformation, which is based on replacing a
clause of the source program by zero or more new
clauses. The new clauses are derived by goal

substitution of the source program, mainly by

unfolding. First, a term definition of unfolding is
introduced for the following discussion.

Definition: unfolding
Consider clauses P and Q as

PuHp:- Gyl Bp
QuHg:- Gyl Bg

where each of Hp and Hg is an atomic formula which
has all distinct variables for its arguments, and each
of Gy, Bp, Gy, and By is a sequence of goals. If there
is a substitution, 6, which makes Hq the same as a
goal, A, in By, unfolding clause P at goal A by clause
Q is defined as to obtain a merged clause, R, which is

RuHp - Gp,Ggd | Bp', B0

where By' is By without goal A.

UR-set defined as a set of rules is divided into
two groups: the first group (Rule 1 and 2) handles
immediately executable goals appearing in the body
part, and the second group (Rule 3 and 4) prepares for
further unfolding. In UR-set shown below, the
differentiation of input and output variables is
assumed.

UR-set is for GHC clauses whose head
arguments are all distinct variables. It is easy to
understand that the same effect as any double
occurrences of the same variable or constant patterns
in a head can be implemented by its guard goals
instead. The clause so implemented is called the
normal form of its original clause.

Example:
(p(A,B,C) :- A=1, B=C |-) is the normal form of
(p(1,X,X) :- true |--).

UR-set

Rule 1 Unification Execution/Elimination

Explicit unifications (=) appearing in a body
part of a clause, C, can be symbolically executed
within the body part; that is, a further instantiated ‘
value can substitute corresponding variable
occurrences within the body. Furthermore, if neither
side of = includes an output variable of the clause,
the unification goal can be eliminated after the
substitution. Thus, a new clause, C', is derived from
the original C. A new program is derived by replacing
C of the original program by C'.

Example:
(p(X) :- true | X = a, q(X))

— (p(X) :- true | X = a, q(a))
(p :- true | X = a, q(X))

— (p :- true | q(a))

Rule 2 Unfolding at an Immediately Executable Goal

Each of the clauses for a given goal may take
any of the following forms.

satisfied its guard is already satisfied.

candidate its guard is not yet satisfied,but may
be in future.

unsatisfiable its guard is already known as not

able to be satisfied.

Example:

For a goal, p(1,A),

(p(X,Y) - X = 1]...)is satisfied,
(p(X,Y) == Y = 1]...)is candidate, and
(P(X,Y) - X = 2]...) is unsatisfiable.

A goal is immediately executable if there is no
candidate clause for that goal.

Let a clause, C, be of the form
A - Gy,G9,...,Gm | A1,A2,...,An
C can be unfolded at an immediately executable body

goal, Aj, by all satisfied clauses, Cyj (1=j=1 1is the
number of satisfied clauses). The resulting clause,

Djj, is obtained from the original clause, C, by
replacing goal A; by the body of Cy;. Djj is a guarded
resolvent of C and Cj; whose guard goals are the same
as C, because the guards of Cij must be true.) Thus, a
new program is derived by replacing clause C of the
original program by all of Dy,

Example: :
{(p :~ true | q,a(1),r)}
— { (p :- true | qg,b,c,r),
(p :- true | g,d,e,r) }
by{ (a(X) :- X=1] b,c),
(a(X) := X>0 | d,e),
(a(X) :- X=2 | f,9) }

Rule 3 Predicate Introduction and Folding

Let the clause, C, be defined as
P:- G1,G2,...,Gm| Uy, Ug,...,Up,N1,N3,...,Ny

where U; (0=i=p) are output unifications and Nj
(0=j=q) others. Furthermore, let the intersection of
a set of variables appearing in
G1,G2,...,Gm,U1,U2,...,Up and that appearing in
N1,Ng,...,Ng, be X1,X3,...,X;. Then, a new clause, Cj,
of newP is introduced as

newP(X1,X2,...,Xr) :- true | N1,N2,...,.Nq.

Then, the sequence of Njof C can be folded by C1 and a
transformed clause, C', is obtained as

P:-G1,G2,...,Gm| Uy, Us,...,Up,newP(X1,Xs,... Xp).

Thus, a new program is derived by replacing clause C
of the original program by Ci and C'. This rule is
used to transform clauses into forms where the next
rule can be applied.

Example:

Clause

(p(X,Y) = X>0 | Y=[X|Z], q(Z), r)isreplaced

by a pair of clauses as

{ (p(X,Y) := X>0 | Y = [X]|Z], newP(Z)),
(newP(X) :- true | g(X), r) .

Rule 4 Unfolding across Guard

If the guard condition of a clause, C, is true and
there are no immediately executable goals in the body
part, then C can be unfolded at the body goals which
share input variables with the head all together. Let
a clause, C, be

A :-true| Ay,Ag,...,Ap,B1,Bs,...,B
where each Aj shares input variables with A, and

each Bj does not. Let a clause of Ai be Cjj (1=j=my;
m; is the number of clauses whose heads can be

unified with Aj). Then, Djj, the result of unfolding C
at a goal, Aj, by Cjyj, is a guarded resolvent of C and
Cij. The guard part of Djj comes from the guard part
of Cjj. Thus, a new program is derived by replacing
clause C of the original program by all of Djj (1=i=n,
1Zj=m;y).

Example:)
(p(X) :- true | q(X), r(X))canbereplacedby

{ (p(X) - X>3 | g1, r(X)),
(p(X) :- X<3 | q2, r(X}),
(p(X) - X<2 | g(X), r1),

(p(X) :- X22 | q(X), r2) }where
{ (q(X) := X>3 | q1),

(a(X) :- X<3 | q2),

(r(X) - X<2 | r1), ‘

(r(X) :- X22 | r2) 8

3. Correctness of UR-set

A rule of transformation must provide some
equivalence. We expect the following attributes
between the original program, P, and a transformed
one, P', for any goal, G, in P.

al) IfG hasasolution in P, it has the same solution
inP',

a2) If G hasasolution in P, it has the same solution
inP. ’

ald) If G can pever lead to a deadlock in P, neither
canitinP'

The above attributes do not allow for cases of
deadlock, failure, and infinite loops. However, we
consider those programs as mistakes, and have made
them out of consideration. This section gives a brief
explanation showing each of UR-set provides those
attribute.

Rule 1

This rule allows the execution of body
unification in advance. However, it changes neither
the head nor the guard part, so it has thie same effect
as the case where the unification is executed
immediately after commitments. Consider a clause,
C,in P, and its corresponding C'in P’ as

C:u(p(X,Y) :- true | X=a, r(X,Y)),
C':(p(X,Y) :- true | X=a, r(a,Y)),

where X and Y are output variables. The only
difference between C and C' is whether the first
argument of r is instantiated to a or not. a2) holds
obviously. As to al) and a83), every commitment
under r(X,Y) is also possible for r(a,Y), because an
instantiation never prevents any commitment.

Rule 2

This rule substitutes a body goal, A, by goals
which should be derived by resolution of A. It makes
only such the reductions in advance as can be done
eventually for A. It generates clauses for each
possible resolvent and no clauses for impossible
resolvents. It does not tighten any guard condition,
and does not instantiate any variable out of goal A.
Therefore, al), a2), and a3) hold clearly.

Rule3

An introduced clause of a new predicate has true
guard, and a goal of that predicate can commit
immediately. This means that the transformed
program gives the same behavior as the original one
except the excessive commltment Soal), a2), and a3)
hold clearly.

Rule 4
Re-examine the same example shown in the
previous section.

C o (p(X,Y) :- true | q(X),
replaced by

r(Y)) can be

Cu{ (p(X,Y) = X303 | q1, r(Y)),

(p(X,Y) :- X<3 | g2, r(Y)).
(p(X,Y) :- ¥Y<2 | q(X), r1)
(p(X,Y) := Y22 | q(X), r2) }where
{ (a(X) := X>3 | q1), (q(X) :- X3 | q2),
(r{X) :- X<2 | r1), (r(X) :- X22 | r2) }

For p(X,Y) in C to have a solution, one of the guard
conditions of q(X) or r(Y) must be true by an
instantiation of X or Y. At that time, the guard
condition of the corresponding clause of p in C' is true,
and the converse is also true. Therefore, al), a2), and
a3) are satisfied.

4. Brock-Ackerman Problem

This section presents an example of the
application of the proposed set of rules, called the
Brock-Ackerman Problem [BAS81]. Consider the
program below (i = 1,2).

The clause of p, could be derived, if we would
allow to unfold the clause of p; atp;;(In,0ut) by the
clause of pj;. s; and s, have the same set of
solutions. So, in this sense, that unfolding is correct.
However, t; and t, has a different set of solutions,
and it turns out that the transformation may cause
trouble.

Our rules cannot provide unfolding at the goal,
p11(In,0Out). We consider it impossible to obtain an
unfolded clause which behaves correctly in any
context. However, the rules provide fair trans-
formations in certain contexts.

pi([A[In], Res) :- true |
p11(In, Out), Res=[A]Out].
p11([A[In],Res) :- true | Res=[A].

p2([A.B|_J.Res) :- true | Res = [A,B].

dup([A|I], Res) :- true | Res=[A,A].
merge([A|X],Y,Z) :~ true |

Z=[A|W], merge(Y, X, W).
merge(X,[A|Y],Z) :- true |

Z=[A{W], merge(Y, X, W).
merge([],Y,Z) :- true | Z=Y.
merge(X,[1,Z) :- true | Z=X.

si(Ix, Iy, Out) :- true |
dup(Ix, Ox), dup(ly, Oy),
merge(Ox, Oy, 0z), p;(0z, Out).

ti(In, Out) :- true |
si(In, Mid, Out), plusi(Out, Mid).
plusi([A|In], Out) :- true |
Al := A+1, Out = [A1].

If we start with the clause of t; with a mode
declaration as t;(+,-), then contexts for p; are
limited and therefore the clause can be transformed
as part of the total transformation.

The following shows the transformation sequence.
(Clauses are handled in their normal form.)

t;(In,Out) :- true |
si(In,Mid,0ut), plusl(Out,Mid).
Rule2

ti(In,0ut) :- true | sytEnsitidsOut)s
dup(In,Ox), dup(Mid,Oy), merge(Ox,0y,0z),
p;(0z,0ut), plusl(Out,Mid).

Rule4

i([A]_1.0ut) :- true | duptinyOx)+
Ox=[A,A], dup(M1d Oy), merge(0x,0y,0z),
pi(0z,0ut), plusl(Out,Mid).

Rulel
t4([A]_],0ut) :- true | Bx—fA-AT
dup(Mid,Oy), merge([A,A],0y,0z),
pi{0z,0ut), plusi{Out,Mid).
Rule2

ti([A{_],0ut) :- true | merge{fAhAtBys0z)y
dup(Mid,Oy), merge([A],0y,0z1),
0z=[A]|0z1], p;(0z,0ut), plusi(Out,Mid).

Rulel
ti([A|_],0ut) :- true | Oz=fAt0ztis
dup(Mid,Oy), merge([A],0y,0z1),
pi([A]0z1],0ut), plus1(Out,Mid).
<oa>

Inthe case ofi=1

i—1
W([A]_J,0ut) :- true |
dup(Mid,Oy), merge([A],0y,0z1),
p1([A]0z1],0ut), plus1(Out,Mid).
Rule2

ti([AI_],0ut) :- true | pyfAtBzt]0But)s
dup(Mid,Oy), merge([A],0y,0z1),
Out=[A]|Outl], p;;(0z1,0utl),
plus1(Out,Mid).

Rulel
ti([A]_],0ut) :- true |
dup(Mid,0y), merge([A],0y,0z1),
Out=[A|Outl], p;1(0z1,0utl),
plus1([A|Outl1],Mid).
Rule2

ti([A]_],0ut) :- true |
dup(Mid,Oy), merge([A],0y,0z1),
Out=[A]0ut1], p;,(0z1,0utl),
; > Al:=A+1, Mid=[A1].
Rulel

ti([A]_],0ut) :- true]
dup([A1],0y), merge([A].0y,0z1),
Out=[A|Outl], p11(0z1,0utl),
Al:=A+1 Mid=fALT.

ti([Al_],0ut) :- true | duptfAtoy)s
Oy=[A1,A1], merge([A],0y,0z1), :
Out=[A|Outl], p11(0z1,0utl), Al:=A+1,

t1([A]_],0ut) :~ true | By=fAt-AtT:
merge([A],[A1,A1],0z1), Out=[A|Outl],
p11(0z1,0utl), Al:=A+1.

Rule2

Rulel

Rule2
t1([A]_],0ut) :- true |
0z1=[A[0z2], merge([],[A1,A1],022),
Out=[AfOutl], p;;(0z1,0utl), Al:=A+1.
ti([A]_].0ut) :- true |
0z1=[A1]0z2], merge([A],[A1],0z2),
Out=[A[Outl], p:1(0z1,0utl), Al:=A+1.
Rulel to each

t1([A]_].0ut) :- true | 6zt=FAtoz2Y}+
merge([],[A1,A1],022), Out= [A[Outl]
p11([A]0z2],0utl), AL:=A+1.

ti([A]_],0ut) :- true | Gzt=fAHBz2]}+
merge([A],[A1],0z2), Out=[A}Outl],
p1s([A1]0z27],0utl), Al:=A+1,

Rule2 to each

ti([A}_1,0ut) :- true | putfAtBz2tButt)s
merge([],[A1,A1],022), Out=[A|Outl],
Outl=[A], Al:=A+1.

t1([A]_T1,0ut) :- true | pustFAHOz20utt)
merge([A],[A1],0z2), Out=[A|Outl],
Outl=[A1], Al:=A+1.

Eachmerge/3 is transformed to some unifications and
is eliminated. So the final result is as follows.

ti([A]_7,0ut) :- true |
Out=[A|Outl], Outl=[A].

t([A]_],0ut) :- true | mergetfATfAtT 822)+
Out=[A]Outl], Outi=[A1], Al:=A+1.

Rulel
ti([A]_].0ut) :- true | Gutt=fA}+
Out=[A,A].)
t1([A]_],0ut) :- true | Gutt=fAtls
Out=[A,A1], Al:=A+1.
[t1end]
In the case of i=2 (from <a>)
i—2
t2([A]_].0ut) :- true |
dup(Mid,Oy), merge([A],Oy,0z1),
p2([A]0z1],0ut), plusi(Out,Mid).
Rule2

t2([A]_],0ut) :~ true | mefge('fﬂ—ey—etﬁ—
dup(Mid,0y), 0z1=[A|0z2],

merge([],0y,022),
p2([A]0z1],0ut), plus1(Out,Mid).

Rulel
t2([A]_]1.0ut) :- true | ezt=fAtoze}s
dup(Mid,0Qy), merge([],0y,022),
p2([A,A{0z2],0ut), plus1(Out,Mid).
Rule2

t2([A]_].0ut) :~ true | p2{fATAIOZ2]0ut)

dup(Mid,Oy), merge([],0y,0z2), Out=[A,A],
plusi(Out,Mid).

dup/2,merge/3, and plus1/2 are transformed to
some unifications and are eliminated. So the final
resultis as follows.

t2([A]_],0ut) :~ true |

Out=[A,ATrprust{OutMidy.

{taend] -

Thus, the clauses of ti are partially evaluated to
single unifications. They implement the success sets
of each program directly.

5. Conclusion

This paper presented a set of rules, called UR-
set, for the transformation of GHC programs. It
seems to be powerful enough for various applications.
To evaluate its efficiency, we need to perform further
experiments such as process fusion, leveling of a
meta-interpreter and its object program, or program
synthesis from naive definition.

UR-set has a difficult problem. To judge
whether a goal is immediately executable, we must
confirm that no more instantiation can occur to the
variables which allow the goal to be committed to
another clause. If the goal has an input variable from

another goal, we must know whether an instantiation
for that variable can occur before the commitment.
We are now considering a rather tight condition,
which is to check that no other goals related to input
variables of the object goal can ever commit before
that goal. It can be derived {rom mode analysis.

To achieve an automatic partial evaluation
system, we must find a valid control strategy to apply
UR-set. We are interested in implementing such a
system in GHC. We believe it will take the form of
cooperation of several unfolding processes.

Acknowledgment

We would like to express special thanks to Yuji
Matsumoto. This study owed a great deal to his
detailed investigation. We would also like to thank
Kazunori Ueda, and Akikazu Takeuchi for their
helpful discussion.

References

[BA81]J.D. Brock and W. B. Ackerman: "Scenario: A
Model of Nondeterminate Computation,” in
Formalization of Programming Concepts, J. Diaz
and I. Ramos (ed.), Lecture Notes in Computer
Science, vol. 107, Springer-Verlag, 1981.

[CG86] K. L, Clark and S. Gregory: "PARLOG:
Parallel Programming in Logic," ACM Trans.
Program. Lang. Syst. 8, 1.

[FU85] K. Furukawa and K. Ueda: "GHC Process
Fusion by Program Transformation," in Proc. the
Second Annual Conference of Japan Society of
Software Science and Technology, 1985.

[Sh83] E. Y. Shapiro: "A Subset of Concurrent Prolog
and Its Inter- preter," ICOT Tech. Report TR-003.

{Sh86] E. Y. Shapiro: "Concurrent Prolog: A Progress
Report," IEEE Computer 19(8), 1986.

[Ue85] K. Ueda: "Guarded Horn Clauses," in Proc.
Logic Programming '85, (Lecture Notes in
Computer Science, Vol.221), Springer-Verlag,
1986.

BOLERIER

