i 5 oM B 41 -7
(1987 6. 26)

UtiLispd i U WERE

EFH—- - BR K
RRERKRFLZER

UtiLisplg A4 ¥ 7 b— A LOLisplERTHD . 2 — FOBPW|RIc & > TMC
8000% CPUL ¢ A BB ETEBLTWS, ChoDFHEBIE32YY POV YRS
/B, PRUVANRE24E y PTEMBE Yy PEFEALZW. 4% TOUtilisp
WBooHEEMAL, R4 V397 FRREDETEREXETF TS, LrLad
ECDHFRDEDIZRE Y FOFP FLANREFOCPUEICUtiLisp2 ER T 5 2
EHEBTHE-> R, BXRCOMBEAEBRL, IVLEEEOHERICHRDTE
3 UtiLispd ERIEARE L. EBIc . M068010,MC68020,Vaxk w5 =328y b7
FLADOCPULTRIELAZLER,S. TOER, Bk, #ilconwTidRS,

A NEW IMPLEMENTATION TECHNIQUE FOR THE UTILISP SYSTEM

Keiichi Kaneko and Kei Yuasa

Faculty of Engineering, University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo, 113 Japan

UtiLisp is one of Lisp dialects which is available on mainframes and MC68000 CPU
machines. We implemented new UtiLisp for 32 bit address CPU (MC68010, MC68020,
Vax). There is a determinate difference between architectures of them and those of old CPU's.
So we had to make a new design of this language.

This paper denotes this difference of architectures and then describes about the

implementation, the transportability and the performances of this new UtiLisp.

(1)

1. Introduction

1-1 Motivation

UtiLisp was originally implemented for Hitachi
M200H in CCUT (Computer Centre, the University
of Tokyo) by Chikayama[l]. Tomioka rewrote the
code for Motorola MC68000 whose architecture
resembles that of IBM360. We call this version
UtiLisp68[7]. And we have transported these UtiLisp
systems on several computers as in fig. 1.1[6].

These systems take advantage of the architecture
of the CPU’s so that they could achieve high
execution performance. IBM360 and MC68000 have
32-bit registers and 24-bit address bus (the highest 8
bits are not used). This enables pointer tag scheme.
But this is also a reason why machines on which
UtiLisp is availabe are restricted.

Today, most Unix machines and workstations
have 32-bit address bus. On these machines, we can
not use the pointer tag scheme because the highest 8
bits are also parts of the address. Thus we decided to
make a new design of UtiLisp which is available on
32-bit CPU. We call this one UtiLisp32.

UtiLisp68

UtiLisp32

Fig. 1.1 UtiLisp Family

(2)

1-2 Basic Design
There are some feasible methods to make a lisp system
for machines on which we can not use pointer tag
scheme.

(1) Masking tag on addressing

(2) Object tag (tag on objects)

(3) Division of heap area according to type
Each one has merits and demerits. The former two can
use heap area effectively at the sacrifice of execution
speed. They need too much time on addressing or type
checkings. (3) can make a better performance than
them, but it might cause inefficiencies in memory
management as follows:

« Division with improper proportion invokes the

garbage collector frequently.

« The area allocated for a certain kind of

unfixed-size objects such as vectors and strings,

restricts the maximum size of them.
It is difficult to estimate the proportion of the size of
the area for each lisp object in advance. And it is more
difficult to change the border dynamically according to
the circumstances.

The way we selected for UtiLisp32 is the
combination of (2) and (3). We first picked up the
fixnums, the symbols and the lists out of all UtiLisp
objects and attached importance to them. This is
because we know from our experiences that the
performance of Lisp evaluator depends on type
checkings especially for the lists (consp, atom etc)
and for the symbols (symbolp). As for other
objects, we allocated them with their object tags in
the same area.

In the following chapters, we denote the
interpreter, the compiler and the garbage collector of
UtiLisp32 in this order in comparison with those of
UtiLisp68, then discuss the portability and the

performance of them.

2. Interpreter

2-1 Memory Allocation

UtiLisp supports the lisp objects as in fig. 2.1.1. The
bignums are specific to UtiLisp32. Figure 2.1.2a
shows the initial state. UtiLisp32 has all the
predefined objects in its data aica, then it allocates a
fixed heap area and a heap area.

Then UtiLisp32 divides the heap area into three
parts. They are for the symbols, the lists and the
other objects respectively. The predefined objects will
be located on setting up into the proper areas (see fig.
2.1.2b). The fixed heap area is to contain compiled
codes. We will mention the compiler in the next

chapter.

2-2 Type Checks

UtiLisp does not make a box for small integer in the
heap area but codes it in a pointer. So UtiLisp32
must be able to distinguish the fixnums from the other
objects allocated in the heap. UtiLisp32 uses the

highest two bits of a pointer for this distinction.

Fig. 2.1.2a UtiLisp32 Initial Memory Map

Fixnums
__—E Bignums
Flonums

I~ References

Lists

|- Vectors
(~ Strings
|- Streams

|- Code Pieces

Symbols

Fig. 2.1.1 Lisp Objects

If the highest 2 bits are ‘11°, it is not a pointer
but fixnum. If they are ‘10°, it is an object tag for
‘others’. Otherwise, if they are ‘00’ or ‘01°, itis a
pointer into the heap area. Here we assume that the
heap will be allocated where the address is less than
0x80000000.

UtiLisp32 also reserves the lowest two bits for
marking of garbage collector. As UtiLisp allocates the
lisp objects on four bytes boundary, the lowest two
bits of the lisp pointers are always zeros. So, as for a
fixnum, the rest 28-bit field contains the number
itself.

We allocated ‘nil’ at the bottom of the symbol
area, adjacent to the others area. And one of registers
holds the address of it. So, to check if a pointer is a
symbol or not, it suffices to make an unsigned
comparison of the pointer with the register which
contains the value ‘nil’. Notice that the fixnums,
whose MSB’s are always on, are greater than ‘nil’ in

unsigned comparisons.

Interpreter

(Unused)

Fixed Heap Area
(For Compiled Codes)

HT (Register)

symcurrent
N (Register)

othercurrent

LT (Register)

heapbottom

Fig. 2.1.2b UtiLisp32 Run Time Memory Map

Another register points the top of the list area to
perform the type checks of the lists efficiently. In this
case, UtiLisp32 makes signed comparisons. This
time, the fixnums are less than the register because
they are always negative.

The objects in the ‘others’ area have 32-bit object
tags. The highest bits of the tags are always ‘10°.
UtiLisp32 takes advantage of this fact for the type
checkings. There is no object whose highest two bits
are ‘10°. So, if a pointer points the object whose first
cell shows this pattern, it must be ‘others’ object. If
a lisp pointer points in the others area without
appropriate object tag, then UtiLisp32 regards the

pointer as a reference to a vector element.

2-3 Argument Passing

On calling functions UtiLisp32 uses a stack to pass
the arguments to subroutines after the evaluation of
them. The layouts of stack frames are almost the
same as UtiLisp68. Each stack frame includes local
variables, return addresses, a code base, lambda
bindings and a dynamic link to the previous frame.
UtiLisp32 passes the last argument in a register to
lessen the loss of memory accesses. If the routine
takes no argument, the value of the register is

undefined.

2-4 Lambda Binding
UtiLisp68 has implemented the shallow binding by
storing a pair of the bound symbol and the old value

on stack using the binding tag, ‘0xBO’ (see fig.

stack stack
0xBO l Lambda Variable 10[Lambda Variable
Old Value Old Value
(a) UtiLisp68 (b) UtiLisp32

Fig. 2.4.1 Lambda Bindings

(4)

2.4.1a).
UtiLisp68 sweeps the stack area and finds the binding

On returning from the function call,

tag. Then it pops up the lambda variable and restores
the old value in the value cell of it. UtiLisp32 sets
the highest bit and resets the second highest to indicate
the binding structures (see fig. 2.4.1b). We can
identify these tags in comparison with value ‘0xCO’.
In this case, the highest bit clearance is also necessary
for the recovery of the old value in addition to the

UtiLisp68 process.

3. Compiler and Garbage Collector
3-1 Compiler
Differences of the compiler for the MC680x0 version
of UtiLisp32 from that of UtiLisp68 are mainly due to
those of the interpreters. Major changes are as
follows:
« Because UtiLisp32 passes the last argument in a
register, we changed the interface between the
compiler and the interpreter.
« In case of UtiLisp68, only one comparison of
the pointer tag is sufficient to perform the type
check. But in case of UtiLisp32, it was
necessary to generate codes for the type check in
accordance with the object type.
» It was also necessary to change the routine
which expands built-in functions for the fixnums,

’

such as ‘*>, ‘1-’ and ‘>=’, into inline codes,
because of the difference of the format of the
fixnums in UtiLisp32.

Except for these changes, almost all the routines of

the compiler for UtiLisp68 were available for the

MC680x0 verion of UtiLisp32 compiler.

We have also implemented the Vax-version
compiler. This time, it was necessary to make a code
generator (assembler) for Vax. As the assembler we
made is simple and straight, there is much room for

improvement.

3-2 Garbage Collector

We adopted the compaction-type garbage collection for
UtiLisp32 as well as UtiLisp68. UtiLisp32,
however, uses the heap division and the object tag
scheme against UtiLisp68 which uses only the pointer
tags for the type checks. Thus we added several
changes to the fundamental algorithm.

The garbage collectdr uses the lowest two bits of
the pointer for mark and stop bits. The marking phase
uses the preorder traversal method and it also uses the
reversed link technique to avoid using the stack. The
most difficulties in this phase is a process for the
reference objects (direct pointer to vector elements). It
is necessary to rewrite the object tag of the vector so
that we can know which element the reference points.
Then garbage collector sets stop bit in the tag area to
indicate that the present vector is marked by the
reference.

The compaction phase follows the marking one.
UtiLisp68 uses Morris’ algorithm[4]. UtiLisp32 uses
the same one for the compaction of the symbol and the
list areas. However, the direction for compaction of
the others area differs from those of these two areas.
So, we applied Knuth’s algorithm([3] for this area.
That is, . UtiLisp32’s garbage collector uses the two

algorithms properly according to the area to compact.

4. Portability
UtiLisp32 and UtiLisp68 are both written in LAP
(Lisp Assembly Program) form[5][7]. Macro ability
of LAP codes achieves high readability and efficient
source code control. When we make these UtiLisp
systems, first we use some lisp system and expand
these LAP codes in accordance with assembler syntax
of target machines. Then we assemble the expanded
codes using assemblers on the machines.

In case of transportation, we simulate this
process. There are two ways which fig. 4.1a and fig.

4.1b illustrate. We usually adopt the former one, that

(5)

@ ®
Host Machine Host Machine
o] o
I }
UtiLisp System Dowr: Load
Target Machinel

Assembly Codes Other Lisp System

-I‘

—I‘

T
Down Load ‘| Assembly Codes
Il
Target Machinel .
Assembler on Target Machine Assembler on Target Machine

Object Codes Object Codes

I
'\I*

(©

[Target Machine

LAP Codes

UtiLisp System

Assembly Codes

—I‘

Assembler on Target Machine

I‘

Object Codes

Fig. 4.1 Transportation Process of UtiLisp Systems

is, the way which expands the LAP codes on the host
machine using UtiLisp system, and downloads them
onto the target machine, then assemble them using
the assembler on the target. The latter is available
when download process takes much time. It performs
download of the LAP codes onto the target machine,
and proceeds the transportation using other lisp system
there. Anyway, when UtiLisp system itself on the
target machine can expand the LAP codes, the
transportation moves a new stage which fig. 4.1c
shows. This time, in case which fig. 4.1b shows, it
is necessary to make a LAP expander for UtiLisp

system.

We have implemented UtiLisp32 for Vax, whose
architecture resembles MC680x0, rewriting the source
codes for Sun Workstations. UtiLisp32 consists of
about 15000 lines of LAP codes. Except for the
changes of about 300 lines of the machine dependent
parts, following processes were necessary:

« We changed the LAP expander for MC68000

instructions to generate according Vax ones,

« And rewrote the memory accessing parts taking

account of the differences of endian-ness between

MC68000 and Vax.

+ We processed instructions, which MC680x0

supports but Vax does not, using macro ability

to substitute them by several instructions or
changing the source codes directly.
As a result, we finished implementation in fifteen
man-days.

Originally, LAP was made in order to expand a
large quantity of macros for assembler without macro
expander. But this is also useful for transportation of
the code between common CPU[5][6]. And this time,
we succeed in using LAP for transportation between

different CPU’s, MC680x0 and Vaxen.

5. Performance

5-1 Preliminaries

We measured timings of a typical benchmark test on
UtiLisp and other lisp systems.

The definition of ‘tarai’ is as follows:

(defun tarai (x y z)
(cond ((>x y) (tarai (tarai (1-x)y z)
(tarai (1- y) zX)
(tarai (1- 2) X y)))
(28

And we measured timings of (tarai 10 5 0). This test
calls “tarai’ 343073 times, ‘cond’ 343073 times, ‘>’
343073 times, and ‘1-’> 257304 times. Table 5.1.1

(6]

Table S.1.1 Timings of Tarai-5 on Lisp Implementations

(times are all in seconds)
(tarai 10 5 0)
System Machine
Interpreter Compiler
UtiLisp Hitac M682H 3.82 0.233
Vax-8600 23.8 2719
Sun 3/260 220 2.10
UtiLisp32 Sun3/52 53.0 4.70
Sun2/120 17 13.5
Sord M685 108 .
Sord M68S 104 11.4
UtiLisp68 NEC PC-9801 145 16.2
Apple Macintosh 214 —
Vax-8600 81.3 316t
Franz Lisp Sun3/52 262 86.17
Sun 2/160 499 1591
Symbolics 3640 Symbolics 3640 369 3.85
KCL Vax-8600 393 8.38%

t : No Type Check

shows the results of this benchmark test. Hyphens in
the table indicate omissions of measurement.
Numbers followed by daggers indicate the results

without type checkings.

5-2 Comparisons with UtiLisp68

Sord M685 supports both UtiLisp68 and UtiLisp32
systems. Comparison of two on the machine shows
that UtiLisp32 is inferior to UtiLisp68 by several
percents. Among the differences of UtiLisp32 from
UtiLisp68, the type checkings for the fixnums and the
symbols work advantageously to UtiLisp32.
Improvements on the argument passing method also
the

gains the execution performance. However,

others, that is, the type checkings for the other
objects, the processes for the lambda bindings, and
the operations of the fixnums, cause downfall of
performance. We think this is the reason of the

inferiority of UtiLisp32.

5-3 Comparisons with Other Lisp Systems

The design of UtiLisp intends high performances of
both interpreter and compiler. Some lisp systems
especially ones that use lexical binding scheme make
much of only the compilers. ‘In these systems, the
interpreters are only debuggers. So, it might be
meaningless to compare the performance of the
interpreters.

Compared in compiler, Utilisp32 is ahead of
Franz and KCL. One reason is that UtiLisp is fully
written in assembler language while others in C. Of
cource, each compiler generates good assembly codes,
but compiled codes sometimes call routine in
interpreter (kernel).

Besides, UtiLisp allocates the Lisp objects so
that the type checking would be done as soon as
possible. This design enabled the high performance of

Utilisp32.

6. Conclusions

In this implementation, we designed a new UtiLisp
system which fits in with much more computers with
a little loss of execution perfonnande. In addition, we

achieved high portability using the LAP.

Acknowledgments

We wish to thank Professor Eiiti Wada for his
guidance as the supervisor, and Research Assistant
Minoru Terada for his helpful advices. We also wish
to thank Dr. Michio Kimura and Mr. Hideya Iwasaki
for their insightful comments on an earlier draft of this
paper, and Mr. Toshinari Takahashi, Mr. Makoto
Ishii and Mr. Hitoshi Tominaga (Fujitsu), for making

a good job on implementation of UtiLisp32.

(7]

References

[1] Chikayama, Takashi: “Implementation of the
UtiLisp System”, IPS Japan,
Vol. 24, No. 5, pp. 599-604, 1983 (In Japanese).
[2] Chikayama, Takashi: UriLisp Manual, Technical
Reports METR 81-6, Department of Mathematical

Trans. IPS Japan,

Engineering and Instrumental Physics, Faculty of
Engineering, Univ. of Tokyo, Sept. 1981.

[3] Knuth, Donald E.: The Art of Computer
Programming, Vol. 1, Addison-Wesley, 1969.

[4] Morris, F. Lockwood: “A Time- and Space-
Efficient Garbage Compaction Algorithm”, CACM,
Vol. 21, No. 8, pp. 662-665, Aug. 1978.

[5] Terada, Minoru and Eiiti Wada: “Transportation of
Object Files between the Systéms with Common
CPU”, Preprints of WGSW Meeting, IPS Japan,
Vol. 87, No. 11, pp. 89-95, Feb. 1987 (In
Japanese).

[6] Yuasa, Kei and Keiichi Kaneko: “Transportation
of UtiLisp to Macintosh, the Days of Hardship”,
Proceedings of the 27th Programming Symposium,
IPS Japan, pp. 131-141, Jan. 1986 (In Japanese).

[7] Wada, Eiiti and Yutaka Tomioka: “Transportation
of UtiLisp to 680007, - Preprints of WGSYM
Meeting, IPS Japan, pp. 15-21, Oct. 1984 (In

Japanese).

