Tur3 0088 13-4
(1987-9-16)

R o N 2= = > 2 0D E A&

LacWAl x5 ~ ST iE A
VA Y o e g L~ i

7SIV ZE, BPINBE 2RI L L0 -TH, BREGHATCEMOLH3ERTH S, o h
B, ZAMCR 70 YSIVI/REORECH» 3, LT, BXONBL2 Y0 Y/SIYY0oBRICHE
AL, W BRLABVREL2ER T btk THBTILBTES,

AXTR, EF2 P LoTHLABZWIOYSIVI/RROER2EHELEVW, 2 OREA 2 BA
U, 2087, EZ6SRARL VB 7402w I B 70 YSIV/REHI-VISUALOBES®
RB,

HI-VISUALTCR, F—&27/0YSLBYDAT I P b2 PALa2YCEDL, F4«R7 LA
EcchonoPaY 2HA8 KB T3 LIt TC7OYIIVT R85, 7075 L0RTHERR
BES5LERRIN, 7O0V7SLMRRAVEI VT4 T EDONDS, BB, COAVESY Y a viligc
MAT, RKEBE 7S alRCHE T I LDO My FH¥ I P70 —F2XB T3 MELAEXhT
w3,

Visual Programming - Toward Realization of
User-Friendly Programming Environments

Tadao Ichikawa and Masahito Hirakawa

Information Systems, Faculty of Engineering, Hiroshima University
Shitami, Saijo-cho, Higashi-Hiroshima 724 Japan

Programming is generally considered to be a complicated and time-consuming task even
for professionals. This comes mostly from the unfriendliness of the programming environment.
One of the possible ways to overcome this problem is by the utilization of visual information in
programming.

In this paper, we first observe some trials toward realization of user-friendly
programming, and then give an outline of an iconic programming environment, HI-VISUAL,
which the authors are now developing.

In HI-VISUAL, objects dealt with by the system, such as data and programs are
represented in terms of icons. Programming is carried out simply by arranging icons on the
display. The system displays intermediate results of execution in the course of program
development so that the user can proceed program development interactively. In addition to this
interaction facility for programming, program development based on the top-down approach is
also provided for programming in the large. Details of the program modules can be left
unspecified until they become clear in the lower level of module hierarchy.

1. Introduction

Programming is generally considered to be a
complicated and time-consuming task even for
professionals. This calls for an improvement of
programming languages, and a number of
programming language features valuable for the
efficient production of reliable programs have
already been identified through tremendous
efforts directed toward to program development
[1]. These features include data abstraction,
modularization, concurrent programming,
user-defined data type and type checking, and
exception handling. Furthermore, recent studies
on high level programming languages have
contributed to the development of sophisticated
languages based on new programming paradigms
such as functional programming, logic
programming, and object-oriented programming.

In addition to the improvement of program
languages, the most important is the development
of programming environments with many useful
tools for programming such as syntax-directed
editors and debuggers [2]. This has contributed to
an increase in software productivity, a reduction
of software costs, and also to the enhancement of
program reliability.

The recent dramatic progress of computer
applications thus attained, in turn, calls for
user-friendly interfaces to enable people who are
not familiar with computers to make programs.
One of the possible ways for attaining this is the
utilization of visual information in programming
[3]-[5]. For example, a program itself and/or
execution behavior of programs could well be
visualized on the display.

In this paper, we first observe some trials
toward realization of user-friendly programming,
and then give the outline of an iconic
programming environment, HI-VISUAL, which
the authors are now developing [6]-[8].

HI-VISUAL which stands for
HiIroshima-VISUAL was first proposed as a
language supporting visual interaction in
programming [6]. Next, we presented design and
implementational issues of HI-VISUAL with the
objective of achieving interactive iconic
programming [7]. Furthermore, we extended
HI-VISUAL as a programming environment by
providing several useful facilities for iconic
programming [8].

In HI-VISUAL, objects which the system
deals with such as data and program are
represented in terms of icons. Programming is
carried out simply by arranging icons on the
two-dimensional display screen and specifying
flow of data in the following way: The user selects

an icon from the icon menu, and locates it at an
appropriate place in the screen. When the icon
becomes executable, the system activates it to
execute the associated function immediately and
returns the resultant data to the user.
Programming proceeds by referring to the
resultant data and connecting another icon to it.

In addition to the interaction facility for
programming described above, program
development based on the top-down approach is
also supported in HI-VISUAL for programming in
the large. Details of the program modules can be
left unspecified until they become clear in the
lower level of module hierarchy.

The interactions between the user and the
system will be explained by showing several
computer displayed pictures for ease of
understanding. Following these examples are
some remarks toward the development of
generalized iconic programming system to be
applied to a variety of computer applications.

2. User-Friendliness

Of the many trials being carried out at
present for the development of user-friendly
programming, those which utilize visual
information look especially promising [3]-[5]. The
user makes a program through visual interaction
with the system. This kind of interaction scheme
can be broadly termed a ‘visual language.’

In visual languages, information to be
visualized is either (i) an object such as data, file,
and program, (ii) an algorithm of the program, or
(iii) a data structure. Figure 1 shows the
classification of visual languages. The categories
(i), (ii), and (iii) described above are used again in
the figure for identification.

The most remarkable feature of the systems
categorized in (i) is the visualization of objects by
means of icons [9]. In these systems, the user
specifies the job by 'see and pointing' of icons on
the display screen.

In the systems categorized in (ii), the user
makes a program using flow charts,
Nassi-Shneiderman (NS) charts, Problem Analysis
Diagrams (PAD), data flow graphs, state transition
diagrams, etc. The graphic representation of
programs is translated into an internal
representation recognizable by a conventional
computing system. SDL/PAD [10] and the state
transition diagram language [11] are examples of
languages which support program development.
Another example is OPAL [12] which was
designed to specify procedural knowledge for an
expert system.

(2)

The systems categorized in (iii) visualize data
structures by means of forms or graphics. QBE
[13] and form languages {14], [15] are examples.
The user specifies the job by filling in spaces on a
form with conditions. Another example is a
browser for the manipulation of
knowledge-base/database [16]. The
knowledge-base/database is manipulated
graphically along the link indicating a particular
relationship between data items. Incense [17] and
VIPS [18] are also examples of this category,
which have been designed to make debugging
easier with the help of graphical representation of
data structures on the display.

There are also systems which work with
combinations of categories (i), (ii) and (iii).

Examples of systems combining categories
(i) and (ii) are Pict [19] and Tinkertoy [20] which
are applied in a general programming
environment, construction game kits (pinball
games, for example), IBS [21] for manipulating
relational database by means of an icon-based
command language, and PegaSys [22] for
supporting program design.

ISIS-V [23] is an example of a system which
combines categories (i) and (iii) in a database
environment.

(i) Visualization of
Object

Construction
Game Kits

Tinkertoy
HI-VISUAL

Pict
PegaSys

ISIS-V

State Transition

QBE

Diagram
Form Languages PV Prototype & Language
ThinkPad PECAN SDL/PAD
Browsers

OPAL

Incense VISE

VIPS

(ii) Visualization of
Algorithm

(iii) Visualization of
Data Structure

Fig.1 Classification of visual languages

ThinkPad [24] combines categories (ii) and (iii),
and allows the user to specify a program by
demonstration. Other examples are PECAN [25],
VISE [26], and PV Prototype [27], which were
designed to ease debugging and program
understanding, in which visual information is
applied so that the user can realize the
appropriateness of program behaviors visually.
This is referred to as 'program visualization [4].

In contrast to this, the way of utilizing visual
information to specify a program in
two-dimensional space is referred to as 'visual
programming [4]." HI-VISUAL [6]-[8] is a visual
programming environment and combines
categories (i), (ii), and (iii). In HI-VISUAL,
object, algorithm, and data structure are visualized
by means of the icon, data flow graph, and spatial
placement of icons, respectively.

3. Icons

3.1 Icon Definition

Most people would probably interpret the
technical term ‘icon' to mean simply a small
picture or image on a display which is used to assist
communication between the user and the system.
The people who develop iconic systems, however,
see it as a concept including both an object
consisting of an icon image displayed on the screen
and the functional description associated with it
such as a program code and a data value.

Korfhage and Korfhage [28] discussed
characteristics of icons and some related concepts
exploring the possibility of developing iconic
interface systems. They classified icons into two
types as follows: One is an 'object icon'
representing an entity, and the other an 'action
icon' representing a specific action. In addition,
they also have presented concepts for construction
of structured agglomerations of icons.

Chang [29] proposed a generalized icon
which can take either object icon or action icon
(called 'process icon' in his paper). The distinction
between an object icon and an action icon depends
on the application context and its interpretation.

Furthermore, an extended interpretation of
the icon is presented in [30], where an icon can be
associated with a particular feature shared by
objects of different shape. For example, in an
engineering drawing application, a group of
parallel lines denoting a section of an object is
considered to be an icon. Here the icon form
varies depending on the shape of the objects.

(3]

3.2 Icon Semantics

Concerning icon semantics, we will restrict
our discussion specifically to those of HI-VISUAL.
The objects the system deals with are recognized as
icons. An icon has both an intemal part and an
- external part [8]. The internal part gives the
meaning of an object, and has three attibutes:
substance, concept, and type. The external part
specifies the visual representation of an object, and
has three attributes: image, label, and shape.

Substance represents the functional
description or value of an object. Concept gives
the conceptual name of an icon, and is provided for
semantic-based management of icons. The system
allows the user to make a program easier by
showing icons which can be used at each step of
programming. Type represents the type of an
icon. There are seven types, as shown in Fig. 2.

(i) DATA represents data such as characters,
numbers, and image.

(ii) DATA CLASS represents the class of data.
It is similar to the class in the object-oriented
concept, and manages not only a data type but also
functions applicable to data items which belong to
the data type. Data classes are managed
hierarchically according to their semantics, and
then functions are inherited along the data class
hierarchy.

(iii) PANEL represents a display space for the
management of a set of icons. It is similar to the
directory of conventional file systems. A window
and a menu are regarded as the panel icon.

(iv) PROGRAM represents a program which is
constructed by the user as a combination of
existing icons. Unlike PANEL, icons which
construct the program must be connected to each
other. ;

(v) PRIMITIVE represents a basic program
which is prepared by the system designer as a
built-in function. Both program icons and

Y s
CANERAGU
(a) DATA (b) DATA CLASS (c) PANEL
AA ‘R\ O
[EDGE DETECT] IN
(d) PROGRAM (¢) PRIMITIVE (f) CONTROL
2 BVETY
e
QUIT
(2) COMMAND

Fig.2 Icon type

(4]

primitive icons will hereafter be referred to as
function icons. v

(vi) CONTROL represents the control of a
flow of data, such as loop and switch.

(vii) COMMAND represents a command for
system operations, such as run, undo, and exit.

Concerning the descriptions of the external
part, image represents the icon image which
symbolizes an object. Label represents the name
of an icon. Shape represents the shape of the frame
of an icon. Seven different shapes are defined
depending on the icon type, which are also
illustrated in Fig. 2.

4. HI-VISUAL

In HI-VISUAL, object, algorithm, and data
structure are visualized by means of an icon, a data
flow graph, and a spatial placement of icons,
respectively.

4.1 Icon Programs

A HI-VISUAL icon program takes the form
of a sequence of combinations of a *function icon'
and a 'data (or data class) icon." Each data icon
represents the result of execution by a function
icon. Function icons are allowed to have only one
input and one output. An input/output data (or
data class) may have a record structure as shown in
Fig. 3.

June 25,
1958

@17
123-4567

ADDRESS

Fig.3 An example of record-type data

Figure 4 shows an example of the icon
program, which is an image processing routine for
the detection of cracks in an input image. The
function specified by this program is as follows:
First, the image which is taken from the TV
camera is binarized by the application of
BINARIZE icon. The binarized image is applied
to both CRACK DETECT and EDGE DETECT
icons. The resultant images are combined into a
single icon, which is applied to SYNTHESIZE icon
which performs logical OR. SYNTH. OUT is the
final result obtained on completion of the program
execution. :

HI-VISUAL also provides two types of
control icons: a 'loop icon' for specifying the
iteration of procedures and a 'switch icon' for
specifying the change of the flow of data. Loop
icons are classified again into a 'counter loop' and
a 'conditional loop.'

In the counter loop, the number of iterations
is specified by using a data icon. Figure 5 shows an
example of the counter loop in which a value of the
Sth power of 2 is calculated. The process specified
in the square is repeated until the number of
iterations reaches the iteration condition. Two
input data (initially, both set to 2) are multiplied
with each other. The intermediate result and the
data which is passed from an input are brought
back to the inputs. When this process was repeated
4 times, the program outputs the final result (value
of 32).

COUNT

['TvCaMERA

...... - 1 .'I-IIII\

|] 1 L]
@ [T x [T o o
.\ I. 1‘1 1 '\ l' E
— [Cnfeger] o] [onfecer] W
............ "
.I \. : .I \. M

O b

1] |] |] L]

. L4 N rd

e __integer | __Integer |

Fig.5 Anexample of counter loop icon

pa
[el e e [Ao{A]
CRACK Di fmi EDGE DETECT
: .‘I--I-I..l-\. {.-...-----\.
n - e .
123 HH KK
i HH =M
|_cp.our | [EDGING OUT |
TMAGES
r& \Xj 438
=5 wrrr| IL@O |
SYNTH., OUT [SYNTHESEZE |
Fig.4 Anexample of icon program

Figure 6 shows an example program for
neutralizing a sample liquid, in which a conditional
loop icon and a switch icon are used. The
condition parts of these control icons are specified
by other icons as shown in the figure. If the
comparison condition in the switch icon is true (the
sample is alkaline), input data to the switch icon is
transferred to the icons connected to the v-side of
a switch, and acid is added to the sample.
Otherwise (the sample is acid), input data is
transferred to the icons connected to the x-side of a
switch, and alikaline is added to the sample. The
conditional loop activates the process repeatedly
untill the sample becomes neutral.

In iconic programming systems, since an icon
program is specified by the arrangement of
existing icons, the applicability of the system
basically depends on the set of primitive icons
provided. If the primitive icons for image
processing are available, the programs for other
image processing applications can be developed by
the system. If the primitive icons for office
information processing are available, the
programs for execution of higher level office

Condition Part of LOOP Icon
- Lo0P)
H i23 g epeat-unti make ke
™ —
eutral a
4444

Repeat until sample becomes ncutral :
o Sample Liq.

&

Switch

Condition Part of SWITCH Icon
- =-=1 > =]
Sample Lig. PH Neutral Add _scid
<3
1 TYIITINY] [~]
Connect [Reacied Tiq
=l
CHECK
=
OUT

Fig.6 Anexample of condition loop icon and

switch icon

procedures can by developed by the system. In
HI-VISUAL, a tool for defining primitive icons is
provided [7] enabling the system be applied to
various application environments.

4.2 Iconic Programming

HI-VISUAL provides an interactive,
icon-based programming facility. - In the
following, we explain how the programming is
carried out in HI-VISUAL.

First, the user selects an icon from the menu
of icons by using a pointing device such as a
mouse, and locates it at a proper place on the
screen. If the icon is a function icon, the output
from the icon is presented to the user. At this time,
when the icon is executable, the system activates it
immediately to execute the associated function and
displays the miniaturized representation of the
resultant data. On the other hand, if the function
icon is not executable, the system displays a data
class of the resultant data. Here, the term
‘executable’ means the occurrence of either 1) no
input data of the icon is needed or 2) all input data
has already been provided.

Next the user selects and places another icon
on the screen, and specifies connections between
icons to form the necessary flow of data. The
system executes the icon and displays the resultant
data on the screen in way described above.

The procedures described above are repeated
until the program development is completed. The
user can make a program by confirming the
program behavior interactively at every step of
program development. If the result does not meet
the user's requirements, the user can replace the
icons previously specified with others.

4.3 Bottom-Up and Top-Down Development
* The system supports both the bottom-up and
top-down approaches for program development.
Suppose the user has created a program by
arranging existing icons as we described in the
previous section. In the bottom-up approach, the
program is defined as a new (program) icon at a
higher level of program abstraction, and it is used
to create a new program. This approach is
effective especially when the system is applied to
an environment where tasks are not well defined in
advance of the program development. However,
since interpretation and execution of icons are
carried out repeatedly during the process of
program development, the execution speed
decreases. These problems seem to be serious
when the size of a program is fairly large.
Capability of program development based on
the top-down approach is provided as a

(63

countermeasure to it. Details of the program
modules can be left unspecified until they become
clear in the lower level of module hierarchy.
Figure 7 shows an example of top-down program
development.

The user first makes an upper level program
by defining input/output parameters (data classes)
of program icons in a lower level and specifying
connections between them. Small windows appear
besides the program icons for the specification of
program modules. Next, when the user clicks a
program icon, a new window appears in which
details of the program in a lower level are
specified. Here input and output data classes are
presented to the user so that the consistency is kept
on data classes of upper and lower level programs.

4.4 Navigation Facilities

To ease program development, a navigation
facility for iconic programming is provided in the
system. The system displays a list of all candidate’
icons which can be used at each step of program
development. This navigation facility also helps
to prevent the user from making illegal
specification of a program.

NAME: Program?

Input: NULL

Output: DATA1

Function: This program is ...

NAME: Program2

Input: DATA1

Output: DATA2

Function: This programis ...

Fig. 7 An example of top-down programming

subclass

data
type

class
method

instance
* method

&
output
data class

" Fig. 8

Icon-based browser

Figure 8 shows a display of an icon-based
browser [8] which has been provided in the system
for programming navigation. The user selects a
particular data icon or data class icon, and invokes
the browser. The selected icon itself is displayed
in the self class.field. The instance method &
output data class field shows function icons which
can be connected to the selected icon. Function
icons requiring no input data are displayed in the
class method field. Superclass and subclasses of
the data class are displayed in the superclass field
and subclass field respectively. Class value of the
data class is displayed in the class value field.

The user selects an icon displayed in the
browser, and continues the programming. If the
expected icon is not found, the user selects a
superclass icon in the superclass field and then
browses through the class hierarchy until he gets
the expected function icon.

In addition to this navigation facility for
programming, the system also provides another
navigation facility for system operation which
works in cooperation with a knowledge-base
system. It helps the user know (i) the system's
response expected against the user's action, such as
pressing the mouse button and moving the cursor,
and (ii) the system commands which can be used at
a current cursor position. The user is actually
informed of both (i) and (ii) by the system.

5. Concluding Remarks

In this paper, we first observed trials for
attaining a user-friendly programming
environment through the utilization of visual
information, and then gave the outline of an iconic
programming environment, HI-VISUAL, now
being developed by the authors.

In HI-VISUAL, icons represent objects dealt
with by the system such as data and programs.

(73

Programming is carried out simply by arranging
and connecting icons on the display. Data is passed
between icons along the connection.

Icons provide an effective means of
improving interaction between the user and the
computer from the viewpoints of both universality
and efficiency. Icons are easily understood by
people regardless of the language they speak.
They are sometimes ambiguous, however,
depending on the social/technical background of
the user.

One successful approach for overcoming this
disadvantage is to limit the domain of applying
iconic systems so that the users can share a
common background. In HI-VISUAL, a tool for
defining primitive icons is provided. The system
designer can define primitive icons for a specific
application. This tool enables the system to be
applied to various environments such as office
information processing, image processing,
simulation, and CAI. Furthermore, a
knowledge-base system should be investigated as
the next step of our research, so that flexible
interpretation of icons can be made feasible
depending on the environment .

For future works toward realization of
generalized iconic programming environment, we
should aim at development of a useful environment
not only for casual users but also for professional
programmers. The environment should provide
sophisticated tools for programming in the large,
facilities for visualizing the dynamic behavior of a
program through animation, and multiple views of
a program for ease of program development/
debugging. Furthermore, we need to investigate a
compilation scheme of icon programs to make the
system work in an actual environment by speeding
up the execution of programs.

In conclusion, HI-VISUAL is expected to
serve programming in various fields of application
supporting simple and efficient interactions
between the user and the computer. '

REFERENCES

[11 J. W. Hunt, "Programming Languages,” IEEE
Computer, Vol. 15, No. 4, pp. 70-88, Apr. 1982.

[2] E. Fedchak, "An Introduction to Software Enginnering
Environments," Proc., IEEE COMPSAC'86, pp.
456-463, 1986.

3] S. K. Chang, T. Ichikawa, and P. A. Ligomenides
(eds.), Visual Languages, Plenum Press, New York,

1986.

[4] B. A. Myers, "Visual Programming, Programming by
Example, and Program Visualization: A Taxonomy,"
Proc., CHI'86, pp. 59-66, 1986.

[51 S.L. "Tanimoto and E. P. Glinert, "Designing Iconic
Programming Systems: Representation and
Learnability," Proc., IEEE Workshop on Visual

Languages, pp. 54-60, 1986.
[6] N. Monden, Y. Yoshino, M. Hirakawa, M. Tanaka,
~and T. Ichlkawa, "HI-VISUAL: A Language
Supporting Visual Interaction in Programming,”
Proc., IEEE Workshop on Visual Languages, pp.
199-205, 1984.

[7] 1. Yoshimoto, N. Monden, M. Hirakawa, M. Tanaka,
and T. Ichikawa, "Interactive Iconic Programming
Facility in HI-VISUAL," Proc., IEEE Workshop on
Visual Languages, pp. 34-41 1986.-

[8] M. Hirakawa, S. Iwata,I Yoshlmoto, M. Tanaka,
and T. Ichikawa, "An Environment for HI-VISUAL
Iconic Programming, " Proc., IEEE Workshop on

" Visual Languages, 1987 (to appear). -

[91 K. N. Lodding, "Iconic Interfacing,” IEEE Computer
Graphics and Applications, Vol. 3, No. 2, pp. 11-20,
Mar./Apr, 1983,

[10] H. Maezawa, M. Kobayashi, K. Saito, and Y.
Futamura, "Interactive System for Structured Program
Production, Proc., Conf. on Software Engineering,
pp. 162-171, 1984,

[11] R. J. K. Jacob, "A State Transition Diagram Language
for Visual Programming,” IEEE Computer, Vol. 18,

~ No. 8, pp. 51-59, Aug. 1985.

[12] M. A. Musen, L. M. Fagan, and E. H. Shortliffe,
"Graphical Specification of Procedural Knowledge for
An Expert System,” Proc. IEEE Workshop on Visual
Languages, pp. 167-178, 1986.

[13] M. M. Zloof, "QBE/OBE A Language for Office and
Business Automation,” IEEE Computer, Vol. 14, No.
5, pp.13-22, May 1981.

[14] N. C. Shu, "FORMAL: A Forms-Oriented Visual
Directed Application Development System," IEEE
Computer, Vol. 18, No. 8, pp. 38-49, Aug. 1985.

{15] S. B. Yao, A. R. Hevner, Z. Shi, and D. Luo,
"FORMANAGER: An Office Forms Management
System," ACM Trans. on Office Information Systems,
Vol. 2, No. 3, pp. 235-262, July 1984,

[16] M. Caplinger, "Graphical Database Browsing," Proc.,
ACM SIGOIS Conf. on Office Information Systems,

p. 113-121, 1986.

[17] B. A. Myers, "Incense: A System for Displayin, Data
Structures," Proc., ACM SIGGRAPH'83 (,y
115-125, 1983.

[18] S. Isoda, T. Shimomura, and Y. Ono, "VIPS: A
Visual Debugger," IEEE Software, Vol. 4, No. 3, pp.
8-19, May 1987.

[19] E.P. Ghnert and S. L. Tanimoto, "Pict: An Interactive
Graphical Programming Environment," IEEE
Computer, Vol. 17, No. 11, pp. 7-25, Nov. '1984.

[20] M. Edel, "The T1nkertoy Graph1cal Programming
Environment,” Proc., IEEE COMPSAC'86, pp.

. 466-471, 1986.

[21] C. Frasson and M. Er-radi, "Principles of An
Icons-Based Command Language," Proc., ACM
SIGMOD Conf., pp. 144-152, 1986.

[22] M. Moriconi and D. F. Hare, "The PegaSys System.
Pictures as Formal Documentation of Large
Programs,” ACM Trans. on Programming Languages
and Systems, Vol. 8, No. 4, pp. 524-546, Oct. 1986.

[23] J. W. Davison and S. B. Zdomk "A Visual Interface
for A Database with Version Management," ACM
Trans. on Office Information Systems, Vol. 4, No. 3,

PP. 226-256, July 1986.

[24] R. V. Rubin, E. J. Golin, and S. P. Reiss,
"ThinkPad: A Graphical System for Programming by
Demonstration,” IEEE Software, Vol. 2, No. 2, pp.
73-79, Mar. 1985.

[25] S. P. Reiss, "PECAN: Program Development Systems
that Support Multiple Views," IEEE Trans. on

(83

Software Engineering, Vol. SE-11, No. 3, PpP.
276-285, Mar. 1985.

[26] A. K. Arora, D. K. Chan, J. C. Ferrans, and R.
Gordon, "An Overview of The VISE Visual Software
Development Environment," Proc., IEEE
COMPSAC'85, pp. 464-471, 1985.

[27] G. P. Brown, R. T. Carling, C. F. Herot, D. A.
Kramlich, and P. Souza, "Program Visualization:
Graphical Support for Software Development," IEEE
Computer, Vol. 18, No. 8, pp. 27-35, Aug. 1985.

[28] R. R. Korfhage and M. A. Korfhage, "Criteria for
Iconic Languages,” in Visual Languages, S. K.
Chang, T. Ichikawa, and P. A. Ligomeniddes (eds.),
pp. 207-231, Plenum Press, New York, 1986.

[29] S. K. Chang, "Visual Languages: A Tutorial and
Survey,” IEEE Software, Vol. 4, No. 1, pp. 29-39,
Jan. 1987.

[30] M. Beretta, P. Mussio, and M. Protti, "Icons:
Interpretation and Use,"” Proc., IEEE Workshop on
Visual Languages, pp. 149-158, 1986.

(9]

