V7MY = 7EBH 22—1
(1987 10 1)

NG FY A T = 7 B R 0D EE % & E oD LA
%811 8
RRIEAZREEREEBEN

B/ ERMO Ay —VEIERT VRS LI > > 8 E @ ERET>
ATV I FREHUT. WSOpOERBMES 23, ChsERBANOEY
. 4KV - ¥ 4775 L2BOTEREN S, 2CT ARV 547
FouE. ATV PRTREVAANY P EZABANY } MOERHE
OWRNTH 32, EHRBWOEYHD. TOARY P Y4 T7TSMCEITOTHEY
xh 3,

AT, BHATV 7) ROERBHOBAME LT, —HBERADS3
EWARPEWORRAEE Y <,

RADEBBEY. TLUTENAT YL OBAEAMEIT>DDTH 3,

Program Transformation and Its Applications

in an Object-Based Parallel Computing Model

Etsuya SHIBAYAMA
Department of Information Science,
Tokyo Institute of Technology,
Oh-Okayama, Meguro-ku, Tokyo, Japan, 152

Several transformation rules are presented which are applicable to systems of concurrent ob-
jects, i.e., those which are constituted of computational agents with capability of concurrent
execution and message passing. The correctness of these transformation rules are defined and
also proven based on event diagrams, each of which is a pair of events and the causality rela-
tion on them. We also present an application example of the rules: inducing an implementation
scheme of a binary search tree from another implementation scheme. Our approach is mainly
based on fusing and splitting concurrent objects,

1 Introduction

- Current computer technology offers network connected com-
puting systems consisting of tens to hundreds of processing
units in a comparatively easy and reasonably cheap way.
These forms of systems are widely used at laboratories, facto-
ties, offices, and so on. The rapid progress of them seems to
promise well for the future. However, widely and advanced
use of distributed systems requires more and more distributed
software, whose design and development are not easy under
the today’s software technology.

An object oriented concurrent programming paradigm is
expected to offer 2 methodology which supports design and
development of correct, efficient, and large distributed soft-
ware. A computation model based on this paradigm consists
of computational agents called objects, which have a capa-
bility of concurrent execution and transmission/reception of
messages. Nothing except the objects are active and nothing
except the messages can be used as communication and/or
synchronization facilities. This kind of models are well suited
for modelling distributed systems.

From a theoretical point of view, transformation (or an
algebraic treatment) of concurrent object systems is more
difficult than that of functional and logic programming lan-
guages. The behavior of an object depends not only on the
recently received message but also on its internal state which
may be varied during execution. This js not the situation of
functional and logic programming languages.

If transformation techniques are available for concurrent
object systems, they will be great help for optimization, ver-
ification, and development of distributed programs. This pa-
per describes a first step towards a transformation system for
a concurrent object oriented language.

2 The Computation Model

In the object oriented computing model assumed in this paper
is similar to the one which is proposed in [Yonezawa et al. 86]
and [Yonezawa and Shibayama 87). In the model, each ob-
ject has its own computing power and can perform its work
concurrently with the other objects. The computation model
includes neither shared memory nor global clock. Objects
constitute a sparsely connected system.

An object has its own internal world, which consists of a
local persistent memory and procedures inquiring/updating
the local memory. They are called state and script, respec-
tively. We assume that an object has its own local clock. The
internal world of an object cannot be accessed directly from
the other objects.

Objects interact with one another via message passing.
In response to a message, an object executes one of the pro-
cedures in its script. Execution of a procedure by an object
consists of a sequence of actions:

® inquiring and updating the state of the object,
o creating new objects,
o sending messages and receiving replys, and

o returning a value as a reply to a received message.

Messages arriving at an object will be processed one at a
time in a sequential manner. More precisely, while an object
executes a procedure, messages cannot arrive at the object.

There are two types of message passing, asynchronous and
synchronous. Just after sending an asynchronous message,
an object can continue its computation. Concurrently, if the
receiver is not busy at that time, it accepts and processes
the message. The sender object of an asynchronous message
expect no reply. In contrast, with synchronous message pass-
ing, the sender object cannot resume its computation until
the reply to this message arrives.

Objects have two kinds of ports, message ports and reply
ports. Each object has exactly one message port. Each mes-
sage sent to the object will arrive at this port. An object may
create a reply port dynamically. The reply to a synchronous
message will arrive at a reply port and the arrival of the reply
triggers the resumption of the object.

Each synchronous message implicitly contains the infor-
mation about the place to which its reply should be returned
back. We call this information as reply destination. On syn-
chronous message transmission, an object first creates a reply
port and then sends a message with specifying the port as
the reply destination. The receiver object of a synchronous
message can forward the reply destination to another object,
which is, in this case, responsible to returning back a reply.
In our computation model, a reply is just a asynchronous
message to a reply destination.

Messages satisfy the transmission ordering law: Suppose
that two messages M and M’ are transmitted by the same
sender object in this order according to the local clock of this
object. If M and M’ have the same arrival port, they arrive
in the same order according to the local clock of the receiver.
In general, if M and M’ are sent from the different objects
and received by the same one, their arrival order cannot be
determined.

3 The Description Language’

We will describe the state and seript of an objet according to
the syntax of our object-based concurrent language ABCL/1
[Yonezawa et al. 86, [Shibayama and Yonezawa 86]. In the
language, objects are defined in the following form:

fobject <objsct-name>
(state [<state-variabler :=
(seript
(=> <message~pattern> ® <reply-destination>

<initial-value>] ...)

<behavior-description> ...)

.

The <state-variables>s of an object are the variables
which represent the internal state of the object. An object
defined in the above form accepts a message matching some
<message-pattern>. At that time, the reply destination
of the message {if it exists) is bound to the corresponding
<reply-destination> which is a temporary variable. After
accepting a message, the object will take a sequence of ac-
tions described in the <behavior-description>s folloinwg
the <reply-destination>. The state variable declaration
part and <reply-destination> are optional.

In the <behavior-description>s, message passing and
returning a reply are described in the following forms.

(2)

[<object>
[<object>
[<object>

<== <message>]
<= <message>]

synchronous message passing
asynchronous message passing
<= <message> @ <reply-destination>]
asynchronous message passing with reply destination
t<reply> returning a reply

Sequential computation within an object is described us-
ing lisp-like forms.

4 Correctness of Transformation Rules

In order to discuss transformation of object systems, we have
to define the correctness of transformation rules. For this
purpose, we firstly define events and event diagrams.

Definition 4.1 An event is one of the following.

e transmission of a message

o acceptance of a message

For a set of events E, we define objg and timeg as fol-
lows:

e If e € E is the transmission of a message, objr(e) is
the object which transmits the message.

o If e € F is the acceptance of a message, objg(e) is the
object which accepts the message.

o timeg(e) is the objr(e)’s local time when e occurs.

Definition 4.2 A computation is a tuple {E,objg,timeg)
where E is a set of events each of whose acceptance events
has the corresponding transmission event in E.

Definition 4.3 Let C = (E, objg,timeg) be a computation.
The causality relation et of C is the transitive closure of the
union of the following relations Y and ™S

o eHe if and only if objg(e) = objr(e’) and timeg(e) <
timeg(e')

o e ™S’ ¢ if and only if e is the transmission event of
a message and €' is the acceptance event of the same
message

Definition 4.4 Let C = (E, objg, timeg) be a computation.
An event diagram corresponding to C is a pair (E,g)

If C is a realizable computation, the event diagram corre-

sponding to C must be a directed acyclic graph. We consider
a computation of an object system is represented as the corre-
sponding event diagram. The semantics of an object system
is defined as the set of the possible event diagrams.
" Figure 1 is a pictorial representation of an event diagram.
In this figure, each vertical line represents temporal axis of
an object A or B. and each sloping arrow represents message
passing. The small circles are the events on A and B. The
object A accepts a message and transmits two messages to
B, whereas the object B accepts two messages from A and
transmits two messages. The event diagram represented by
this figure is the transitive closure of this graph.

Figure 1: An example of a pictorial representation of an event
diagram

Definition 4.5 -An event diagram (Ey, &) subsumes an event
diagram (Eg,‘—qg) if there exists a one-to-one mapping f €
Ey — E, which satisfies the following conditions.

1. if e € Ey is the transmission (or acceptance) event of a
message, f(e) is also the transmission (or acceptance,
respectively) event of the same message.

2. For e € Ey, objg,(e) = objg,(f(e)).
3.¢%¢ iff(e)g? f(e).

Two event diagrams are isomorphic if and only if they sub-
sume each other.

Intuitively speaking, if an event diagram El,% subsumes

another event diagram E, -(:"3, the degree of nondeterminism
of Cy is higher than or equal to that of Cs.

Next, we will define a restriction on an event diagram.
This is 2 similar concept of the restriction of CCS [Milner 80},
{Milner 85). However, because of the asynchronous nature of
our model, the definition is different.

Definition 4.8 Let C = (E,0bjg,timeg) be a computation
and S be a subset of 0bjp(E).

def

(E, g)‘s {E',=>") where
E' = {e € El|objg(e) ¢ S},
e1 =’ e, if and only if e S ¢; and e3¢5 € E'

(E,=>)|s is the restriction of (£, =>) on 0bj(E)p—S. The
correctness of a transformation is defined in terms of event
diagrams.

Definition 4.7 Let S be a set of objects. Suppose that a
subset Sy of S is transformed into S,.

o This iransformation is correct as implementation if, for

'
each event diagram (E’,%) corresponding to ‘a compu-
tation posterior io the transformation, there exists an
event diagram (E,g) corresponding to a computation
prior to the transformation such that (E,:C&)]s, sub-
'

sumes (E', g>)|5:,.
This transformation is correct if it is correct as imple-
mentation and the transformation in the reverse direc-
tion is also correct as implementation.

(3)

By an application of a transformation rule which is cor-
rect as implementation, the degree of nondeterminism of an
object system may be reduced. Therefore, in verification,
we must carefully examine whether transformation rules are
correct or only correct as implementation. In implementa-
tion, however, transformation rules which are not correct but
correct as implementation are sometimes useful. Note that,
every correct transformation rule is reversible. That is, the
transformation in the opposite direction is also correct.

5 Fusing/Splitting Objects

In this section, we show some transformation rules and prove
their correctness. These transformation rules fuse objects
into one or split an object into many.

Rule 5.1 is an example of a correct transformation rule,
which merges two objects into one.

Rule 5.1 Precondition: Two objects A and B satisfy the fol-
lowing conditions.

1. All the messages that arrive at the message pori
of B are transmitted by A.

2. All the messages transmitted by A arrive al the
message port of B.

8. For each synchronous message transmission from
4, B always returns back a reply.

Transformation: Fusing A and B into the object, say A+B,
such that:

1. The state of A+B is the disjoint union of those of
A and B. In the case that B is bound to some state
variable of A, which is used as the destination of
message passing to B, the state variable will be re-
moved from the state of A+B.

2. The message patterns of A+B is same as those of
A.

3. The behavior of A+B is obtained from A’s behavior
by substituting each message transmission by B’s
corresponding behavior.

An application example of Rule 5.1 is illustrated in Fig-
ure 2. Two objects generator and filter are fused into a
single object generator+filter. In the figures, output is
an external object.

Figure 3 represents an event diagram prior to the trans-
formation and Figure 4 represents the corresponding event
diagram posterior to the transformation. In these figures,
each white circle is an internal events within generator and
filter, whereas each black circle is an external one. The
causality relation among the events represented as the black
circles are preserved.

Rule 5.1 is easily proven to be correct.

Theorem 5.2 Rule 5.1 is correct.
Proof: Let Sy be {A, B} and (E,=>) be an arbitrary event
diagram prior to the transformation. We can show that there
- exists an event diagram posterior to the transformation such
that its restriction on {A + B} is isomorphic to (E,=)|s,.
Let my,...,m, be the messages accepted by A in this order in
(E,=). In response to m; (1 < i < n), A sends messages,

(4)

[object generator
(state [n := 1])
(script
(=> :start
(loop
[filter <= n] -
[n:= ¢+ n 1D]HN]

[object filter
(script
(=> number
(if (evenp number)
[output <= numberl)))]

4

[object generator+filter
(state [n := 1])
(script
(=> :start
(loop
(if (evenp n) [output <= n])
n:= (G n 1IN

Figure 2: Fusion of generator and filter

generator filter

@-

Figure 3: Before an application of the transformation rule

generator+filter

Figure 4: After an application of the transformation rule

Figure 5: Object subsystem with three objects

say my 1, ..., m; j; in the transmission order, to B. B also trans-
mits messages in response to mi; (1 < i< a,1<j<5)
SQY Mi 1, .oy Mi i k; ; in this order. We assume that, on trans-
mission of m; ;, A’s state is a; ; and that, on transmission of
m; ;k, B’s state is b; jx. Then, if A+B receives the messages
™my,...,My in this order, we can easily proven by induction
that:

1. the (k+ oy kit Tih Tiey kir jr)-th message A+B
transmits 1s m; ;. and

2. at that time the state of A+B is the disjoin union of a; ;
and b,',j'k.

Notice that A is deadlock free from the precondition of the
transformation rule and that, if B falls into deadlock, A+B also
falls into deadlock just after the same message passing.

It is proven in the same way that each event diagram
(E,=) posterior to the transformation has an correspond-
ing diagram (E',=>'} prior to the transformation such that
(E, =) (a+p) is isomorphic to (E',=')|(ap}-

Note that in this proof, », j; (1 < i < n) and k;; (1 <
i < n,1 £ j < %;) can be infinite ordinal numbers. The
correctness of Rule 5.1 much depends on the transmission
ordering law.

In Rule 5.1, if A transmits message not only to B but also
another object C (Figure 5), generally, it is not incorrect to
fuse A and B into one. The reason is simple: In the case that
B deadlocks during computation, a message transmitted from
A to C before the fusion cannot be transmitted by A+B after
the fusion.

In Figure 5, even if these three objects are deadlock free,
the transformation which merges them into one is not correct
in general. For instance, in the case that B and C transmit
messages to the same object, say D, the acceptance order of
two messages sent from B and C is arbitrary. However, by
fusion of A, B, and C, the acceptance order of the same two
messages becomes deterministic because of the transmission
ordering law. That is, this fusion rule is at most correct as
implementation.

Rule 5.3 Precondition: Three objects A, B, and C satisfy
' the following conditions.

1. Each message that arrives at the message port of
either B or C is transmitted by A.

2. Each message transmitted by A arrives at the mes-
sage port of either B or C.

3. A, B, and C are deadlock free.

Transformation:

[object generator
(state [n := 1])
(script
(=> :start
(loop
(if [evenp <= n] then
n:= (+n 1DIIN]

[object evenp
(script
(=> number
! (evenp number)))]

[object generator
(state [n := 1])
(script
(=> :start
(loop
(if (evenp number) then
[n := (+ n 1IN

Figure 6: Fusion of generator and evenp

1. The state of A+B+C is the disjoin union of those of
A, B, and C. In the case that B and/or C is bound
to some state variable(s) of A, which is used as the
destination of message passing, the state variable
will be removed from the state of A+B+C.

2. The message patterns of A+B+C is same as those
of A.

3. The behavior of A+B+C is obtained from A’s behav-
ior by substituting each message transmission by
the corresponding behavior of B or C.

Theorem 5.4 Rule 5.3 is correct as implementation.
Proof: This thorem can be proven in the same way as
Theorem 5.2.

The following is a correct transformation rule.

Rule 5.5 Precondition: Two objects A and B satisfy the fol-
lowing conditions.

1. All the messages that arrive at the message port
of B are transmitted by A.

2. All the messages transmitted by B arrive at reply
ports of A.

3. For each synchronous message transmission from
A, B always returns back a reply.

» Transformation: Fusing A and B into the object, say A+B in
the same way as Rule 5.1.

An application example of this transformation rule is il-
lustrated in Figure 6. Two objects generator and evenp are
merged into generator+evenp. :

(5)

search request

=~

reply

Figure 7: A binary search tree

6 An Application Example

In this section, we show the relation between two implemen-
tations of binary search trees using our transformation tech-
nique. With asynchronous message passing, a binary search
tree constructed from nodes defined in the following program
is natural. '

[object CreateNode
(script
(=> [:new my-key my-value left right]
t[object
(script
(=> [:search key] 0 R
(cond ((= key my-key) !'my-value)

((< key my-key)
[left <= [:search key] @ R1)
((< my-key key)
[right <= [:search key] @ R1))))1))]

Upon accepting a [:new ...] message, the CreateNode
object creates a node object whose state consists of its key,
stored value, the names of the left and right children nodes.
By receiving a search request, a node ob ject returns its stored
value if the received key matches its stored key. Otherwise,
the object forwards the message to a left or right child accord-
ing to the received key value. Figure 7 illustrates a binary
search tree consisting of node objects created by CreateNode.

Each node object can be split into 3 objects as in the
following definition.

fobject CreateNode
(scxipt
(=> [:new my-key my-value left right]
!fobject

(state

[State :=

[object

(script
(=> :your-value?
! [my-key my-value left right]))1]

1=

[Script

[object
(script
(=> [:search key State] ¢ R
(case [State <== :your-value?}
(is [my;key my-value left right]
(cond ((= key my-key)
!my-value)
((< key my-key)
[left <=
[:search key] @ R])
((< my-key key)
[right <=
[:search key] 6 R
D
(script
(=> [:search key] ¢ R
[Script <= [:search key Statel @ R1))1))]

The new definition can be transformed into the original
one by applications of Rule 5.1 and Rule 5.5. Therefore, this
transformation is correct. In this stage, Script objects are
functional, i.e., its behavior does not depends on the tem-
poral situation. The following definitions can be obtained
by merging Script objects into one. This transformation is
easily proven to be correct as implementation.

[object CreateNode

(script
(=> [:new my-key my-value left rightl
t{object

(state

{State =

[object

(script
(=> :your-value?
! [my-key my-value left right]))11)

(script

(=> [:search key] @ R
[Scxipt <= [:search key State] @ R1))1))]

{object Script
(script
(=> [:search key State] ¢ R
{case [State <== :your-value?]
(is [my~key my-value left rightl}
(cond ((= key my~key) !my-value)

((< key my-key)

[left <= [:search key)] @ R])

((< my-key key)

[right <= [:seaxch key] @ R1))))))]

Next, by merging Script and the objects bound to its
local variables left and right, the following definition is
obtained.

[object CreateNode
(script
(=> [:new my-key my-value left right]
{{object
(state
[State :=
{object

(6)

(script
(=> :your-value?
! [my~key my-value left rightl))11)
(script '
(=> [:search key] ¢ R
[Script <= [:search key State]l @ R1))1))]

[object Script
(script
(=> [:search key node] @ R
(case [State <#= :your-value?]
(is [my-key my-value left right]
(cond ((= key my-key) !my-value)

((< key my-key)

(Script <=
[:search key left.State] @ R])

((< my-key key)

[Script <=
[:seaxch key right.State]l ¢ R1))))IN]

In the definition above, left.State and right.State
means the value of the variables States in left and right,
respectively. This dot notation is allowed to use only at in-
termediate stages.

In order to show this transformation correct as implemen-
tation by Rule 5.3, we need the type information that the
objects bound to the variables left and right are created
by CreateNode.

Obviously, now, the script part of each node object is not
necessary. Therefore, the above definition can be transformed
into the following one.

[object CreateNode
(script
(=> [:new my-key my-value left right]
t[object
(script
(=> :your-value?
! [my-key my-value left right]))1))]

[object Script
(seript
(=> [:search key node] @ R
(case [State <== :your-value?]
(is [my-key my-value left right]
(cond ((= key my-key) !my-value)
((< key my-key)
[Script <= [:search key left] € R])
((< my-key key)
[Script <=
[:search key right] @ R1)))))]

The last definition well models conventional implementa-
tion of binary search tree. That is, a node is nothing but
passive data and a searcher visits nodes one by one from the
root to the appropriate node. Figure 8 illustrates a conven-
tional binary tree.

By the applications of transformation rules in this section,
we can show the implementation scheme of a binary tree il-
lustrated in Figure 7 potentially has more non-determinism
than the one illustrated in Figure 8. Actually, owing to the
transmission ordering law, when two search messages arrive

search request

Figure 8: A binary search tree

whose answers will be found in different nodes of the same
depth in Figure 8, the answers will be sent back in the ar-
rival order of the corresponding search messages. This is not
the case of the implementation scheme in Figure 8. However,
without consideration of the transmission ordering of the re-
ply messages, both implementations return back the same
replys in response to the same incoming search requests.

Since this example is a read only application, the loss of
non-determinism may not cause severe problems. In general,
however, with a loss of non-determinism, the possible answers
set may be changed. One of such phenomena is the Brock-
Ackerman anomaly [Brock and Ackerman 81].

7 Conclusion

For functional/logic programming languages, we have already
had the fold/unfold technique [Burstall and Darlington 77],.
which is often effective. However, this technique cannot di-
rectly be applicable to our object-oriented concurrent lan-
guage since it is not based on neither reduction mechanism
nor term re-writing system !.

Common applications of the fold/unfold technique is fus-
ing two or more recursive loops into one. This loop fusion
technique is useful for the purpose of optimizations. In a
concurrent object based environment, the object fusion tech-
nique corresponds to the loop fusion technique for function
and logic based languages. In this sense, our object fusion
approach offers a higher level transformation technique than
the fold /unfold technique.

Our computing model and language assume parallel and
distributed computing environments. Therefore, not only ob-
ject fusion but also object partition are useful in order to
purchase execution efficiency. The object fusion technique is
usefu! mainly for two purposes:

e decreasing the number of message passing.
o later applications of simplification rules.

The first one is often effective on loosely coupled systems
such as ethernet connected computer systems on which mes-
sage passing is an expensive operation. Though the second
one is important, we omit the detail of such simplification
rules in the previous section since each of them is trivial and
is not our concern. On the other hand, applications of the

!An object-oriented concurrent language can be based on reduction
mechanism. Such an example is Vulcan [Kahn et al. 86].

(7)

object partition technique increase the degree of parallelism
by paying communication costs.

Acknowledgements

The author would like to thank Prof. A. Yonezawa and
members of the ABCL/1 project, Y. Honda and T. Takada.

References

[Agha 86] G. Agha: Actors: A Model of Concurrent Computation
in Distributed Systems, MIT Press, 1986.

[Brock and Ackerman 81} J. D. Brock and W. B. Ackerman: Sce-
narios: A Model of Non-determinate Computation, Lecture
Notes in Computer Science, Vol. 107, pp. 252-259, Springer-
Verlag, 1981.

[Burstall and Darlington 77) R. M. Burstall and J. Darlington: A
Transformation System for Developing Recursive Programs,
Journal of the ACM, Vol. 24, No. 1, pp. 44-67, 1977.

[Clinger 81] W. D. Clinger: Foundations of Actor Semantics,
(Ph.D. thesis), Dept. of Math., M.1T, 1981.

[Kahn et al. 86] K. Kahn, E. D. Tribble, M. S. Miller, and D. G.
Bobrow: Objects in Concurrent Logic Programming Lan-
guages, Proceedings of Object-Oriented Programming Sys-
tem, Languages and Applications, Portland, Oregon, pp.
242-257, 1986.

[Milner 80] R. Milner: A Calculus of Communicating Systems,
Lecture Notes in Computer Science, Vol. 92, Springer-Verlag,
1980. -

[Milner 85] R. Milner: Lectures on a Calculus for Communicating
Systems, Lecture Notes in Computer Science, Vol. 197, pp.
197-220, Springer-Verlag, 1985.

[Shibayama and Yonezawa 86] E. Shibayama and A. Yonezawa:
ABCL/1 User’s Guide, ABCL Project, Dept. of Information
Science, Tokyo Institute of Technology, 1986.

[Tamaki and Sato] H. Tamaki and T. Sato: Unfold/Fold Transfor-
mation of Logic Programs, Proceedings of 2nd International
Logic Programming Conference, Uppsla, Sweden, pp. 127-
138, 1984.

[Yonezawa et al. 86] A. Yonezawa, J-P. Briot, and E. Shibayama:
Object-Oriented Concurrent Programming in ABCL/1, Pro-
ceedings of Object-Oriented Programming System, Lan-
guages and Applications, Portland, Oregon, pp. 258-268,
1986.

[Yonezawa and Shibayama 87} A. Yonezawa and E. Shibayama:
Modelling and Programming in an Object-Oriented Concur-
rent Language ABCL/1, Object-Oriented Concurrent Pro-
gramming, MIT Press, pp. 55-90, 1987.

8)

