A UM
— KLl LoMFi#r7 Y= 7 MEAISE —

EH B3, FlLE
(BF) B = v € = — X HEpiTBRTEHE

Bz

FRTRLFIF TV = 7 +EAEE A UM conc=Twni,

gize ICOT cuXFifmR~s v PIM #B## vl <e ). 2oiEE KL o i=—yEEe < A/ UM i
HErEN T3,

A UM 0BiE. REEE VA F LB LUIBAT Y 7 OBRERHCT 5 bOFiER T o2 ThH Y, &
Fifa<s v PIM ox<_v—54 v 72574 PIMOS #—oitdsigcd 3,

A UM ot BWeRREARWHFIF 7 V= 7 beES i, 20BWIRLEBBICD 5, AhTh, EETCOX T
V— A EBHE. BRICE 34T Y= 7 L OWREHE, <7 vBRICETS (I, 2L T2 7 AR 32V a— bR
B VEENTH Y, ThbcowTElIcR< 3,

A' UM
— Parallel Object-Orieneted Language upon KL1 -

Kaoru Yoshida and Takashi Chikayama
Institute for New Generation Computer Technology (ICOT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108 JAPAN

Abstract

This paper describes a parallel object-oriented programming language, A'UM .

A' UM has been designed as a user’s language upon KL1 which is the kernel language of the parallel
inference machine, PIM, being developed at ICOT. The goal of A’ UM is to provide high description power
for ease of writing large-scale parallel systems and applications, including the operating system, PIMOS,
for PIM.

A’ UM is characterized with its high level abstractions based on pure parallel objects, of which most
characteristic are implicit stream merging, object-name association, macro expansion based grammer, and
modular programming support by class inheritance, that are described in detail.



1 Introduction

In the fifth generation computer systems project at
ICOT, we have been designing and developing a paral-
lel inference machine, PIM [5] and its operating system,
PIMOS.

In general, the larger a problem, the more difficult
to solve. For a large-scale problem such as an operat-
ing system, the entire function seems to be very com-
plicated, but in most cases, it is the result of piling up
many simple functions and basic concepts. The secret to
develop a large-scale reliable system is to divide the sys-
tem into modules, each of which has a simple function,
and to make each module sound. The more information
and control flow is localized, the easier it is to design
and test.

For parallel systems, it is much harder to develop
than sequential systems. Most of the difficulties in de-
bugging a parallel program is to reconstruct the causal
chain from actually happening events, that is, to analyze
error reasons from phenomena when it results in failure.
Although events are due to a single causal chain, when
the whole events from root to leaf are actually happen-
ing, they seem to be happening independently at ran-
dom. Namely, flatness of events makes analysis difficult.
Therefore, hierarchical and modular design and test are
indispensable to develop parallel large-scale systems.

For this purpose, the object-oriented paradigm is
most effective. We have developed an object-oriented
logic programming and operating system, SIMPOS [2],
for the sequential inference machines, PSI and PSI-II
[3,4]. SIMPOS is written in the language, ESP [1],
which introduced the notion of object-orientation, which
is to encapsulate data and operations, into a logic pro-
gramming language. Through this experience, we have
learned that the object-orientation contributes greatly
to both the design and test of such a large-scale system.

The notion of object-orientation is natural to model
a large-scale system and represent. the programmer’s in-
tentions. Designing a system is directly writing pro-
grams without any intermediate process. Mainly be-
cause of its uniform and dynamic control by method
call, and modularization support by multiple class in-
heritance and method combination, the entire system
is made simple and compact, that shortens the devel-
opment period at last. What forwards shortening the
development period is not only the programming lan-
guage itself, but also its high level programming and
debugging environment.

As a result, for SIMPOS, it took few years to develop
the entire system, though it is furnished with a rich set
of functions.

We would like to make good and best use of the ben-
efits, obtained by object-orientation, in parallel systems,
too.

This paper describes a parallel object-oriented lan-
guage, A'UM . A'UM has been designed upon KLI,
which is the kernel language of the parallel inference
machine, PIM, for ease of writing large-scale systems
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and applications, mainly as a description language of
the operating system, PIMOS.

The organization of the paper is as follows: Firstly,
the object-oriented programming style in KL1, which
originated A'UM , is shown. Secondly, after the main
features of A’ UM are outlined, their detail are described
with some examples. In addition, the implementation
of A'UM onto KL1 are described. Finally, A'UM is
compared with other related works.

2 Object-Oriented
Programming in KL1

2.1 GHC and KL1

The kernel language of PIM is a committed-choice par-
allel logic programming language, called KL1. KLI is
an extention of FGHC which is a subset of GHC [6].

The committed-choice parallel logic programming
language family has been paid special attention. That
is mainly because of their simple and atomic mechanism
for communication and synchronization. Since a parallel
construct is embedded at the atomic level, it is possible
to solve the entire problem uniformly from top to bot-
tom.

Above all, GHC [6] is simplest in this family.

A GHC procedure is a set of guarded Horn clauses
of the following form:

H :— G1y.yGm | B1yeeoy By (m>0,n>0)

where H, G;'s and B;’s are atomic formulas. H is called
a clause head, G;’s guard goals and B;’s body goals re-
spectively. The operator ’|’ is called a commitment op-
erator, the left part before the operator a guard and the
right part a body respectively.

Roughly speaking, the execution of a GHC procedure
is explained as follows: When a procedure is invoked, all
clauses defining the procedure can run in parallel, keep-
ing the following suspension and commitment rules:

Suspension

e Unification invoked directly or indirectly in the
guard of a clause C called by a goal G cannot
instantiate the goal G.

¢ Unification invoked directly or indirectly in the
body of a clause C' cannot instantiate the guard of
C until that clause is selected for commitment.

Commitment
If some of the clauses succeed in the execution of
the guard part, one and the only one of them is
nondeterministically selected. The selected clause
continues execution of the body.

GHC realizes synchronization only with the guard
construct. Unification in the guard is not allowed to
instantiate the invoking goal, so it requires no multiple



environments for its execution. Such a simple mecha-
nism of the guard is desirable for the architecture. It
makes the practical implementation feasible, especially
considering its implementation in a distributed environ-
ment.

FGHC is further given a limitation that only system-
defined (or built-in) predicates can be invoked in the
guard but no user-defined predicates. Since FGHC does
not require nested guard control, it is simpler and more
suitable for the hardware implementation of PIM.

2.2 Object-Oriented
Style

The notion of object has been spread widely. Basically,
an object is an entity to encapsulate internal states and
a set of operations [11]. Objects which have only this
feature as capsules are called static objects. In contrast,
by integrating the notion of process, which is an exe-
cution unit that can run in parallel, with that of cap-
sule, another kind of objects, called dynamic objects,
have been introduced. Each dynamic object has an
independent execution environment, and communicates
with others by message passing via communication me-
dia such as message streams and message boxes. Several
languages to realize dynamic objects have been devel-
oped [12,13,14,15].

As mentioned earlier, the committed-choice paral-
lel logic programming language family, including KL1,
provides the basic framework for synchronization and
communication at the base, which is required to realize
dynamic objects.

Shapiro and Takeuchi [8] shows that CP [7] supports
object-oriented programming style in the framework of
perpetual process using stream communication, which
can be applied to GHC and KL1, too.

A perpetual process is a causal chain of tail-recursive
goals, regarding each goal as a process state at some
stage. A clause waits for some particular event to hold.
After commitment, it takes behaviors corresponding to
the event, such as sending messages or modifying its
internal states, and invokes an identical goal for the next
stage.

Communication is performed through a message
stream, which is recognized as an object from the out-
side. A message stream is represented using a list con-
struct, of which the car part means a message and the
cdr part a succeeding stream respectively.

For example, a stack is defined in the object-oriented
programming style in KL1 as follows:

Programming

Example 1 Stack in KL1

stack(Stack) :- true |
bottom(Bottom), stack(Stack, Bottom).

stack([push(X)|S], Top) :- true |

element(Elmnt, X, Top), stack(S, Elmnt).
stack([pop(X) 8], Top) :- true |

Top = [get(X, Y)], stack(s, Y).
stack([read(X)|S], Top) :~ true |

Top = [get(X, [1)1Top1], stack(S, Topl).
stack([], Top) :- true | Top = [J.

element ([get (X, Y)IS], Data, Next) :- true |
X = Data, merge(Y, Nextl, Next),
element(S, Data, Nextl).

element([], _, Next) :- true | Next = [].

bottom([get(X, Y)IS]) :- true |
X = ’$error(end_of_stack)’, bottom(S).
bottom([]) :- true | true.

merge([X|Xs], Ys, Zs) :- true |
Zs = [X1Zs1], merge(Xs, Ys, Zsl).
merge(Xs, [Y[Ys], Zs) :- true |
Zs = [Y|Zs1], merge(Xs, Ys, Zsl).
merge([], Ys, Zs) :- true | Zs
merge(Xs, [0, Zs) :- true | Zs

= Ys.

= Xs.

This program can be read as follows: A stack object
which holds a bottom object as the top element is cre-
ated first. At each stage, the stack may receive a mes-
sage, either push/1 or pop/1, until it is closed with [].
For message pop/1, the stack sends a message, get/2,
to the top to get its data and next element, and recurs
with the next element as a new top element. For mes-
sage push/1, it creates an element object that should
hold the given data and the current top, and recurs with
the new element as a top. When it is closed with [1, it
terminates closing the top with [J.

The top element is an internal state to the stack,
and the data and next element are those to the element.
These internal states are represented using local vari-
ables; Top, Data and Next, each of which appears in the
fixed position, and their new variables are carried by the
tail goal for the next stage.

Another noticeable point is the way in which the
element object passes its next object in return to the
get/2 message: the next object is not passed directly,
but is merged with the output parameter, Y. Then, the
element object recurs with the output variable, Next1,
of the merger.

In comparison with other object-oriented languages
and their implementations, one of the most characteris-
tic features with this program is that the semantics of
updating internal states is logically pure, that is, side-
effect-free. A chain of logical variables placed at the
same position is the history of an internal state.

As easily seen from such a small example, however,
even with this programming style, programs are too
primitive and verbose to develop a large-scale system,
since KL1 is positioned as the kernel language. As a re-
sult, most of the deadlocks are brought by stream break-
ing attributing to tiny bugs such as misnaming and mis-
placing variables, rather than by algorithmic ones.



To represent the programmer’s intention more di-
rectly and concisely and higher level abstraction, which
makes the program semantics vivid, is needed. Also pro-
gramming and debugging environment should be pro-
vided at this level or higher.

3 Parallel Object-Oriented
Language A' UM

We propose a parallel object-oriented programming lan-
guage, called A'UM 1.

A’ UM has been designed as a user’s language which
is compiled into KL1, for ease of writing large-scale sys-
tems and applications. A'UM is independent of KL1,
and KL1 programs cannot be contained together in
A"UM programs. :

This section summarizes major characteristic fea-
tures of A'UM .

Firstly, A’UM objects are characterized as follows:

Pure Parallel Object A’ UM is a pure parallel object-
oriented language.

Each A'UM object is a perpetual process which
belongs to some class: it repeats the cycle of
receiving a message, sending messages to itself
or other objects in response. Sending messages
to objects is the basic mechanism to execute an
A'UM program.

Name Association In A'UM , each object is associ-
ated with a name. Updating an object is per-
formed in the side-effect-free foundation: a new
version of object is created and associated with
the same name. :

Stream Merging The external interface to an object
is a directional stream. When an object is referred
to by more than one object, a merger is implicitly
inserted to split a stream to the referred object.

In addition, A'UM provides the following syntactic
and modularization support:

Macro Expansion An A'UM program is composed
of macro expressions, each of which is evalu-
ated to an object with a sequence of abstract
A'UM instructions expanded. With this feature,
A’ UM programs can be written compactly.

Class Inheritance An A’'UM class can inherit multi-
ple classes. Class inheritance only expands the
method space applicable to an instance, but does
not bring forth any other instances of the super
classes.

The above stack example can be written in A UM as
follows:

1A'UM is a Japanese word, derived from a Sanskrit ”ahum”,
which consists of A and UM and implies the beginning and
the end, an open voice and a close voice, and expiration and
inspiration.
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Example 2 Stack in A'UM

class stack.
slot top.
:initiate -> #bottom :new("B), !top = B.
:push("X) -> #element :new("E),
'top = E :set(X, !top).
:pop(X) -> !'top :get(“X, "Y), !top =Y.
:read(X) -> !top :get("X, “Y).
end.
class element.
slot data, next.
:set ("X, “Y) -> !data = X, !next = Y.
:get(!data, !mext) -> .
end.
class bottom.
:get(*$error’ (end_of_stack), Y) -> .
end.

A stack is created by sending a message :new/1 as follows:

#stack :new("S0),
~S1 = SO :push(1) :read(~A) :pop("B) :pop(~C)

4 Class and Object
4.1 Class

<class definition> =
class <class name>
< superclass definition>
<slot definition>
{ <method definition> }
end’.’

< superclass definition> ::=

super < superclass name> { ', <superclass name> }’.

< slot definition> =
slot <slot name> {’,” <slot name> }’.’

Each A'UM object is an instance which belongs to
some class. )

A class is a module which defines a set of attributes
and functions of instance objects. Classes are treated as
immutable objects, which will be mentioned later, but
belongs to no other classes: there is no notion of meta
class.

Each class can inherit multiple classes. By inheriting
a class, a set of attributes and functions applicable for
an instance object is expanded, but no other instances
of super classes are created.

4.2 Object

Each A'UM object is a perpetual process which is rep-
resented with the following attributes:

Original Class which the object belongs to and is cre-
ated from.

For an instance object, the original class is fixed
through life.



Current Class which defines a method which is ap-
plied for each received message.

For an instance object, the current class is vari-
able depending on the received message. When a
method of some class is applied, the object is said
to be under the class. At initiation or every time
the object recurs, the current class is set to the
original class.

External Interface Streams through which

messages are sent to the object.

One or more interface streams can be offered,
each of which is assigned a different priority and
priority-merged into the internal input stream.
From the outside, a given interface stream is re-
garded as the target object itself.

Internal Input Stream from which the object re-
ceives messages. The internal input stream is ac-
cessible with the name $self.

Slots each of which is associated with a slot name given
- in the slot definition.

Any slot is visible only within the class which de-
fines it. Even if another slot is defined with the
same slot name in either super or inferior classes,
it is a different slot.

When an object is created, a global stream named
$system is given, through which messages are
raised to the underlying operating system. In
the conceptual model, this global stream may be
treated as one of the slots.

Supers which are the super classes that the original
class inherits directly and indirectly. The inheri-
tance tree is constructed from the super definition
in the left-first depth-first order.

For an instance object, the supers are fixed
through its life.

Delegates which are super classes positioning later
than the current class on the inheritance tree.

A delegate class next to the current class is acces-
sible with the name $super.

As well as the current class, the delegates are vari-
able depending on the received message. At initia-
tion or every time the object recurs, the delegates
are set to the supers.

Example 3 Object Attributes

Given the following class definitions:

class c21
super ci1l, ci2.’
slot s.
:ma -> !s :ma.

end.

class c3
super c21, c22.
slot s.
mb ~> !s :mb.
end.

An instance of class c3 is created, which some messages are
sent as follows:

#c3 :new(~C3),
C3 :ma :mb

1. For an instance of class c3, the original class is c3,
and the supers are ¢21 — c11 — ¢12 — ¢22, both of
which are fixed through life.

. The slot s in class c21 is independent of that in class
c3.

. During execution, the current class and delegates are
transitional depending on received messages.

When executing a method for message :mb, the cur-
rent class is c3, and the delegates are c21 — c11 —
c12 — c22. )

When executing a method for message :ma, the cur-
rent class is €21, and the delegates are c11 — c12 —
c22.

4.3 Object Life
The life of an A'UM object is drawn as follows:

Creation When a message inew/1 (or
:new_with_priority/2) is sent to a class, an in-
stance object of the class is created, and a mes-
sage :initiate is sent to the object. An interface
stream (or a set of interface streams) to the object,
which positions after the :initiate message, is
returned to the :new/1 message.

Initiation Whenever an instance is created, it is im-
plicitly sent a message :initiate. The program-
mer can overwrite the default method for the
:initiate message, which is predefined as follows:

:initiate -> .

Generation Including internal states such as $self,
slots and $systenm, any object is associated with a
name. Updating an object is not giving any side
effect on it, but creating a version of object and
associating it with the name.

Each version of object is called a generation, and
changing the name association is called generation
descending.

Cycle After receiving an external message, an object
behaves descending one generation to another. A
sequence of generations derived from receiving one
external message is called a cycle. A script of the
cycle for one external message is called a method.



Termination At the end of a cycle, the object either
recurs to the next cycle or terminates its life. The
former is syntactically specified with *.’, the latter
with ...

When to terminate can be defined freely by the
programmer: it may be when the internal input
stream is closed, or at any time.

When the internal input stream is closed, the de-
fault closing method is defined to close all the slot
objects as follows: :

2t => $slots ::

The programmer can _overwrite this closing
method.

4.4 Mutable and Immutable Objects

A’ UM objects are categorized into two; mutable objects
and smmautable objects, depending on whether they have
changeable internal states or not.

Class objects are immutable. Some primitive classes
such as true, false, integer, vector and string, are
also immutable.

Both mutable and immutable objects are treated
uniformly in their message passing. For example, a stack
element has two slots, of which slot data is immutable
and slot next mutable. There is nothing different in
sending messages or making accesses to either of them.

5 Basic Notions

5.1 Name Association

A’ UM objects are associated with names. Names are
categorized into two: temporary names and permanent
names, depending to their name scope, that is, their life
time.

Permanent Names The name scope of a permanent
name is one generation.

Among permanent names are system-defined
names, such as $self, $system and $super, and
user-defined slot names.

Temporary Names The name scope of a temporary
name is one cycle.

Among temporary names are variables, including
parameter variables which are carried in messages,
and temporary variables which are generated in
the cycle.

5.2 Stream Merging

Given a stream, if it accepts any message applicable to
an object, the stream can be regarded as the object itself
from the outside.

As shown in Section 2, when an identical object is
referred to by more than one object, it requires for a
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stream to the referred object to be split into two, so that
each referring object can hold one stream through which
it can send messages independently. In other words,
branches are merged into the stem, that is, the internal
input stream of the target object.

In AUM , non-determinicity exists only in the
stream merger. Stream merging has no logical mean-
ing other than sending messages to the target object. A
stream merger is inserted in the following two cases:

o when more than one input terminal of a temporary
name (or variable) occurs.

e every time a permanent name except self occurs.

5.2.1 Variable Mode

Each stream has a direction which is toward the target
object. To specify the stream direction, each variable
occurrence has its terminal mode, which is either input
or output.

e Variables have only one occurrence with ’*7,
called an output terminal, and one or more oc-
currences without ’~?, called input terminals.

¢ An object is somewhere ahead of the output ter-
minal.

o A stream is connected to the output terminal.

o Messages can be sent to the input terminals.

o The messages sent to the input terminals are
merged and sent to the target object ahead of the

output terminal.
Example 4 Variable Mode
:consult(“A, "B, “C) ->
A :try(X), B :try(X), C :select("X).
Variables A, B, C and two Xs are input terminals, while 4,
“B, “C and “X are output terminals. The two Xs are merged
into ~X.

input terminals

object output
terminal X
O
merger X

5.2.2 Slot Access

Referring When a slot is referred to, it opens a stream
to be returned and a new generation slot, both of
which are merged into the current generation slot.

Updating Slots are updated when they are specified as

the destination of stream connection and message
sending.
Updating a slot is changing the name associa-
tion in a side-effect-free manner: the specified new
value is associated with the slot name, and the old
value is closed.



5.3 Macro Expansion

An A'UM program is composed of macro ezpressions,
each of which is evaluated to be an object with a se-
quence of abstract A’'UM instructions expanded. With
this feature, A’ UM programs can be written compactly
and clearly.

For example, a message sending expression is evalu-
ated to a new object after the message is sent.

Example 5 Macro Ezpansion

screate(AO:initialize("IL), IL) ->
#a :new("A0).

is equivalent to:

:create(A, IL) ->
#a :new("A0),
“A = A0 :initialize(~IL).

6 Method

<method definition> ::=
<message> ’->’ <cycle> <terminator>

<cycle> =
<generation> {’,” <generation> }

A script of the cycle for one external message is called
a method. One cycle consists of generations, for each
of which one of the following four behaviors can be de-
fined: stream connection, message sending, message del-
egation, and volatile object creation.

6.1 Stream Connection

< connection> ii=
<output terminal> =’ <input terminal>

< output terminal> =
<output variable> | <slot>

<input terminal> ;1=
<input variable> | <ezpression>

Through a stream, messages are sent from its input
terminal to its output terminal, that is, the input ter-
minal is a message source, and the output terminal is a
destination.

An expression specified as the source, is evaluated
to be an input terminal with a sequence of abstract in-
structions expanded. The input terminal is connected
to the output terminal specified as follows:

<output variable> °Y = ltop

Slot top is referred to; to which output terminal Y
is connected.
<slot>

An input terminal, Y, is connected to the new gen-
eration of slot top, that is, slot top is updated with
Y.

'top = Y

(7)

Thus, the semantics of <slot> is different depending on
which side it appears: referring slot on the right and
updating slot on the left.

6.2 Message Sending

<message sending> 1=
<input entry> { <message> } <last>

<input entry> =
{} | <input variable> | <slot> | <system>

<last> =
{ <message> | ’::” }

A message sending expression is evaluated to be a
new generation object after the message is sent. By
repeating this evaluation, a sequence of message can be
sent to an identical object.

An message sending expression can be specified
wherever expressions are allowed, for example, as a pa-
rameter of another message or as the source of stream
connection.

The semantics of a message sending expression is
variable depending on the input entry as follows:

{} (default) :m(P)
prepends a m(P) message to the current self, that
is, inserts it before the next external message.

E :set(X,!top)

appends a set (X, !top) message to the input vari-
able E.

<input variable>

1top :get("X,"Y)

appends a get ("X, "Y) message to the top slot and -
updates the slot with a new stream following the
message.

<slot>

<system> $system :m(X)

raises a m(X) message to the system stream.

6.3 Message Delegation

<message delegation> ::=
<delegate class> <=’ { <message> } <last>

<delegate class> ::=
<direct super> | <class>

When a class inherits one or more super classes, a
sequence of messages can be delegated to any of the super
classes.

In A'UM, class is an index to categorize the method
space applicable for an instance with. Class inheritance
expands the method space applicable to an object, but
does not bring forth any other instances of super classes.
Therefore, delegating a message to some class is asking
the object itself to apply a method defined in the class,
that is, to receive the message under the class.



Message delegation is performed by sending an indi-
rect message, which encloses the target message and the
delegate class which should receive the target message,
to the object itself. The delegate class is specified in the
following two ways:

<direct super> :m("X) -> $super <- :mm(X).

With $super specified, messages are delegated to
the direct super.

<class> :m("X) -> #some_super <- :mm(X).

Messages can be delegated to a certain class on
the inheritance tree by specifying its class name.

When an object receives a delegation message,
delegate(Class,Message), it checks the delegate
class Class. If it is equal to the current class, the
object sends the target message Message under the
current class. Otherwise, the object further dele-
gates the delegation message to its direct super.

6.3.1 Default Message
:$default -> $super <- :$default.

When a method to the received message is not defined
in a class, the received message is delegated to the direct
super.

6.4 Volatile Object Creation

<volatile object creation> :=
< wolatile immutable object definition>
< volatile mutable object definition>

<volatile immutable object definition> =
< object source>
[ { <method definition> } "1’

< volatile mutable object definition> =
< object source>
"’ <slot definition>
{ <method definition>} '}

< object source> 1=
<input terminal> | <output terminal>

A’ UM introduces a notion of volatile object to realize
conditioning and looping in the same notion of object.

Firstly, ordinary object, whose classes are defined as
mentioned earlier, are already condition handlers: they
receive a particular set of messages and behave differ-
ently for each received message.

If a class is defined for each condition, many classes
will be required for one program. It will make the pro-
gram size unreasonably large, and loose the readability,
writability and maintainability of programs.

In addition, such an condition handler object should
have a short life, since it should terminate just after con-
ditioning. All the main object wishes to do is change its
behaviors depending on the condition result. Therefore,

condition handlers should be defined with the main ob-
ject.

Volatile objects are those which are defined in a
method, without any class name given. Applying this
notion, volatile objects can be nested.

Thus, volatile objects keep programs from fragmen-
tation and raise their modularity.

6.4.1 Basic

The object source is an external interface to the volatile
object, from which messages are sent. This is the basic.

Output Terminal If an output terminal (with ~) is
specified as the object source, there must be one or more
input terminals which are merged into the output ter-
minal. Messages are flown from the input terminals to
the output terminal.

~T [ :p(X, Y) => P.
:q(U: v, w) =-> Q- ]

6.4.2 Extension

If an input terminal (without *) or an expression which
is evaluated to be an input terminal is specified as the
object source, it implies there already exists some out-
put terminal into which messages should be flown. The
semantics is extended with a notion of reflection.

Input Terminal If an input terminal (without ~) is
specified, a primitive message :who_are_you(Who) is
sent to the input terminal. An volatile object is cre-
ated so that it should take an output terminal “Who as
its external input stream. For each message from Who,
a method is defined.

T[:p->P.
:q -> Q.1

is expanded to:

T :who_are_you(Who),
“Who [ :p -> P.
:q > Q. 1

6.4.3 Applications

Pattern Matching Message :who_are_you(Who)
transforms an immutable object to a message stream
which contains the frozen image of the object as a mes-
sage. Using this mechanism, pattern matching can be
represented.

Nmod 3 [ :0 -> P1.

:1 -> P2.
:2 => P3. 1]



If-then-else Construct If a conditional expression,
which is evaluated to be either a true or a false object,
is specified in the volatile object field, it means the if-
then-else construct.

X ==Y [ :true -> Then.
:false -> Else. ]

6.4.4 Volatile Mutable Objects and Volatile Im-
mutable Objects

Volatile objects are categorized into two; volatile im-
mutable objects and volatile mutable objects.

Example 6 Number Generator

numbers.
slot max, n.
tinitialize(IL) ->

class

“IL { % volatile mutable %
:set_max(“M) -> Imax = M.
:set_n("N) -> 'n = N.

X.

:do("Ns) ->

('max > !n) [ % volatile immutable ¥%

:true => !'n = In + 1,
:do( Ns:prime(!n) ).
:false -> :terminate.
1.
:terminate -> ..

end.

#numbers :new(“Numbers),
Numbers :initialize("IL) :do(Ns),
IL :set_max(M) :set_n(0) ::

Volatile Immutable Object A volatile immutable
object may neither have any internal state nor recur
after receiving one message, that is, it is supposed to
terminate at once after receiving the message.

The name scope in a volatile immutable object is the
same as that in the outside object. Temporary names
such as parameter and temporary variables used in the
outside object are also visible in the volatile immutable
object.

In Example 6, when a message :do/1 is sent, an
immutable object is created for the the condition of
(!max > 'n). The volatile object accepts a message,
either :true or :false. When receiving :true, the
volatile object sends a message :add/2 to slot n and
updates slot n with the computation result. sends a mes-
sage :do/1 to the numbers object and then terminates.
For message :false, the volatile object sends message
:terminate to the outside object and then terminates.

Volatile Mutable Object A volatile mutable object
may have internal states and recur in the same way as
an ordinary mutable objects do.

The name scope in a volatile mutable object is one
level deeper than that in the outside object. Temporary
names used in the outside object are not visible in the
volatile mutable object.

(9)

In Example 6, when message :initialize/1 is sent,
a volatile mutable object is created for the output termi-
nal “IL. The volatile object accepts messages of either
:set_max/1 or :set_n/1, and sets the corresponding
slot and recurs until its input stream is closed.

7 Implementing A'UM onto

KL1

7.1 Message Sending

A’ UM has been firstly designed on top of KL1, in which
a message stream is implemented as a list.
For example, the expression of message sending

“NewX = X :add(Y, Z)
is translated in KL1 to:
X = [add(Y, Z)|NewX]

As mentioned before, in A'UM , both mutable and im-
mutable objects are treated uniformly in message pass-
ing.

7.2 Unification Failure Handling

In the above example, let X be an integer 1 and Y be 2.
Then the following unification must be made true:

1 = [add(2, 3)|1]

In order to realize it, some extensions have been intro-
duced into KL1.

In the original KL1 language, such a unification nor-
mally fails. For a certain goal and all subgoals of the
goal, a predicate for handling such failure can be speci-
fied, which is called in stead of simple failure. It is called
the unification failure handler. The unification failure
handler receives two original arguments, of the unifica-
tion. If the unification was between two structures and
the unification failed for certain elements of them, then
these elements are passed as the argument of the unifi-
cation failure handler. The execution of the unification
handler takes place of the execution of the unification
itself.

If integers should understand add messages, the uni-
fication failure handler should have clause such as the
following:

handler(Int, [add(Addend, Sum) |Rest]) :-
integer(Int), integer(Addend) |
add(Int, Addend, Sum), Int = Rest.

The unification failure handler mechanism is harm-
less to KL1. In the above, it is defined to be appropriate
for execution of A'UM . Users who prefer KL1 can de-
fine his/her own unification failure handler which simply
fails, keeping the original semantics of KL1.



8 Related Works

In comparison of A'UM with other related works, Vul-
can [10] is one of the closest approaches. Vulcan is de-
signed as a preprocessor on top of CP and is based on
perpetual processes connected via streams. Vulcan sup-
ports a variety of functions as A’ UM does, but both are
different from each other as follows: Unlike in A'UM ,
name space is flat in Vulcan. Temporary and parameter
variables are treated in the same way as those represent-
ing the internal states, so it is hard for the programmer
to grasp the transition of each internal state. On the
way of class inheritance, they are also different. Vul-
can supports two ways of inheritance; method copy and
delegation, while A'UM does only delegation. For de-
veloping large systems, the amount of copied method
cannot be ignored. Basically, while Vulcan is a prepro-
cessor, A'UM is an independent language rather than a
preprocessor, and supports message sending as a primi-
tive instruction.

Mandala [9] was also designed on CP like Vulcan.
Mandala supports the association of objects with their
names, but names are managed globally by a name
server, which must bring a bottleneck in performance.
In A'UM, the name association is solved locally in each
object, so such a centralization problem is not brought.
Another difference is that message receiving in A’ UM is
based on one-at-a-time principle: no external message
is received until all the internal behaviors are taken to
the previous external message. Mandala allows multiple
messages to be received, so it makes its implementation
difficult.

These languages explore to realize object-oriented
programming with clean semantics. As another ap-
proach toward object-oriented programming with clean
semantics based on side-effect free foundation, FOOPS
[16] should be listed even though it is a functional pro-
gramming language. FOOPS distinguishes objects from
abstract data types and the basic construct is much
more restrictive and complicated.

9 Current and Future Works

We are now implementing an experimental version of
A'UM compiler into KL1. We will write a variety of
sample programs to investigate the expressive power of
A'UM and start writing the operating system PIMOS
in this version.

In the future, we are planning to explore the better
implementation in which primitive objects should work
more effectively. The development of programming and
debugging environment will be another work.
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