Y7 by oz THEBER 244
(1988. 2. 12)

An Axiomatic Verification Method for

Synchronizations of GH C Progranms

Masaki Murakami

Institute for New Generation Computer Technology,

Mita Kokusai Building, 21F

4-28, Mita 1-Chome, Minato-Ku, Tokyo 108, Japan

ABSTRACT: Guarded Horn Clauses (GHC) is a parallel programming language based

on Horn logic.

This paper proposes an axiomatic verification method for

partial correctness of GHC program as Hoare logic. The system presented here

can prove properties of the GHC program which are satisfied by synchronization

mechanisms and cannot be proved by methods for pure Horn logic programs.

1. Introduction

During the last few years, several parallel
programming languages based on Horn logic, such as
PARLOG [Clark 861, Concurrent Prolog [Shapiro 86] and
Guarded Horn Clauses (GHC) [Ueda 85] have been
investigated. These languages are designed to
represent the notions of processes and to provide
mechanisms for communication and synchronization in a
logic programming framework. In these languages, Horn
logic is extended to describe these notions. In the
case of GHC, a program consists of a finite set of Horn
clauses with a commit operator, " |’.

Thus verification methods for pure Horn logic
programis such as [Kanamori 86] are not enough to prove
properties of programs which contain such
synchronization operators. For example, Takeuchi
[Takeuchi 86] introduced an example of a GHC program
top(X, Y). It satisfies the output condition Y = [a, a]
for the input condition X = [a] by the control of
synchronization mechanisms. It is impossible to show
that top satisfies this specification by using
verification methods for pure Horn logic programs. Thus
the seman{ics of synchronizations are expected. Results
on the formal semantics of parallel languages base on
Horn logic have been reported in several sources [Ueda
86, Saraswat86, 87, Levi87?, Takeuchi86, Maher87].
However, most of them are based on operational or
fixedpoint approach. It is too complicated to apply

these semantics to prove properties of given programs.

This paper adopts the axiomatic approach to give a
logical framework as a verification method for the
properties of GHC programs which are satisfied by
synchronizations. A Hoare-like axiomatic system for
proving the partial correctness of programs is ﬁodified
and extended for GHC programs.

In this paper, several restrictions are assumed to
Most of them
Programs which do not satisfy the

GHC programs for the proof of properties.
are for simplicity.
restrictions can be verified by a straightforward
extension of the method presented in this paper.
However some of the restrictions are essential. One of
the essential restriction is that the guards of clauses
must be flat. However flat GHC is considered to be
enough useful. Thus it is considered that there no
problem to restrict the target of our verification
method to flat GHC programs.

Another essential restriction is that
data-dependencies in programs can be decided obviously.
Namely it is assumed that for every occurrence of
variables in the execution of the program, it can be
decided whether it occuers as an input variable or an
output, and for any variable which is shared between
more than two processes, which process instanciats the
variable can be decided uniquely. These conditions are
assumed because that the dependencies are refered in
the applications the inference rules of the system
presented here. It is considered that the system
presented here can be extended for the verification of

programs that the dependencies of data cannot be

decided obviously by introducing some annotations which
denotes the dependencies that the programmer is
conscious of implicitly. Thus it is considered that the
method of verification presented here is not so rigid

as the appearance.

2, Partial Correctness of GHC Programs

This section briefly introduces GHC and defines

partial correctness for GHC.
2.1 Guarded Horn Clauses

Guarded Horn Clauses (GHC) is a parallel logic
programming language. For a set of predicate symbols,
PRED, function symbol, FUN, and variable symbol, VAR, a
program of GHC consists of a finite set of guarded
clauses. A guarded clause has the form:

H :- Bl,+, Bn | A1, -, Am

where H is the head of the clause, H, B1,+-, Bn is
the guard, and Al, -, Am is the body. Note that the
clause head is included in the guard. Each Bi(l < i

< n) has the form “true” or T = S, where T and S
are in the set of terms, TERM, constructed from FUN and
VAR. Each Aj(l = j = m) takes the form p (T, Tk)
or T = S, where p € PRED and Ti(1=i =k)

€ TERM. H takes the form p (T1,--Tk). The operator
"' is called the commitment operator. A goal clause

takes the form of a body part and is denoted:
Gl, -, Gh

where each Gi (1=i=<h) is called a goal. For the
computation rule of GHC programs, see [Ueda 85]. The
set of guarded clauses Dba in following defines one of
the programs which are called Brock~Ackermann's anomaly
[Takeuchi 86].

Dba:
top(In, Out) :- true |
s(In, Mid, Out), plusi(Out, Mid). —-=---—- (1)
s(Ix, Iy, Out) :- true | dup(Ix, Ox), dup(ly, Oy),
merge(0x, Oy, 0z), pop(0z, Out)., ~—--—-—- (2)
pop([A, BI_], 0) :~ true | 0 = [A, B]. ———--om— (3)

dup([AlI], 0) :- true | 0 = [A, A].

merge([AlIx], ly, 0) :- true |

0 = [AlOut], merge(Ix, ly, Out). --(5)
merge(Ix, [Ally], 0) :- true |

0 = [AlOut], merge(Ix, ly, Out). --(6)

merge(lx, [, 0) :- true | Ix = 0. ——=———mem— ()]
merge([], Iy, 0) := true | Iy = 0. ——=———rm——v (8)
plus1([AlIn], 0) :- true |

Al = succ(4), 0 = [A1]l. ———————v (9)
Consider the following goal “top([01, Out)’ where

0 is an atom and Out is a variable term. During the
execution of this goal, the goal such as merge([0, 01,
0y, 0z) is invoked where Oy and 0z are variable terms.
For this goal, the head part of (8) does not match the
goal, and (6) and (7) continue to suspend. Thus, only
commitment to (5) can make the execution proceed. Thus
this program is controlled by the guard part.

01 is
s(0) 1] is
also an answer in naive declarative sense.

Continuing the execution, only Out = [0,
derived from top in spite of Out = [0,

2.2 Goal Forms and | Annotation

In the axiomatic approach to give semantics for
conventional programming languages, the partial
correctness of a program is represented in a formula

like the following.

input condition {program} output condition

The partial correctness of GHC programs is
represented in a similar way. Input conditions and
output conditions are predicates over the Herbrand
universe constructed from FUN. The semantics of these
predicates are relations over the Herbrand universe. We
can use for example existentially quantified variables
and negations to define the predicates. Thus predicates
for input/output conditions can be defined in more
natural and intelligible way than the definitions in
GHC programs.

A expression representing a set of goal clauses

appears in the 'program’ part.

Def. 1 :
Let D be a set of guarded clauses. The expression g :

goal form

p(tl, -, tn) is said to be a goal form where

D is a n-ary predicate name which is defined in D, t
1‘ e,
and Var. 'Var’ is a set of meta variables over TERMS
and Var N VAR = ¢.

tn are terms which are defined from FUN and VAR,

In this paper, 'variable’ means abstract variables
appearing in goal forms, which are denoted by lower
case letters X, y, z, u, - which are not in VAR.
Variable terms appearing during the execution of a
program which are in VAR (and in TERM) are denoted by
upper case letters U, V, -, Elements of VAR appearing
in clauses in D are considered as variables for
convenience. In this paper, 'term’ means an element of
TERM. A term containing an element of Var is called a
"term form'. The set of term forms constructed from Var,
VAR and FUN is denoted as “Term'.

For a goal form g, an individual goal G is
: Var - TERM. A

goal form g can be considered to represent a set of

derived by applying a substitution =
goals | gl as follows.

lgl = {G|32:Var — TERM, G = = g}

For example for g: merge(x, [y, v1, z) set of
goals | gl is {merge(X, {Y,Y],), merge(l, [0,0], W),
merge(X, [0,0], [0,1,01), merge({11, [0,0],[]), -~}
Note that an unsuccessful goal is included.

A sequence of goal forms is called a goal clause
form. A goal clause form represents a set of goal
clauses.

Partial correctness of a GHC program is represented
by a formula which contains a top level goal clause
between { and } .
Def. 2

Let D be a set of guarded clauses, gl,*, gn be a

: process form
top level goal clause form, then:

i) g1, gn and each gi (1=i=<n) are process forms.
ii) If g is a process form and for some clause in D :
H :- Al, -, Am | B1, -+, Bk, g can unify
with H by the mgu €, then & B1, -+, 8 Bk and

each 6 Bh (1=h<k) are process fornms.

iii) If g is a process form and for some g’ and =
:Var — Term £ g’° = g, then g’ is a process
form.

In this paper, it is assumed that for any goal form

at most one variable is instantiated by the goal itself.
The variable is called the output variable. It is
enough to consider that a goal form g represents a set
of goals such that G = S g and S substitutes only a
variable term to the output variable. Consider a top
level goal clause form g1,+-, gn. For a variable x
(not output) in gi which is instantiated by an another
process gj (i #* j) during its execution, the process
gj in which X appears as an output variable is called
the producer of x. In this paper, for every non-output
variable, its producer is fixed and is not changed by
Z. For every clause in D: H:- Al, -, Ak | B1, -,
Bh and for any variable X which appears in B1, -,
Bh and does not appear in H, Al, --, Ak, the
producer of X is fixed in B1, -+, Bh. For a goal
form, g with output variable y if g is unifiable
with H by mgu 6 without instantiating y, then y is
also said to be an output variable of a goal clause
form, 8 B1, -+, 6 Bh.

data~dependencies in programs must be decided obviously.

These restrictions mean that

In the rest of this section | annotation is
introduced. Consider the following example. For a goal
form g, a set of all goal clauses which are deirved as
sequences of subgoals for some instance of g is mot
represented by a goal clause form which is derived by
symbolic derivation of g on D in general. For
example, in Brock-Ackermann's anomaly, the subgoals of
top(x, o ut)

goals of the form have .the following

form:
s(x, mid, out), plusi{out, mid). ——~-——- (%)

mid is never instantiated by the unification of
the goal form and the head part since it is
instantiated during execution, and a goal with
non-variable term does not appear in execution of any
goal in [top(x, out)l, in spite of the form of (%),

It is enough to consider that not only out but also
mid is uninstantiated. In this paper, a sét of goal
clauses which contains variables such as mid is
represented by a goal clause form with { annotation to
such variables. The set of subgoals of top is denoted
as follows using {.

s(x, mid{, out), plusi(out, mid{)
Namely, for a goal (clause) form g which contains
annotated variables, |g| is defined as follovs.

{S$ g | 33:Var — TERM such that for any |
annotated variable x, £x &€ VAR !}

lgl=

For a goal clause form g1, -+, gn which contains

| annotated variables, |gl,--, gnl| is defined
similarly.

In this paper, it is assumed that every goal form
contains at most one | annotated non output variable

for simplicity.

For a top level goal clause from g1, -, gn, if {
annotated variables are contained in g1, -+, gn then
the same variables in the process form defined from g1,
gn can be | annotated. Furthermore if y is a
variable which appears in 6 B1l, -, 6 Bk and appears
in neither 6 H nor 6Al, -, 6Anm,
annotated, where

H :- AL, -, An | B1, -,

such that a process form defined from g1!, ++, gn and

then y can be
Bk is a clause in D
H can unify with a process form g by the mgu 6.
Def. 3 : Hoare's formula for GHC programs
For a set of guarded clauses D, top level goal

clause g1, =+, gn and assertion language L for
input/output conditions,

1) if ®, ¥ € L then © {gl, =, gn}or ¥

is a top level formula.
2) it g1, gn' is a process form defined by g1,

««, gn, then ® {gl -, gn }o ¥ is a

formula.

D after } is abbreviated if there is no confusion.
The semantics of the above formula is defined in the

following section.
2.3 Operational Semantics of GHC

This section presents an outline of the operational
semantics of GHC. The semantics presented here is based
on "tree of computation” [Takeuchi 86]. In this paper,
the purpose of introducing the notion of the
computation tree is to define the semantics of formulas
which appear in the proof of partial correctness, so
only successful computations are discussed. The
semantics of a GHC program is defined as a set of
successful computation trees determined from the set of
guarded clauées and a goal clause form

The computation tree for individual goal is defined
as the trace tree [Takeuchi 86]. Intuitively, each
computation of the GHC program is a tuple of finite
trees whose roots are goals. A computation tree is an
AND tree formed by a computation. Each node is a goal
instantiated by a substitution derived when the
computation succeeds. Each child of an internal node is
a subgoal of its parent node which is derived when the
parent commits to some clause.

The following is an example of computation tree for
a goal, “merge([0,01,[1],2)".

merge}O, 01, 11,00,0.1D)

[0,0,11=[0,0,1] merge([0], [lw,]

0,11 = [0,1] merge((1, [11, [1D)

(11 =11

Since a GHC program may contain some nondeterminism
in general, there are a number of computation trees for
a goal and a set of clauses. For a goal clause which
consists of several goals executed in parallel, a set
tn> is defined

similarly. The set of computations defined from the set

of tuples of computation trees <tl1,-,

of guarded clauses D and goal clause G1,-*, Gn is
denoted as COMP(G1,-, Gn, D). '

Def. 4 :
For a top level goal clause form g1, -+, gn, the
set of computation trees Comp(gl, -+, gn, D) is

defined as follows:

Comp(gl, ~, gn D) = {<tl,-, tn> |
G1, =, Gn € {gl, -, gnl,
<tl,e, tn> € COMP(GL, -+, Gn, D) } .

[t is a little more complicated in the case of the
non top level goal form. In the example in Section 2,
"merge’ is invoked with a variable term Oy in the
second argument, and cannot commit to any clause except
(5). Therefore, the goal commits to clause (5) and
instantiates its third argument in the form of [x |y].
After the producer of the Oy receives [x |y], the it
is instantiated. In this case, | means that it does
not need to consider the computation that contains
commits which require an instantiated term in this
variable before the output instantiation which makes

the producer active as a computation of this goal form.

Thus, the set of computation trees of a non top level
process form such as "merge’ is determined by giving D
and a set of terms which is substituted for an output
variable and activates the producer of the | annotated
variable. Such set of terms can be represented using
the terms which appear in the guards of clauses which
define the producer predicate.

In this paper, it is assumed that the set of such
terms are represented in a unique term form for
simplicity. In other words, the semantics of processes
is given as a function from a term form 7z to a set of
computation trees Comp[g1,---, gn, D](z).

Def. 5
Comp[g1,-, gn, DI(7) =
{t |t & COMP(Z g1,--, = gn, D), and the
" output variable of g1,*+, gn can be

instantiated more than t by composing all
unifications which appear in t except
subtrees whose root is a goal which makes a
non- trivial commit about the term form
substituted in the | annotated variable.}

where a commitment of goal p(t) to a clause C is
said to be non-trivial about t if a goal p’ which is
derived by replacing t by a variable term cannot
commit to C. When g1, ---, gn is a top level goal
form:

Complgl, =, gn, DI(t) = Comp(gl, =, gn D)
where t is a term form which represents a set of terms
such that g1, -, gn cannot output.

Def. 6 .-~

Let gl,-, gn be a non top level goal clause form
o {g}
T where g is one of the process forms which are

and T' be a set of formulas which are the form

defined from g1,-+, gn. For g1,-, gn, a set of
hypotheses I' and a term form 7 :

I=® {gl,~, gn ¥

iff
for all <tl, -, tn> € Complgl,+, gn, DI(t) such
that <tl, -+, tn> € COMP(Z g1, -, S gn, D) and the
root of each ti (1<i<n) is 0 2 gl,, ¢ X gn, if

all of T' is true as top level then S® => ¢ SW. 4
fornula, © {g} T is said to be true as top

level when for all t € Comp(g, D) if the root

of t is o X g then £© = ¢ 37T,

Def. 7 :
A top level goal clause form gl,+, gn is partially
correct wrt @ and ¥ iff I is an empty set and

f= @ {gl,, gn} ¥,

In other words, a top level goal clause form g1,
gn is partially correct wrt ® and ¥ if and only of
for all <tl, *-,tn> € Comp(gl,--, gn, D) if <ti,
e, tn> € COMP(Z g1,++, £ gn, D) and the root of
each ti (1=i<n) is 02 gl,,0 2 gn then 3O => ¢
SV,

3. Axiom System

The axiom system presen‘ted here is based on the
following idea. The property of a goal clause form g1,
', gn is derived from the property of each gi (I<i
=n). The property of each gi is derived from the
properties of subgoals. An induction method is adopted
for the proof of recursive predicates.

Inference rules -

Substitution: o {g} ¥

o® {og} oW

where o does not instantiate any variable annotated
with | .

Consequence 1 .
® {g1, =, gn ¥ LN

® {gl, -, gn ¥

Consequence 2 :
O = ® {gl, =, gn ¥

@' {gi, -, gn ¥

Derivation 1
PN T=8S =T

® {T=8} ¥

Derivation 2
P1, -, Ps

o {g} ¥
where P1, «-, Ps is the sequence of all Pj (1 <
j = s) defined as follows. There is a guarded
clause : Hj :- Bjl, =, Bjh, | Ajl, -,
Ajmyin D for j (1 £ j £ s) such that H
j is unifiable with ¢ (o,g = o,
Hj), o ; does not instantiate the variable
annotated with | in the unification of a term form

appearing in g, and Pj has the following form:

Pji=/"N0¢,Bjk A ¢,®
k=1, h,
o AL, = ,0,Ain o,V
where for each Bjk (k=1, h,), there is
a substitution A jk such that 2 jkBjk is true and
does not instantiate any variable in B jk annotated
with {.

The inference using this rule with variables with
V in its conclusion is called degenerated
inference when the formula which was by derived
deleting | from the conclusion cannot be inferred from
formulas which were derived by deleting all | from

premises of this inference.

The rule, Parallel is introduced. This rule takes
formulas for the properties of each process gi (ISis<
n) as a premise and takes a formula for the properties
of gl,-, gn as a conclusion. An inference using this
rule is valid only if a certain condition is satisfied
on the sub proof schem.a P whose root is the result of
application of the Parallel rule. The notion of a sub
proof schema is defined as a subtree of a proof schema
defined below. Two propositions R (x, v, form(gl), f
r,P) and O(x,7v, form(g2), f r,P) are defined
vhere X is a variable, 7 is an element of Term, g1
is a goal form which contains X as a non output
variable, g2 1is a goal form which contains X as an
output variable, form(g) 1is a formula which appears
in P and takes the form ® {g} ¥, and fr isa

conclusion of degenerated inference.

R(x, t,form(gl), fr, P) =
if [if form(g1) is the formof © {gi1} T
then x = v A © is equal to false.] then true
else if [there appears a.producer p of X in P |
then O(x, 7, form{(p), fr, P)
else true

R(x,
X cannot take the

where p is the producer of X. Intuitively,
v, form(gl), .f r, P) means that
form of v when g1 is invoked.
Oo(x, 7=, form(g2), fr, P)-=

if [fr is form(g2)]

else if [g2

then true
contains a unification of x and a

ters form t. then

if [t and v are unifiable] then

if I3 o:t= 0 t] then false

else [\,/0(x1i, o xi, form(pi),
i=1,h fr,P)
vhere o is a substitution such
that ot = o v and instantiates
variables, x1,--, xh appears in
t, and pi is the producer of

xi.]
else true
else
I/NC V R(yu, okyu,
1 £kK=m 1=usy forn(g?2), f r,P) Vv

O(x, v, form(qk(-+,x)), fr, P))
vhere there exists a clause : Hk(-, y)
= Bk |-, qk(, y), . (ISk <n)
such that for some substitution ok :
okgl2= okHk, oy = X and ok
instantiates variables y 1,+, yw
appears in g2.]

O0(x, t, form(g2), form{gr), P) means that g2
cannot make x the form of 7 without executing gr.

Parallel:

For a set of goal forms {g1l,-, gn}, if gi
contains a variable x with the | annotation and
gj (I1<j=n), then
let gi' be a goal form deleting ¢ from X otherwise
gi’" = gi.

there exists a producer of x,

If for all degenerated inference contained in the
sub proof schema of ®i {gi} ¥i (1si=n):

AR(xj, tj ©j {hj} Tj, ©j {hj} Tj P)

I1sji<n = true
then:
@1 {g1} Wi, -, dn {gn} ¥n
A @i {gl, =, gn'} A Wi
i=l,n i=l,n

where ©j {hj} Tj (1Sj<m: m is the number of
degenerated inference) is the conclusion of each
degenerated inference, X j is the variable which makes
the inference degenerated, and 7 j is a term form

which failed to unify with X j because of {.

For a non top level process form p(x {,:), when

a sub proof schema for ® {p (x },--)} ¥ with
degenerated inference for X is constructed, it means
that if X is instantiated with some time delay then
the result of the computation satisfies @ for all
input which satisfies- ¥ under some assumptions.
Furthermore, if the Parallel inference rule can be
applied to the sub proof schema of ® {p(x {,)} ¥
and the sub proof schema of the producer of x, then it
means that the time delays where the producer outputs
X and which are considered for the sub proof schema of
O {p(x{, =)} ¥ are consistent.

Read:

O {gl, x,) ¥
O {glx{,)) ¥

where | is attached to all occurrences of x in g(-,

X &,).

In this system, all formulas which are true in the
domain of the program are regarded as an axiom like the
usual Hoare-like system. In addition, the followings

are introduced as the axioms.
Axiom

{gl, =, gn} true

In most Hoare-like proof systems, a proof schema is
defined as a tree in which each of the leaves
corresponds to an axiom and the root corresponds to the
formula which expresses partial correctness. In this
system, in addition to axioms, “the hypothesis of

induction’ can appear as a leaf.

Def. 8:

For a top level goal clause form gl ,-+, gn, a
proof schema of formula @ {gl, =+, gn} ¥ is a tree
such that:

1) The root of the tree corresponds to
o {gl, =, gn} ¥ .

2) For every node n, either a) or b) following is
true.

a) For some inference rule (shown in Section 3), n

is an instance of a conclusion and each child of

n corresponds to a premise.
b) n is a leaf and one of the following is true:

(i) n is an axiom.

(ii) n is identical to one of its ancestors n’ ,
the Derivation 2) rule is used at least once
on the path form n” to n and n does not
contain the | annotated variable as non
output variable.

For a goal clause form g1l,*-, gn, if there exists a
sub proof schema of ® {gl,*+, gn} ¥ for some ® and
¥ with formulas f1,

appearing as the leaves then :

f2,+, £k which are not axioms

|I=® {gl,~, gn} ¥

{f1, £2, , 1k} and v, where T is the
result of compositions of all unifications for the

for I' =

output variable which appear in the sub proof schema
and are not children of any degenerated inference.

Especially for a top level goal clause form gl,-, g
n, if there exists a proof schema of ® {gl,-, gn} ¥
for some ® and ¥, then gl,--, gn is partially
correct wrt @ and ¥.

Using this axiom system, the following property of

Brock Ackermann anomaly can be proved.
[al=in {top(in, out)} out =1[a, al

The outline of the proof is presented in the appendix.
This property of top is made true by the guard/commit
mechanism of GHC, and cannot be discussed by regarding
the programs as predicates. Consider the program
obtained by replacing the clause (3) by the following

two clauses.

pop([A[B], 0) :- true | 0 = [4, 01], popl(B, 01).
popi([Al_l, 0) :- true | 0 = A.

Although the new program is equivalent to top in the
declarative sense, it does not satisfy this property.
0f course, this property cannot be proved for the new
program by this axiom system. Namely in the proof of
the appendix, if the sub proof schema of (a, 16) is
replaced by the proof schema for new definition of pop
in the inference which derives (a, 17) by the Parallel

[Al1y], (a,6), (a,8), P1T) is not
is the new proof schema. Thus, the

rule, then R(oy,
true where P17
Parallel rule cannot be applied and the proof of this
property fails. Thus the proof fails. Of course it is
easy to show that it is immposible to prove (a, 22) with
another rule in this system.

However, the following property is true for the new

program and it can be proved by this system.

out)}
al] V out = [a, s(a)]

[a]l = in {t2(in,
out = [a,

4 . Conclusion

This paper proposed an axiom system for proving the
partial correctness of GHC programs. In this system
the partial correctness of programs which are executed
deterministically by the guard/commit mechanism can be
proved for enough strong output conditions.

In this paper, a number of restrictions to GHC
programs were assumed. A method that decides if a
program satisfies the restriction or not is not
presented here for the restrictions about obvious
data-dependency. Namely we expect some dynamic anlysis
nethod for deciding if the output variable of a program
is fixed uniquely. However such dynamic analysis method
for GHC programs is not investigated enough yet. The
investigation of analysis method is one of the
important topic for future research. We consider that
verification method of programs such that presented
here are useful for the foundations of investigation of
analysis method of GHC programs.

Acknowledgment

I would like to thank Dr. K. Furukawa, and all the
members of the First Laboratory of ICOT for many useful
discussions.

References:

[Brock 811 J. D. Brock, W. B. Ackermann, Scenarios: A
Model of Non- determinate Computation, Lecture Notes in
Computer Science, No. 107 Springer, 1981

[Clark 86] K. L. Clark and S. Gregory, PARLOG:
Parallel programming in logic, ACM Trans. on
Programming Language and Systems 86, 1986

[Kameyama 87] Y. Kameyama, Axiomatic System for
Concurrent Logic Programming Languages, Master’s Thesis
of the University of Tokyo, 1987

[Kanamori 86] T. Kanamori and H. Seki, Verification of
Prolog Programs Using an Extension of Execution
Lecture Notes in Comp. Sci., No. 225, 1986

[Levi 871 G. Levi and C. Palamidessi, An Approach to
the Declarative Semantics of Synchronization in Logic
Language, Proc. of International Conf. on Logic
Programming 87, 1987

[Maher 871 M. J. Maher, Logic Semantics for a Class of
Commited-Choice Programs, Proc. of International Conf.
on Logic Programming 87, 1987

[Murakami 871 M. Murakanmi, Proving Partial
Correctness of Guarded Horn Clauses, The Logic
Programming Conference '87 1987

[Saraswat 85] V. A. Saraswat, Partial Correctness
Semantics for CP [},],&), Lecture Notes in Comp. Sci.,
No. 206, 1985
[Saraswat 871 V. 4. Saraswat, The Concurrent logic
programming CP: definition and operational semantics,
Proc. of ACM Symp. on Principles of Programming
Languages, 1987
[Shapiro 86] E. Y. Shapiro, Coneurrent Prolog: A
progress report, Lecture Notes in Comp. Sci. No. 232,
1986
[Takeuchi 86] A. Takeuchi, Towards a Semantic Model
of GHC, Tech. Rep. of IECE, COMP86-59, 1986
[Ueda 851 K. Ueda, Guarded Horn Clauses, Tec. Rep. of
ICOT, TR-103, 1985
[Ueda 86] K. Ueda, On Operational Semantics of
Guarded Horn Clauses, Tech. Memo of 1COT, TM-0160, 1986

Appendix : Example
Verification of the Brock-Ackermann anomaly
The outline of the proof X= [a] {top(X, ¥)} X=[a, a]
is presented.
It is easy to show from the axionm and Derivation 1 :

true {oz0 = [a0loz1]} 0z0 = [a0]lozl]. ——=(a,1)
The following is the axiom.
true {merge(ix0, oyl, 0zl)) true ——=———eme (a,2)

Clearly, Parallel can be applied to (a, 1) and (a,2).

true {0z0 = [a0]oz1], merge(ix0, oyl
020 = [a0]oz1]

, ozl)}

Applying Consequence:

true {020 = [a0]ozl], merge(ix0, oyl, ozl)}
[allix0]=[ao]:020=[aOI_]A ————— (a, 4)

The following are derived from the axiom and

Consequence:

true {oyl = o020}

[1=[a0] = oz0 ="[a0]_] ~———mmmemev (a, 5)
Applying Derivation 2 to (a,4) and (a,5), (a 6) is
derived. This is a degenerate inference.
true {merge(ix, oy{, o0z0)}
ix=1T[a0] = 020 = [a0}_] ~---mmmmmv (a, 6)

On the other hand,
Derivation 1:

the following is the axiom and

true {oz = [a2]0z0]}

020 = [a0]_] = oz=1[a2 a(]] --—- (a, T)

The following are shown from the definition:

R(oy, [Allyl, (a, 6), (a 6),
R(oy, 1. (a 6), (a 6),

pP8) =
P3)

true
= true

wvhere P8 is the sub proof schema which results in the
application of Parallel to (a, 6) and (a, 7) as the root.

Thus, Parallel can be applied to (a, 6) and (a, 7).
true {0z = [a2]020], merge(ix, oy, 02z0)}
0z0 = [al]_] = oz =1[a2 all_] A
ix=1[a0] = o020=1[a0]l_] --——- (a, 8)
Applying Consequence :
true {oz = [a2]020], merge(ix, oy}, oz0)}
[a2lix] =[a, a]l = 0z =1[a, al_l
------------- (a,9)
The following is from the axiom and Consequence :
true {oyl = oz}
[1=[a, al] = oz=1[a, al] --——- (a, 10)

Applying Derivation 2 to (a,9) and (a, 10) , (a, 11)
is derived. This is a degenerate inference about oy}.

true {merge(ox, oyl, oz)}
ox=1[a, al = oz=1[a, al] =~ (a, 11)
The following-is the .axiom.
true {dup(m{, oy)} true. ------——- (a, 12)

The following is from the axiom and Derivation 1 :

[a]l = [a3]inl]
ox =

{ox =[ay,
[a, a].

Applying Derivation 2 :
fal=1in

{dup(in, ox)} ox =[a, al.

It is easy to show the axiom and Derivation 1:

true {out = [ad4, adl}
[a4, a4l] =1[a, all]
= out = [a, a]. - (a, 15)
Applying Derivation 2 :
true {pop(oz, out)}
oz=1{a, all
= out = [a, a] ——————-mmmmm (a, 16)
The following are shown from the definition:
R(oy, [Allyl, (a, 6), (a, 6), P17) = true
R(oy, [1, (a 6), (a, 6), P17) = true
R(oy, [Allyl, (a, 11), (a, 11), PLT) = true
R(oy, [1. (a, 11), (a, 11), P17) = true

where P17 is the sub proof schema which results in
the application of Parallel to (a, 11), (a, 12), (a, 14)
and (a, 16) as the root. Thus, Parallel can be applied

to (a, 11), (a, 12), (a, 14) and (a, 16).
[al = in h
{dup(in, ox), dup(m{, oy),
merge(ox, oy, o0z), pop(oz, out)}
ox =[a, al A ox=1[a, a]
= oz="[a, al_l
------ (a, 17)
Applying Consequence:
[al = in {dup(in, ox), dup{m{, oy),
merge(ox, oy, oz), pop{oz, out) }
out = [a, al.
----------- (a, 18)
Applying Derivation 2 :
[al=in {s(in, m{, out) } out =[a, al.
-------------- (a, 19)
The following is the axiom.
true {plusi{out, m{)} true ——-==———m-eeee (a, 20)
The following are shown from the definition:

R(oy, [All1¥], (a, 6), (a 6), P21) = true
R(oy, [1, (a, 6), (a 6), P21) = true
R(oy, [Allyl, (a, 11), (a 11), P21) = true
R{oy, [1, (a, 11), (a 11), P21) = true

where P21 is the sub proof schema which has the
result of applying Parallel to (a, 19) and (a, 20) as

the root. Thus, Parallel can be applied to (a, 19) and
(a, 20).
[Al = in {sCin, m}, out),
plust(out, m})} out = [a, a]
---------- (a, 21)
Applying Derivation 2:
lal = in f{top(in, out)} out =1[a, a] - (a 22)

