V7 by 2 7EBHR 26— 4
(1988 10. 14)

BRWEEH S bR O 7 v 7 5 L83 2 ARSI T

(S

(BF) S = v ¥ 2 — X BB ssisis
T 108 HEEHX = 1-4-28 “HER L F v 7 21 &
takayama@icot.jp

- SEBATBEREM (realisability interpretation) IC & » CHERMIEEAA L 7 v 7 S ARBHENZ L L EE ADEIDRLTW
20, LoLAadb, EHEAFERCREALEROAVAE2TA I TEAZ—F2EGAE v 7S o N B8HINE C
LBB, KM T FIAREMT L, £/ — PR END 3 ek ) AEEOE N vy J A2 BHT
%51k (Extended projection method) #4543,

HEANLEZ S L ¥ TEHAROBRBOCH 5BOES 2T > CITHRBEINAEHD 5 b ¥ OEROEHBED & »
STEWEE X %0, KiK. BEOEHAGMRROBEIC 2 & 3HRAMORBICH» TEDOBREERETETWE, &/ —
FCFEROEREE X 50 ¢ ORER., BRBOOBEERE 2 CCllbh 2 HRBAIC X > THRENIKT AL 3. ThE
v —F LR, EHRABEFRICOBRESBLCREA - F2ERLAVI S KT 3, COHER, Bk s
> ZFEHDOGEIC koA Y IR 20 AT, CO X5 ABEOBHES 54 5,

Proof Theoretic Approach

to the Extraction of
Redundancy-free Realiser Codes

Yukihide Takayama

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japan
takayama@icot.jp

Executable codes can be extracted from constructive proofs by using realisability interpretation. However, real-
isability also generates the redundant codes that have no significant computational meaning. The redundancy
causes heavy runtime overhead, and is one of the obstacles in applying realisability to practical systems that realize
the mathematical programming paradigm. This paper presents a proof theoretic method to eliminate redundancy
by analyzing proof trees as pre-processing of realisability interpretation; according to the declaration given to the
theorem that is proved, each node of the proof tree is marked automatically to show which part of the realiser is
needed. This procedure does not always work well. This paper also gives an analysis of it and technique to resolve

critical cases. The method is studied in a simple constructive logic with primitive types, mathematical induction
and its g-realisability interpretation.

(1)



1. Introduction

The idea of program synthesis from constructive proofs by using the notion of realizability is rather old. How-
ever, the programs extracted by ralizability, realizer codes, are not always efficient: they generally contain some
redundancy. The classification of the redundancy is given in [Takayama 88a].

[Bates 79] applied a traditional syntactical optimization technique on the code extracted from proofs which might
destroy the clear correspondence between proofs and program via realizability. [Sasaki 86] improved the program
extraction algorithm based on realizability so that the trivial code for the formulae that has no siginificant compu-
tational meaning can be simplified. A similar technique is used in the PX system [Hayashi 87] as type 0 formulas.
The QPC system [Takayama 88a] uses a similar technique to Sasaki’s, normalization method to eliminate f-redex
in the extracted codes, and modified V code technique to simplify certain classes of decision procedures. However,
the code extracted from constructive proofs still has redundancy. That is the codes which can be seen as verifi-
cation information of the extracted algorithms.

The most reasonable idea to overcome this problem would be introducing suitable notation to specify which part
of the proof is necessary in terms of computation. The set notation {z : A|B} is introduced in the Nuprl system
[Constable 86] as a weaker notion of 3z : A. B. This is to skip the extraction of the justification for B. [Mohring
88) modified the caleulus of construction [Coquand 86] by introducing two kinds of constants, Prop and Spec, to
distinguish the formulae in proofs whose computational meaning is not necessary. These works are performed in
the Martin-Lof’s style of constructive type theory.

This paper presents a proof theoretic method in the style of D. Prawitz to perform the program analysis at proof
tree level, and to generate redundancy-free realizer code. In some cases, the redundancy can be removed easily
by applying a projection function to the extracted code. However, the situation around the redundancy is a little
more complicated particularly when the program extraction is performed on the proofs which use induction. The
method of program analysis can be presented quite clearly and naturally if it is performed at the proof tree level
because proofs are the logical description of programs and have a lot of information about the programs.

The notion of marking, which corresponds to the set notation in the Nuprl and Spec and Prop constants in the
calculus of construction, is introduced, and the program extraction algorithm is also given.

2. Proof theoretic terminology and notation

Following is the list of the notation and terminologies used in this paper. Most of them are borrowed from [Prawitz
65).

Definition 1: Basic notation
(1) II denotes a proof tree, and ¥ denotes a sequence of proof trees;

(2) Proof trees such as follows are denoted ([4]/Z/B).

STESIES

Definition 2: Proof theoretic terminologies

(1) Application, see [Prawitz 65] p26;

(2) Formulae which occur as conclusions and premises of applications of rules are called nodes;
(3) The subtree of a tree, 11, determined by a formula, A, see [Prawitz 65] p25;
(4) Top and end-formula, see [Prawitz 65] p25;

(5) Side-connected, see [Prawitz 65 p26;

(6) Minor and major-premise, see [Prawitz 65] p22;

(7) An application of (D-I) succeeded by an application of (D-E) is called a cut.
(8) Thread, see [Prawitz 65] p25;

(9) Segment, see [Prawitz 65] p49;

(10) Path, see [Prawitz 65] p52;

(11) Main path, see [Prawitz 65} p53;

3. A Program Extractor System: QPC

QPC is a sugared version of a subset of QJ [Sato 86]. It is the subset of QJ which is related to program extraction
from proofs, and the primitive data structure is restricted to natural numbers and lists of natural numbers. QPC
is, roughly, an intuitionistic version of natural deduction with mathematical induction and induction on natural
number lists plus higher order equality and inequality. The program part of QPC is given as ordinary lambda
calculus with sequences of terms and multi-valued recursive call programs. See [Takayama 88a] for more detail.

(2)




3.1 g-realizability and Ezt procedure

Definition 3: q-realisability
Let @,y,--- denote variables, and Z,7, - - denote sequences of variables. Z means x; A - -- A &,, where z; is an

abbraviation of z; : ¢ for a type o.

. If Ais an atomic formula, then a q 4  ANa=nil

. @D aANBE TqAAGqB

(2,%,7)  AVB Y (outl(z) AANT q AAT]) V (outr(z) AT | ABAT q B)
. quDBdéf’y"LAmono(y)/\‘v’f.(A/\ZEqADﬂ(E) q B)

.7 q V. A ¥ Vg, (y(z) q 4)

6. (z,7)qdz.A PP Azlz) AT q Agl7]

where mono(7y) def VZ0.VZ1.(Ty E F1 D T(To) T ¥(T1)). Aglz] means the substitution of z to & which occurs
‘freely in A.

[ N

In the standard g-realisability, a q A e 4if Ais atomic. However, the realisers for atomic formulae are restricted
to nzl in QJ. The realisability here is not the standard g-realisability in this respect.

Ezt procedure is the algorithmic version of the realizability interpretation given in [Takayama 88a] which takes
constructive proofs as inputs and returns the computational meaning of the proofs in A-expressions.

3.2 Realizing variables and length of formulae

The realizing variable sequence (or simply realizing variables) for a formula, 4, which is denoted Ru(A), is a
sequence of variables to which realiser codes for the formula are assigned. Realizing variable sequences are used
as the realiser code for assumption in the reasoning of natural deduction.

Definition 4: Ru(4)

. Ruv(A) & (nal), if A is atomic.

. Ru(A A B) % (Ru(A4), Ru(B)).

. Ru(AvB)Y (z, Rv(A), Ru(B)) where z is a new variable.
. Ru(A > B) Y Ru(B).

. Ro(Vz:0. A(z)) ¥

= Ru(A(z)).
. Ro(Jz: 0. A(z)) & (z, Rv(A(z))) where z is a new variable.

DOt o W N

Definition 5: Zength of formulae
I(4), which is called the length of formula A, is the length of Ru(A).

4. Declaration to specifications
The declaration indicates which values of the existentially quantified variables of a given theorem are needed.

Definition 6: Declaration
(1) A declaration of a specification, A, is the finite set, I, of offsets of Ru(A). It is a subset of the set of natural

numbers totally ordered by <. A specification, A, with the declaration, I, is denoted {A};. Elements of the
declaration are called marking numbers.

(2) The empty set, ¢, is called the nil declaration.

(3) The declaration, {0,1,---,1(4) — 1}, is called trivial.

Suppose, for simplicity, that the given theorem is of the following canonical form:
Vo, Vom—1.3y0. - Iyn_1-A(To, -+, Tme1, Y0, Yn—1),
and the values of yg, -, yx, 0 < k < n — 1, are needed. It is declared with the set of the positions:

{0,---, k}

The following restriction assures a sort of soundness.

Restriction: The marking numbers of a declarations cannot specify realizing variables of more than two subfor-
mulae of the specification which are separated by A.



5. Marking

Marking means to attach to each node of given proof trees the information that indicates which codes among the
realiser sequence of a given formula are needed. The marking can be determined according to the inference rule
of each node and the declaration as will explained later.

Definition 7: Marking

(1) Marking of a node, 4, in a proof tree, II, is the finite set, 7, of offsets of Ru(A). It is a subset of the set of
natural numbers totally ordered by <. A node, A, with the marking, I, is denoted {A}s. Elements of the marking
are called marking numbers. i
(2) The empty set, ¢, is called nil marking.

(3) The marking, {0,1,--,I(4) — 1}, is called trivial marking.

Note that declaration is a special case of marking; the marking of the end-formula of the proof tree is the
declaration.

Definition 8: Marked proof tree

A marked proof tree is a tree obtained from a proof tree and the declaration by the marking procedure.

The marking procedure continues from the bottom of proof trees to the tops. The proof compilation procedure,
Ezt, should be modified to take marked proof trees as inputs and extract part of the realiser code according to
the marking. It will be defined later. The formal definition of the marking procedure, called Mark, is given in
[Takayama 88b], but here, part of the definition will be given rather informally to make the idea clearer.

5.1 Marking of the (3-I) application
By definition, the Oth code of

is the term which is the value of & bound by 3. Let I be the marking of the conclusion, then ¢ should be marked
{0} if 0 € I, otherwise the marking is ¢. The marking of A(t) is given as all marking numbers in I except 0.
However, note that the ith code (0 < 1) of 3z.A(z) corresponds to the i — 1th code of A(t). Consequently, the
marking of A(t) is (I — {0}) — 1 where, for any finite set of natural numbers, K, and any natural number; n,

K-n%{a—nla€ K An<a}. K+nis defined similary.

5.2 Marking of the (3-E) application

By the definition of the Ext procedure, the realiser code of C' concluded by the following inference is obtained by
instantiating Rv(A(t)) in the code from the subtree, ([t, A(t)]/£1/C), by the code from the subtree, (Zo/3z.Az)):

[t, A(®)]
E() 21
dz. A(x) C

= (3-E)

where A(z) contains « as free variables.

Hence, both the marking of C' as the conclusion of the above tree and the marking of C as the minor premise are
the same. The marking of the subtree determined by the minor premise can be performed inductively. Let J and
K be the union of the marking of all occurrences of the two hypotheses, ¢ and A(t). Note that J is either {0} or

é.
({t}r, {A(®)}k]
Yo P

1
Jz. A(z) {C}1
{Ch
The marking of the subtree determined by the major premise is as follows:
Case 1: J = {0}
This means that the following reasoning is contained in the subtree determined by the minor premise:

(3-E)

(&) P,
Sy Ply) D

(4)




and the marking of () is {0}, so that ¢ should be extracted from the proof tree determined by the minor premise,
C. Consequently, the Oth element of the sequence of realiser codes of Jz. A(xz), which is the value of z in A(z),
is necessary to instantiate the code from the subtree determined by the minor premise, so that the marking is:

2o
{3e. A(x)}{O}U(K+1)

Case 2: J = ¢
This means that the value of z is not necessary to instantiate the code from the subtree determined by the minor

premise, so that the marking is:
So

{3z. A(z)}k+1

5.3 Marking of the (V-E) application

The realiser code of C' concluded by the following inference

14 (B
R
AvB (C C
o v

is an if Ty then T} else T type code where Ty and T, are sequences of the same length (because both are the
codes of C), so that C as the conclusion and two Cs as minor premises should have the same marking. T and T,
are obtained by instantiating Rv(A) and Rv(B) in the code extracted from the subtrees determined by the minor
premise. The code extracted from the subtree determined by the major premise is used both to make T, and for
the instantiation of Rv(A) and Rv(B). Let I be the marking of the conclusion, then the marking of the subtrees
determined by the minor premises can be determined inductively. Let Jp and J; be the unions of markings of all
As and Bs as hypotheses:
{4l {Bl}s
2

o ¥
AVB oy
{Ch
The marking of the subtree determined by A V B is as follows:
Case 1: I =¢
This means that it is not necessary to extract any code from this proof tree, so that, of course, no code from the
subtree is necessary:

{C}I (V-E)

Yo
{AVB}¢

Case 2: I # ¢

Code Ty is the decision procedure that decides which formula in A and B actually holds. This is obtained in the
Oth code of the sequence of realiser codes of the subtree determined by A V B. Also, the codes to be assigned to
{[A]} 4, anid {[B]}j, are obtained in the remainder of the code from the subtree, so that the marking is:

o Zo
{Av B}{o}uJ‘;uJ;

where Jy = Jo + 1 and J; = J; + I(A).

5.4 Marking of the (O-F) rule
The realiser code of A D B is of the following form:
AT, (tg,- -+, tk) = (AT.tg, - -+, AT.t)

and (to,--,%x) is the code of A D B which contains the variable sequence (= Rv(A)) as free variables, so that
the length of the code from A O B is the same as that of B. Let I be the marking of the conclusion. Then, the
marking of A D B should also be I

Lo _ &
4 (A>5Bh,
{B}r (>-B)

(5)



The marking of the subtree determined by A4 is as follows.

Case 1: The application of (O-E) is part of the cut:

The realiser code of A as the minor premise is restricted by the marking of A as a hypothesis used in the subtree
determined by A D B. Let I be the marking of B, and let .J be the union of the marking of As as a hypothesis:

{[Al}s
2

B
{4> B}I(D_I)

{B}r

o
A

(>-B)

Hence, the marking of the subtree is:

{A}s

Case 2: Cut-free proof

The marking of A D B restricts only the length of output sequence AZ. (to,---,tx), and, for the input, all the
values of the variable sequence T are necessary. Specifically, it may happen that some variables in T are not
used in a particular output subsequence, AT.(tig, i)y {tio, - > ti} C {to,+,tx}. These redundant variables
cannot be detected by the proof theoretic method. However, this cannot always be seen as redundancy; A(z,y).¢
and \z.7 is to be seen as a different function. Consequently, the marking of the subtree determined by the minor
premise is trivial.

6. Critical applications

6.1 Induction hypothesis and marking

The programs extracted from induction proofs are recursive call programs. For simplicity, it is assumed in the
following description that induction steps are proved without any application of another induction, and induction
always means mathematical induction here. If the recursive call program, f, extracted from the induction proof

[A(=)]

20 Z1
A0) Az+1), .
W(nat-md)

is a program that calculates a sequence of terms of length n(= I(Vz.A(z))), every recursive call of f must calculate
the sequence of realiser codes of the same positions, so that the marking of not only A(0), A(z -+ 1) (conclusion of
the induction step) and Vz.A(z) but also A(z) (induction hypothesis) should be the same. This raises a question:
are the markings of A(z + 1) (conclusion of the induction step) and A(xz) (hypothesis of induction) by the Mark
procedure always the same? Actually, if the (V-E), (3-E), (D-E) and (A-I&E) rules are used in the proof of
induction step, the answer is not always affirmative.

The rest of this section is dedicated to the analysis of these critical applications of the rules.

6.2 Critical (V-E) and (3-E) applications

Let A(z) def Jy. B(z,y) vV C(z,y) where B(z,y) and C(z,y) are some formulae with z and y as free vari-
ables. Suppose that Vz. A(z) is proved by mathematical induction, and the induction step proceeds as follows.

Jy. B(z,y) V C(z,y) is the induction hypothesis.

[t] (t]
[B(z, 1)) [C(z,1)]

2o P
[B(z,1)V C(z,t)] Alz+1) Al+1)
By. B(z,9) V O(e,) AG+ 1) “P

Az +1)
If the declaration of Vz. A(z) is {0}, the marked proof tree is as follows:

{tp{[B(z, N} {t}e{lC(z, )]}y

oo S
{[Bz,H) VC(z, )}, {Ale+ D} {A(= + 1} (V-E)
{By- B(z,y) v C(z,9)l}; {A(= + D}y

AG T Dig) 5

(6)




where ¥go and 51 are the suitably marked versions of £y and £y. I and J are the union of the markings of
B(z,y) and C(z,y), and P and Q are the union of the markings of ¢ as hypotheses. Note that P and Q are either
{0} or ¢. Then K and L are as follows: ‘
Case 1: PUQ = {0}
K={0yu(I+1)U(J+YB(a,t))
L={0u(K+1)={0,1}U(IT+2)U(J + U(B(z,t)) + 1)

Case 2: PUQ =¢
K ={0}U(I+1)U(J +(B(z,1))
L=K+1={1}U(I+2)U(J+(B(z,t))+1)

On the other hand, because 3y. B(z,y) V C(z,y) is the induction hypothesis, it should have the same marking
as Vz. A(z), i.e., {0}. However, the marking of the induction hypothesis, L, contains a 1 that is not contained
in the marking of Vz. A(z). This indicates the fact that it is necessary to specify more codes in the realiser
sequences than one expects when (V-E) and (3-E) is used below the deduction sequence down from the induction
hypotheses.

T};xpe reason for this phenomenon is that the realiser code of AV B consists not only of the code of A and B but
also of the left or right code, so that the marking of A V B must contain 0 except in a few special situations. A
similar thing can be said about the marking of Jz.A(z) type formulae.

Note that all formula occurrences in a segment are of the same form. Any formula occurrence A in a proof tree
II that is not a conclusion or a minor premise of the application of (V-E) or (3-E) is a segment. This kind of
segment will be called a trivial segment in the following description.

Definition 9: Major premise attached to a formula
The major premise of the application of (V-E) or (3-E) that is side-connected with a formula A in a segment is,
if it exists, called the major premise attached to A.

Definition 10: Proper segment

The segment in a marked proof tree II is called proper iff every formula occurrence in the segment has non-trivial
marking.

Definition 11: Critical segment

Let TT be a subtree of the induction step proof in a proof tree in induction. A proper segment, o, in II is critical
iff there is a formula occurrence, A4, in ¢ such that the major premise, B, attached to A is a formula occurrence
in one of the main paths of II from the induction hypothesis.

6.3 Critical (D-E) applications ’
Suppose that the induction hypothesis is used as a hypothesis above a minor premise of (D-E) and the proof is

cut-free:
[A(2)]
Zo 2
B BoC
_TL_ (>-E)
II
Az +1)
Then the marking of B is trivial, so that [A(z)] has trivial marking. In this case, the correspondence between the
markings of induction hypotheses and the conclusions of the induction step holds only if the marking of A(z + 1)
is trivial.
Definition 12: Critical (D-E) application
If there is a path from the induction hypothesis to a minor premise, A, of an application of (D-E), A is called the
critical (D-E) premise, and the application is called the critical (D-E) application.

6.4 Critical (A-I&E) applications

Assume that the induction hypothesis is of the form A A B and the end-formula of the proof is A’ A B'. A and

A’ are of the same construction and differ at most in some atomic formulae. B and B’ are of the same relation.
Assume that the proof is as follows:

[AA B)
A N
H(J E]
A’ B’
A ANDB

(7)



Let I be the non-nil marking of A’ A B', and assume that {ala € I Al(A') < a} = I. Then the marking of A’
is ¢ so that the marking of the induction hypothesis, A A B, is also ¢, i.e., different from I. This situation is
problematic in terms of the correspondence of markings of induction hypotheses and conclusions of the induction
steps. The restriction on declarations in Section 4 prevents this sort of situation.

6.5 Soundness of the marking procedure

Theorem 1: {Takayama 88b]

Suppose that a formula, Vz.A(z), is proved by mathematical induction, and that I is an arbitrary declaration of
the conclusion. Let TI be a normal deduction of A(z) \ A(z + 1), and assume that there is no critical (A-I&E)
application in II:

[A(=)]

(2 1)
A(0) Alz+ ,
Vo Am) A (nat-ind)

(1) If TI has a critical (D -E) application in one of the main paths from the induction hypothesis, [A(z)], its
marking is trivial.

(2) If I has no critical (D-E) application or critical segment, the marking of the induction hypothesis by Mark,
[A(2)], is 1.

(3) Otherwise, the marking of [A(z)] is a propser superset of I.

According to the theorem, the declaration of the conclusion is as follows:

Case 1: If the proof tree of the induction step has the critical (D-E) application in one of the main paths from
the induction hypothesis, the declaration must be trivial.

Case 2: If the proof tree of the induction step has no critical (D-E) application or critical segment, the declaration
may be arbitrary.

Case 3: If the proof tree of the induction step has no critical (D-E) application but has critical segments, the
declaration must be enlarged to eliminate critical segments. In this case, the marking of the induction hypothesis,
S, and the initial declaration are different, so that the declaration should be same as S and the marking be
performed again.

7. Program Extraction Algorithm

The proof compilation should be modified to handle marked proof trees. The chief modifications are:

1) if the given formula, A, is marked by {io,--,%k}, extract the code for the ijth (0 < < k) realizing variable in
Ru(A);

2) if formula 4 is marked by ¢, no code should be extracted and there is no need to analyse the subtree determined
by A;

3) if formula A is trivially marked, all the codes for Ruv(A) should be extracted.

The following is part of the definition of the modified version of the Ext procedure, N Ext. proj(I)(%) for a finite
set of natural numbers, I, and a sequence of terms, %, is the set of ¢-th projection (i€I)oft.
20 z‘411——1

Ao, {Auiin, det _Zo ) . _Zn1
{Ag N NAp_q}r (‘A_I) = (Nt <{A0}Io) o N B ({An—l}fn—x >)

e NEzt

z

Note that if I; = ¢, NEzt <{Ai1}I;) =(nil) i=0---1.
_xr
{Ao/\"'/\An_l}J def by .
I Ex - 1ef Y . E— =0---n—1.
e NEzt (A (A-E) NEz oA AAna)s where i =0---n—1
z z .
a3, qer (left, NExt (m> ,any[k]) if0elrl
o NEzt W(V-I) = D)
{AV Bl (NEazt (—) any[l) H0grI
{4}y

(8)




E .
.Nwa( (%5 (V-I)) N {Ozght - NEM({B} >) if0elr

{4V B} .
I (any[l], N Ext <{B} )) fogr
where £ =|I| -1+ |J|) and I =| I | = | J |, and any[n] is the sequence of any n codes.
{4t {[Bl}as,
Z:() 21 22
{AVB},  {Ch {Ch
o NEzt Ch (V-E)
- {4 ]}11 {[B} .
i F left = proj ot | ——2 en z else x 2
= 1f left = proj({0}) (NE t({AvB}JO» then N Ext {C} 6 else NEzxt Clr 0
otherwise
. . z

| eODE et (WEa (o ;}{g)) ,

proj(J2)(Rv(B))/proj(Js + (1+ ] Jo 1)) (NE:m‘ (Tﬁj—

[z :0]

{A(E)} [z : 0]
. ot | ——EUL 4l Az z Z

NEzt Vo 0. A(0)]s (V-I) Az. NE t({A(x)};)
{[Al}s
{E} {(Al}s
: I def - %

o NEat Ao B}I(D-I) = ) proj(J)(Rv(4)). NE:ct( Bh )

J is the union of all the markings of A used as assumptions.

by = .
o NEzxt {t : U}J(*) {A(t)}R ( I) def (t, NEgzt <m)) ifJ = {O}
{3z : 0. A(z)}1 N Bat ( 5 )

{A®)}x

{t:o}x, {A()} L]
b3

Eean® o
o NEzt (3o :o Al s (3-E) e NEot (

{C}r

[t o)k {A(t)}L])
) [}

[

o { proj (L) A(a)) proiCI (> ) (N st (s ™) ). }

tlaroi(0) (W et (e

(9)



where I(>n) ¥ {z € I | z > n}.

[z : nat, {A(z)}1]
2

Yo
s vma | O (AGue@lr .
NEat {Vz : nat. A(z)}r (nat-ind)

[z : nat, {A(z)}1]

def ;LE.Ax.ifx:OthenNEacﬁ( ) else NExt o

Lo 21
{A(0)}s {A(suce(z))}1
where z = proj(I)(Rv(A(z))),and o = {z/z(pred(z)), z /pred(z)}
The following theorem shows that Mark and N Ezt can be seen as an extension of the projection function on the
extracted codes.

Theorem 2: Soundness of the N Fzt procedure
Let A be a sentence and D be the declaration. If Fqpc A and II is its proof tree, then

proj(D)(Ezt(Il)) = N Ext(Mark(Il))

8. Conclusion

A technique to eliminate the redundancy in realizer codes, the extended projection method, was presented in this
paper. It performs program analysis in the form of proof theoretic analysis of proof trees.

REFERENCES
[Bates 79] Bates, J.L., “4 logic for correct program development”, Ph.D. Thesis, Cornell University, 1979

[Constable 86] Constable, R.L., “Implementing Mathematics with the Nuprl Proof Development System”, Prentice-
Hall, 1986

[Coquand 86] Coquand, T. and Huet, G., “The Calculus of Constructions”,
Rapports de Recherche N° 530, INRIA, 1986

[Hayashi 87] Hayashi, S. and Nakano, H., “PX: a computational logic”, RIMS-573, RIMS, Kyoto University, 1987
[Mohring 88] Mohring-Paulin, C., 1988, personal communication
[Prawitz 65] Prawitz, D., “Natural Deduction”, Almquist and Wiksell, Stockholm, 1965

[Sasaki 86] Sasaki, J., “Estracting Efficient Code From Constructive Proofs”, Ph.D. Thesis, Cornell University,
1986

[Sato 85] Sato, M., “Typed Logical Calculus”, Technical Report 85-13, Department of Information Science, Faculty
of Science, University of Tokyo, 1985 )

[Sato 86] Sato, M., “QJ: A Constructive Logical System with Types”, France-Japan Artificial Intelligence and
Computer Science Symposium 86, Tokyo, 1986

[Takayama 88a] Takayama, Y., “QPC: QJ-based Proof Compiler ~Simple Examples and
Analysis”, Proceeding of European Symposium on Programming ’88 LNCS Vol. 300,
Springer-Verlag, 1988, also published as Technical Report TR-296, ICOT

[Takayama 88b] Takayama, Y., “Proof Theoretic Approach to the Extraction of Redundancy-free Realizer Code”,
Technical Report, ICOT, 1988, (to appear)

(10)




