Y7 MU= TEBR 278
eIy /EE 19-8
(1988. 12. 9)

Bt & 2 L FERICK 5 CCS oERAL &
| Z DRIRD X \~FEFTHEE
Formulation of CCS with Typed Lambda Calculus

and Its Efficient Interpretation Mechanism

YA 95—
Eiichi Horita

NTT v 7 b ¥ = THIEET
NTT Software Laboratories,
3-9-11 Midori-Cho, Musashino-Shi, Tokyo 180 Japan

B : Milner © CCS %%t % 7 A XEH AW, HIFMOSY — MREILHE: LTERkT 3. chkc
kb, CCS KENBAIA—F0OEWEENICTS. i HLVEBIEEYEOSY — FRECHAT 3
tick b, CCS oREMRILEMNTIBECH S T & HRT Ric, COBROETRBICOWTRTS. %
FRAMBORESEYBET 5. TRICESE, MY - BENICHERN X howe A ZITMIB LR L,
2 OEEIERICDOWTHRRB.

Abstract: First, Milner’s CCS is formulated as an extension of a many-sorted algebra with typed lambda
calculus. The formulation makes the role of value parameters of CCS clear. Moreover, it is shown that
introducing new function symbols to the base algebra extends CCS essentially. Then', interpretation
mechanisms of CCS are discussed. The Completeness of an interpretation mechanism is defined; a com-
plete interpretation mechanism is proposed, which is efficient with respect to space and time. Finally an

imprementation of the mechanism is mentioned.

1 Introduction

This paper consists of two parts. In the first part, Milner’s
CCS (Calculus of Communicating Systems) (bib:Miln:80)
is formulated as an extension of a many-sorted algebra
with the typed A-notation ([Hind 86]) for denoting pro-
cesses with parameters and the y-notation ([Bakk 80]) for
denoting fixed points. The language resulting from this
formulation is named ITCS (Indexed Theory of Commu-
nicating Systems). The language ITCS makes the role
of value parameters of CCS clear. Moreover, it is shown
that introducing new function symbols to the base algebra
extends CCS essentially.

In the second part, interpretation mechanisms of ITCS
are discussed. First, denotational semantics based on the
process domain due to de Bakker and Zucker ([Bakk 82])
is proposed. The intention in discussing interpretation
mechanisms is to investigate the problem whether the lan-
guage ITCS can be interpreted according to the denota-
tional semantics. For that purpose, the notions of sound-
ness and completeness of an interpretation mechanism of
ITCS under the above semantics are defined. Then, an
interpretation mechanism is proposed, and its soundness
and completeness are shown. Moreover, it is shown the
mechanism is efficient with respect to space and time.

Finally, an interpretation system of ITCS, named
CLITCS, is mentioned.

The rest of this paper is organized as follows. In Sec-
tion 2, the language ITCS is proposed. In Section 3,
the denotational semantics of ITCS is presented. In Sec-
tion 4, interpretation mechanisms of ITCS are discussed.
In Section 5, the interpretation system CLITCS is men-
tioned. Finally in Section 6, remaining problems and re-
lated works are discussed.

2 Language ITCS

The language ITCS is an indexed or parameterized version
of the language TCS ([Hori 88]), and it is a formulation
of Milner’s CCS with the typed A-notation for denoting
processes with parameters and the u-notation ([Bakk 80])
for denoting fixed points. Note that the symbol ‘u’ is used
here for the symbol ‘Fix’ in [Hori 88] and [Miln 83].

2.1 Signature 'SITCS

Here, a signature means a combination of a set of sorts
and a set of function symbols among the sorts.

A signature Syrcs is almost the same as that of CCS.
The signature Syrcs has five sorts, i.e., Pro, IPro, Lab,
ILab, Val, which are the sort of processes without pa-
rameters, the sort of processes with parameters, the sort
of labels of actions , the sort of labels of actions with
parameters , and the sort of values passed between pro-
cesses respectively. We use variables Py, P, - - - of sort Pro,
Qo,Q1, -+ - of sort IPro, &, €1, - of sort Lab, 5g, 71, -« of

sort ILab, and Xjg, X1, of sort Val. And we denote by
Vpros ViPros VLab, ViLab, and Vv, the sets of variables of
sorts Pro, IPro, Lab, ILab, and Val respectively, and let
V = Vero UVipro U VLab U ViLeb U Vvl

Definition 2.1 Siycs has the following constant sym-
bols and function symbols. For a constant symbol C, a
function symbol F', and sorts S, S1,+, S, we dencte by
“C': §” that C’s sort is S, and by “F : (Sy,-- ©Sp)— S
that F'’s arity and sort are (Sy, -, S,) and S respectively.

1. A countably infinite set of constant symbols
ag, oy, -+ Lab,
and a countably infinite set of constant symbols
ﬁﬂyﬂl) -+ ILab,
and a constant symbol
Stop : Pro.

2. Sircs has the function symbols in Table 1.

2.2 Language ITCS

Notation 2.1 The following notations are used.

1. The word “iff” will be used for “if and only if”. The
usual logical symbols, “A”(and), “v”(or), “~"(not),
“=”(implies), “&” (iff), “v”(for all),

- and “F”(exists).

-2. The usual A-notation for denoting functions is used.
For a set A, a variable z, and an expression E(z),
the expression (Az € A : E(z)) denotes the function
{(z, E(z)) : z € A}.

3. For a set X, we denote by §(X) the cardinality of
X. For two sets X and Y, we denote by (X = 7Y)
the set of functions from X to Y. The set of natural
numbers is denoted by w. Forn € w, [n]={mew:
1 < m < n}. The empty sequence is denoted by e.

The language ITCS is an extension of the many-sorted
algebra based on the signature Syrcs using the the typed
A-notation for denoting processes with parameters and u-
notation ([Bakk 80]) for denoting fixed points.

The language ITCS consists of the terms defined be-
low. We use S-expression notation ([McCa 60]) for ex-
pressing terms. First, the set of terms of sort Val, Lab,
ILab, written Tyai, Trab, and TiLab respectively, are de-
fined as in usual many-sorted algebra.

To construct terms of of sort Pro and IPro, u-operators
are used, which have the form

“Ui (P, Pa)” (i € [n]) or “u Q"
For an expression of the form

“(,_"- (Plx"‘,-Pn)"')”
the inside of the outermost parenthesis is said to be the
scope of the u-operator “u; (Py,---, P,)” and any occur-
rence of a variable P; (i € [n]) in the scope is said to be
bound by the p-operator “u; (P1,---, P,)”. Similarly, the
scope of the y-operator “4 @” and its variable binding are

Table 1: Fanction Symbols of Sircg

Symbol | Arity Sort | Meaning Notation in [Miln 80]
T (Pro) Pro | Silent Action T.E

? (Lab, Pro) Pro | Input Action ¢E

! (Lab, Pro) Pro | Output Action ¢(E

7 (ILab, IPro) Pro | Input Action with Parameter nX.E

Y (ILab, Val, Pro) | Pro | Output Action with Parameter GV.E

+ (Pro, Pro) Pro | Nondeterministic Choice E, + E,

& (Pro, Pro) :Pro | Concurrent Composition Ei||En

/ (Pro, Lab) Pro | Restriction of Labels of Sort Lab | E\¢ .

/1 (Pro, ILab) Pro | Restriction of Labels of Sort ILab | E\n

$ (Pro, Lab, Lab) Pro | Renaming of Labels of Sort Lab El1/€5,62/81]

$; (Pro, ILab, ILab) | Pro | Renaming of Labels of Sort ILab | E[n;/m2,72/m]

If (Val, Pro, Pro) Pro | Condional If V then E; else E‘z
Apl (IPro, Val) Pro | Application b(V)

defined. Free variables of an expression G, writter FV(G),
is defined as usual.

The set of terms of sort Pro and IPro written Tp., and
Tipro respectively, are defined as follows.

Definition 2.2
(1) P € Vpro = P € Tpro. Stop € Tpro.
(2) Q € lero = Q € 7}Pro~
(3) &,é1 € TLab A, 11 € Tivab
AE,EL € Tpro AV € Tyal A F € Fipro =
(T E)!(7 E E))(! 5 E))(“I" E El):(& E El)y
(/E&,(WE n), 8E¢&),$1 Eq M),
(hnV E),(" 9 F)€ Tpro.
(4) F € Tipro AV € Tya = (Apl F V) € Tipro-
(B)EE€TpoAX EVa>(A X E) € Tipro.
(6) E,E1 €ETpro AV € Tym = (If V E E)) € Tpro.
(7) Py,---, P, are distinct variables A
El,"'xEn Elzi’ro/\
Vi € [n], VG[G is a sub-expression of £;

of the form (p ---) with some I, or (p ---) =
Vj € [n][P;¢FV(G)]] =
(e (Pr--Pn) (By -+ Ep)) € Tpro
(k € n]). .
(8) F € Tipro A
VG|G is a sub-expression of F'
of the form (u; ---) with some I, or (u ---) =

QEFV(G)] =
) (/‘ Q F) € 7}Pro-

For two terms E and G, we mean by E = G that E
and-G are syntactically identified.

A term of the form “(u;(Py---
“(u Q F) is called a u-term.

We denote by

E[Gi/Py,--- ,G'n/Pn]

the result of simultaneously replacing free occurrences of
P; with G; , for each i. When using this notation we
always assume that none of the free variables in G occur
as bound variables in E (i € [n]).

P.) (E1 -+ Ep))” or

For a sort S, let 7@ be the set of closed terms of sort
S. Elements of l;’;.o are said to be process specifications
or processes. Elements of 7j3 . are said to be process
schemata.

3 Denotational Semantics of ITCS

3.1 Semantic Domains

' The denotational semantics of ITCS is presented based

on the process domain proposed by de Bakker and Zucker
([Bakk 82]), as in [Hori 88].

First, let Dyab, Dipab, and Dva be the domains of
sort Lab, ILab, and Val respectively. We assume that
€ € Dva. Moreover, let

Dact =
{?1 '} X Drab
u{?, !} X Du,,b) X Dy U {T}
A function © : Dgo — Dy is defined by

(4,4 ifa=(%¢),

(%,9) ifa=(1¢),
(@) =13 ((Ln),v) ifa= (7 m),v),

(@) ita= (0,

For a metric space (X, d) and a set of labels T, we de-
fine a metric &’ on I' x X by
d'((71, 21), (72, 22)) :
(1/2) - d(z1,22) if 71 = 72,
1 otherwise
for (71,21), (72, 22) €T x X.
Let P(T x X) be the set of closed subsets of (I' x X, d"),
and djy be the Hausdorff metric induced by &', i.e., a met-
ric deﬁned by
dy;(4, B)
= max(sup ¢ 4 [infye 5[d'(a,)],
SUPsep [infaéA[dl(a: DIB
for A,BeP(I'x X).
By convention, inf(#) = 1 and sup(@) = 0.

In [Bakk 82], the authors constructed a complete met-
ric space (P(T'), d) that satisfies the following.

(P(T),d) = (Pe(T x P(T)), dgr),

i.e., 39[® is an isometry from(P(T), d)
onto (Pc(T x P(T)), di)]-
Let the domain of sort Pro, written Dpyo, be the metric
space P(Dact) (the P(T) for I = Djce).
For p € P(Dact), we identify ®(p) with p.
Finally, let the domain of sort IPro, written Dipyo, be
the function space (Dva — Dipro)-

1)

3.2 Denotational Interpretation
of Function Symbols

We define interpretations of function symbols in Section 1
as functions among the above domains. The interpreta-
tion of Stop, 7, ?, !, 71, 11, +, and & are written stop, 7,
71,%,0,F,and & respectively, and defined as follows.
Function symbols /, /1, 8, and $; are omitted here. Their

interpretations can be defined similarly to that of ?’,

Definition 3.1 (1) stop = 0.
(2) 7= (Ap € Dpro : {(7,P)}).
(3) f = (A(‘Y,P) € DLab X DPro : {((?y'Y)rp)})
(4) ! = (A(7,p) € Drab x Dpwo : {((1,7),2)})-
(5) 71 = (A(7,9) € Dirab X Dipro :
: ~{(((?) 7)) v)xQ(v)) ‘vE Dan})‘
(6)h = ()‘(’hv,P) € Djpab X Dyar X Diypyo ¢
{(((,7),v),p) : v € Dvar}).
(7) + = (Mp1,p2) € (P(4))? : p1 Up2).

Definition 3.2 In [Bakk 82], it was shown that there is a
function & : Dpro X Dpro — Dp:o satisfying the following
property. Let & be the interpretation of &.
VI{I;P: € Dpro
[&(p1,p2) =
{(n, &(1,p2)) : (7,91) € 1}°
U{(7, &, 1)) : (7,75) € p2}C
UA{(r, &(p1, P5)) : (11,91) €11
A (72,p%) € p2
AT #71 =6(12))°]
Here, for a set X, X is the topological closure of X.

3.3 Denotational Interpretation of Terms

Let 7° be the set of closed terms of ITCS, and let D =
Dval UDgpab U Dipap UDpro UDipro. In [Hori 88], it was
shown that there is an semantic function M : 7° — D
which preserves sorts and satisfies the following condi-
tions. We write [E] for M(E).
(1) For each function symbol F with arity (S1,--,Ss)
and sort Pro,

VI €15, ,VTn € T3,

[[F(T], . ':Tﬂ)] = f(][TI]’ Tt lET"])]

Here f is the interpretation of the function symbol F'

defined above.
(2) For each p-term

E{=(pi(P-- Pn) (By -+ En)),
it holds that

[E{] = [E:[E1/ Py, -+, Ep [/ Pall, (i € [n]).
Similar proposition holds for each u-term of the form
“(u Q E)”, also.

4 Complete Interpretation
Mechanism of ITCS

In this secﬁon, we assume the language ITCS has a con-
stant symbol C(v), called the name of v, for each v € Dva.
It is assumed that [C(v)] = v.

4.1 Completeness of an Interpretation
Mechanism

We discuss interpretation mechanisms of the sort which
reduce parallel execution to nondeterministic sequential
execution. Moreover, we assume that an interpreter of
ITCS has the procedural framework shown in Figure 1.
Here, E € T, and Ability € (Dact X 7%,,) U{L}, and for

procedure interpret (E)
var Ability;
begin
Ability := M(E, (), 8());
while (Ability # 1) do
begin
execute(act(Ability));
Ability := M(next(Ability), 50), §0))
end
end.

Figure 1: Framework of an Interpreter

Ability = (a, E), act(Ability) = a and next(Ability) = E.
The function 5 is a 0-ary function returning an environ-
ment which determines what actions are executable. The
function & is a O-ary function returning an oracle € (w —
{0, 1}) which determines what alternative is chosen when
there are several alternatives to be chosen nondeterminis-
tically. The function M is called the interpretation func-
tion of the interpreter, whose range is (D act X 75,) U{L};
the mechanism computing M is called the interpretation
mechanism. L .
Let Dport = ({?,1} X Drap) U ({7,1} x Dirap) U {7}
For a € Dact, port(a) € Dpg is defined by
ifa=(y,v)

v
port(a) = € ({?,!} x Dirab) X Dyal,
a otherwise.

s

We use 6 ranging over the set of oracles,
written Orac = (w — {0,1}).

—72—

Moreover, we use variable p ranging over the set of
environments, written Env = (Dpg — Dyy U {1}).
An action a is executable under an enviorenment p
only if p(a) # L. Futhermore, in the case
In € Dipap[port(a) = (7,)],
p specifies p((?,7)) as the value read in the action.
To be precise, we define the notion enabled as follows.

Definition 4.1 Let a € Dac; and p € Env.

1. In the case 3n € DivLap[port(a) = (7,)],
the action a is enabled under the environment p
(written enab(a, p)) iff
a = (port(a), p(port(a))).
That is, the action with the port (?,7) is enabled,
iff p(port(a)) # L and the input value read in the
action is p(port(a)).

2. Otherwise, enab(a, p) iff p(port(a)) # L.

We define the notions soundness and completeness of
an interpreter by the property of the interpretation func-
tion M.

Definition 4.2 (Soundness and Completeness)

Let U C T8, and let
M :U x Env x Orac — (Dace x U)U {L}.

(1) M is sound for the class U/ iff
VE € U,V¥p € Env,V§ € Orac
[enab(act(Ability), p) A
(act(Ability), [next(Ability)]) € [E]].

Here Ability = M(E, p,).

(2) M is deterministically complete for the class I/ iff
VE €U,3(a,p) € [E][enab(port(a), p)] =
VSIM(E, p,) # L].

(8) M is nondeterministically complete for the class I iff
VE € U,¥(a,p) € [E][enab(port(a), p) =
38[(act{Ability), [next(Ability)]) = (a, p)]].

Here Ability = M(E, p, §).

4.2 Guardedly Well Defined Terms

We define the class of guardedly well-defined processes,
written GWD C 7§, as a generalization of that in
[Miln 80].

Definition 4.3 Let U C 75,

1. The class B(¥/) is the set of terms consisting of a
guard (e.g., “? £”) and an element of &{. That is, it
is defined as follows.

B) =
{Stop} U
{PEE),(EE),(TE): (€T, AECU}IU
{inVE):neT AV ETLEcUIU
{(trn F):

1 € Tikap AVV € Tyu[(Apl F V) € U}

2. The class C(U) is the set of terms consisting of
elements of & and operations ‘+’, ‘&’, ‘If?, ‘Apl’,

‘pi(Py---Py)’, and ‘p @°. That is, it is defined as
follows.
CU) =
uU{(+ Ey Eg) : By, Es EU}U
{(& Ey Ez) 1By B, Gu}U
{IfV B, E5) : ([V] # eAEx eU)v
(IVl=eAE, eU)}u
{(Apl (A X E) V) : E[V/X] €U} U
{(ui(Py - - Py)(Ey -) :
E|[E{/P,---,E,/P,] € U,where
Ej = (uj (P Po)(By -+ Ep)),
jer}u
{(Apl (@ F) V) :
(APl Fl(n Q F)/Q] V) e U}.

3. The class G(U) is the smallest set of terms which
contains B(Z/) and closed under the operations ‘+’,
&, “If”, ‘Apl’, ‘ui(Py--- P,)’, and ‘u Q.

That is, it is defined as follows.

First, for n € w, Gn(¥) is defined by
Go(U) = B(U),
Gp1(U) = C(Gn(U)).

Then, let G(U) = ,,¢,[Gn#)].

4. The class GWD is the largest subset W of T
satisfying W C G(W).
That is, it is defined as follows. :
First, for n € w, GWD,, is defined inductively by
GWDy = 73,,,
GWDyp1 = G(GWD,,).
Then, let GWD =1 [GWD,].

Lemma 4.1 G(GWD) = GWD.
Proof. G(GWD) = G(,,., [GWD,])
= nnew[G(GWDn)]

= nnew[GWDﬂ+1]

= Nhew[GWD,] = GWD. R

Definition 4.4 For £ € GWD, deggwp(E) is defined
by
deggwp(£) = min({n : E € G,(GWD)}).

In [Miln 80}, a process p; defined by

{pj <« Ej(pl) te 7Pﬂ)}j€[n]
is said to be guardedly well defined iff there is no infinite
sequence (j(k))jew such that

J(0) =i AVE[p;(141) is unguarded in Ejry)- 2)

As the next lemma shows, our definition of guardedly well-
definedness is a generalization of that in [Miln 80].

Lemma 4.2 If p; is guardedly well-defined in the sense
of [Miln 80], then p; € GWD (i € [n]).

Proof. We can replace p;’s in E; by Ej’s so that all
occurrences of p;’s is guarded in E}, where E is the result
of replacement (i € [n]). Hence,

pi € G({p1,"-*,pa}). (i € [n]).
So,

Vi € [n][p; € GWD,] >

Vi € [n][p; € GWD,44].
Thus, by induction,

Vn € wp; € GWD,}, i.e,,

pi € GWD (i € [n]). B

Remark 4.1 Note that for a process definition without a
parameter, we can decide whether the Condition (2) holds
or not. However, it seems that we cannot decide it for a
process definition with a parameter. Moreover, the notion
guardedly well-definedness is not syntactical here since the
semantic notion [V] is involved in the definition, while it
is syntactical in [Miln 80].

The next lemma follows from the definition of GWD.

Lemma 4.3

VE, E; € GWD

[&([E1], [E.]) =

{(r;&(®!,p2)) : (7,71) € [E1]}

U {(7”25(17211171)) : (7)%) € [EZH}

UA{(r, &(p1, 1)) : (11, 91) € [E1]

A (72,05) € [E2l AT # 711 = ©(72)]].

That is, there is no need to take closures for

E;,Ey € GWD (cf. Definition 3.2).

4.3 Simple Interpretation Mechanism by
Enumeration

To interpret a specification a notion “abilities” is intro-
duced. It is defined as follows. Here, we omit IProc sort
and the T-operation for simplicity.

Definition 4.5 Let £ € GWD. abilities(E) is defined
by induction of deggwp(E) as in Figure 2. In the figure,
M-expression notation of [McCa 60] is used for defining a
function recursively. We can compute abilities(E) by the
usual recursive function call mechanism.

Then an interpretation mechanism My of I'TCS terms
using abilities(E) is presented in Figure 3.

This simple interpretation mechanism can be extended
so as to handle IProc sort also, but when it handles IProc
sort it requires large capacity of memory to emumerate
abilities as is shown in Section 4.5. We propose another
interpretation mechanism which is more efficient than Mj.
Moreover, its soundness and completeness is proved.

4.4 Interpretation Mechanism by Means
of Lazy Evaluation

In this section, another interpretation mechanism M; is
presented, and the soundness and completeness of M; is

abilities[E] =
[E=C¢E)={(7€ E)}
E=(¢E)={((t¢) B}
E = (+ E EQ) =
abilities(E1) U abilities(E»);
E= (& E; Ez) =
(v (& B" Bn):
(v E”) € abilities(E1)} U
(& (& B B) ;
(v E") € abilities(E,)};
E= (P P,) (B - Ep))=
abilities[E;[E1/Py; - -+ By / Pl
(where
By = (g Py Pa) (By - En))
(J € [\))].

Figure 2: The Definition of abilities

function My(E, p, 6)
var Abilities, Ability;
begin
My = 1;
Abilities := abilities(E);
while ((Abilities # @) and My # L)
do
begin
(Choose one of the abilities
according to the oracle §,
and assign it to Ability);
if
(Ability is enabled
uder the environment p)
then
My := Ability
end
end.

Figure 3: Interpretation Mechanism Mp by Enumeration

shown. We omit the r-operation for simplicity, and an
interpretation mechanism Mj for the sub-language with-
out 7 is presented. The interpretation mechanism for the
full ITCS language M7 is more complex than Mj, but it
has the same basic structure as My and its soundness and
completeness are shown similarly.

Definition 4.6 The mechanism M; is presented in Fig-
ure 4. For (E, p,6) € GWD x Env x Orac, M; returns an
element of D pction X GWD. We can show the termination
of the computation by induction on deggwp(E).

In the figure, M-expression notation is used as in Fig-
ure 2. The computation of M;[E,p,6] is executed by
the usual recursive function call mechanism. For n € w,
rest[§; n] = (8[i +nl)icw, §1 = rest[§; 1], and count[E; p; §]
is the number of references to the oracle § for computing
M, [E; p; 8]. In an implementation of the mechanism M;,

an oracle is represented by a stream or a 0-ary function.
If an oracle is represented by a stream, a reference to the
oracle is represented by a read from the stream. If an or-
acle is represented by a 0-ary function, a reference to the
oracle is represented by a call of the function.

Theorem 4.1 (1) M; is sound for GWD.
(2) My is deterministically complete for GWD.
(3) M, is nondeterministically complete for GWD.

Proof. We prove only (3) here. The statement (1) and
(2) are proved similarly.

It is sufficient to prove that the following formula holds
for every E € GWD.

V(a,p) € [E][enab(port(a), p) =
b[act(M1(E, p,6)) = a A
[neXt‘(Ml(Ev Ps 6))]] = P]]

We prove Formula (3), by induction on deggwp(E).
Step 1. If deggwp(E) = 0, there are six cases, ie., E
has one of the following forms.
Stop, (? & E'), (1 £ E'), (v E'), (1 n V E'), and
(1 n F).
Here V € 7y, E' € GWD, ¢ € Ty, 7 € T, and
F € Tip,, such that VV € T, [(Apl F V) € GWD].
We prove in the case F = (?; 7 F). In the other five
cases, the statement is proved similarly.
In this case,
[E] = {((?, [1]), v), £(»)) : v € Dvar},
where f = [F].
Let (a,p) € [E]. Then,
3v € Dvalla = ((%,[1]),v) Ap = f(v)].
It follows from the definition of ‘enab’ and the assumption
enab(port(a), p) that v = p(port(a)).
By the definition of M,
MI(E) Ps 6)
= (((% [nD), p(port(a))), (Apl F C(p(port(a)))))
= (((%, [n1), v), (ApL F C(p(port(a))))).
Hence,
act(Mi(E,p,6) =aA
[next(M1(E, p, 6))] = p.
Step 2. We assume, as an induction hypothesis, that For-
mula (3) holds for every B/ € GWD with deggwp(E') <
n. Let E € GWD with degqwp(E) = n 4 1. There are
six cases, i.e., E has one of the following forms.
(+ E1 E2),(& E1 Ez), (If Vv E1 EQ), (Apl (A X E,) V),
(i(Pr--- Pa)(Ey -+ En)),and (Apl (u Q F) V).
We prove in the case E = (& E; E;). In the other five
cases, the statement is proved similarly.
When the r-operation is omitted, it follows from the
Lemma 4.3 that
[E] = {(7,&®1,p2)) : (v,2}) € [EA]} U
{0, &(ph, 1)) : (v,5) € [Ea]}-
Let (7,p) € [E]. Then there are two cases, i..,
A7, 71) € [Br]lp = &(pf, [E2])] or

3)

3(r,p5) € [E2]lp = &(ph, [E1])].
We prove in the first case. The statement is proved simi-
larly in the second case.
Suppose that p(port(y)) # L. Then, by the induction
hypothesis for F, it holds that
36[M1(By, p,5) = (v, BY) A [EL] = 14]
Let &' = (0,6(0),8(1),--). By Definition 4.6,
Myi(E,p,8") = (act(4), (& next(4) Ep))
= (7, (& E] Ey)),
where A = M(E1, p,6).
Moreover - .
[(& B Ex)] = &(IE, [Ba]) = &), [Ba]) = p.
Hence, Formula (3) holds for E = (& E; Ej).
Thus, by induction, Formula (3) holds for every
EeGWD. N

4.5 Comparison between the Two
Mechanisms

The mechanism M is more efficient than M, especially
with respect to space.
For example, let F' be a process schema defined by
F=

(v @
(A (X0 X1 X3)
(If (= X, 0)

(! B Xz (Apl (Q Xo Xo Nil)))
(+ (APl @ (Xo (— X3 1) (cons 0 X2)))
)(Apl Q (Xo (— X; 1) (cons 1 X3)))

Then,
abilities{(Apl F (N N Nil))] =
. {(((*B) L) (ApL F (N N Nil))) : L € ([N] — {0,1})}.
ence,

§(abilities[(Apl F (N N Nil))]) =

On the other hand, when M; is implemented by the
usual recursive function call mechanism, the evaluatxon of
My[(Apl F' (N N Nil)), p, 8]
is reduced to the evaluation of
M;i[(Apl F (Xo (= X1 1) (cons X3 0))),,6+] or
Ml[(Apl F (Xo (— X1 1) (cons Xg 1))),p,6+]
If the evaluation of M;[(Apl F (N N Nil)), p, 6] is reduced
to the evaluation of the first form, then the second form
is not evaluated at that time, but only stored for future
evaluation. Hence, the memory capacity needed is pro-
portional to N.

In general, for E € GWD, the memory capacity needed
for evaluation of My[E, p, 6] is proportional to 29, while
the capacity needed for evaluation of M;[E, p, 6] is pro-
portional to d, where d = deggwp(E).

Mi[E; p; 8] =
[E = Stop = .L;
E=(7¢ E)=[p[(? D] # L= ((? K]) E');t = L};
E=(¢E)=[p[(' ED] # L= (' £]) &)t =L},
E= (7 n F)=[p[(? D] # L = {([2]) £[(? ["D)]) (Apl F Clo[(? [7D])); ¢ = L;
E=(inV E)=[p[('[1D]# L= D VD E);t = 1];
E=(+E E)=
[6[0] = 0 = [M1[Ey; p; 6] # L => My[Ey; p; 8];t = My[E2; p; rest[§; count[E1; p; 6¥]]]];
8[0] = 1= [My[Ey; p; 6%) # L = M1[Es; p; 61];
t = M [Es; p; rest[§; count[Ey; p; §H]]]]];
E= (& Es Ez) =
[b[0] =0=
[M1[E1; ;6] # L => (act[M:1[By; p; 6%)] (& next[My[Ey; p; §%] Ea));
M\ [E2; p;rest[6T; count[Ey; p;6¥])] £ L =
(act[Ability,] (& E; next[Ability,]))
(where Ability, = M:[E2; p;rest[6; count[E1; p; §]]));
t=1];
S0 =1=
[Mi[E2;p;6%] # L = (act[M1[Ey; p; 6%]] (& next[M1[Eq; p; 6] E1)));
My [Ey; p;rest[6T; count[Ey; p; 61]]] # L =
(act[Ability,] (& E2 next[Ability,]))
(where Ability; = M;[E1; p;rest[6T; count[Ea; p; 6+]]]);
t= 1]};
E = (IfVEl Ez)@
[[V]# e = Mi[E}; p; 6];t = My[E3; p; 6]];
E=(Apl (A X E) V)= M[E'[V/X];0;8];
E = (ui(Py- - Po) (By - En)) = My[Ei[E{/Py;- -+ By [Pa; p, 6]
(where Ej = (uj (Py--- Po) (Eyr- -+ Ep)) (j € [n]));
E=(Apl (1 Q F) V) = My[(Apl F((u Q F)/Q] V); p; 6]].

Figure 4: Interpretation Mechanism M; by Means of Lazy Evaluation

5 Interpretation System CLITCS

5.1 Outline of the Interpreter

The system CLITCS (Common Lisp ITCS), read “kliks”,
is an interpretation system of ITCS (a variant of Milner’s
CCS) implemented by Common Lisp. It can also be said
that CLITCS is an extension of Common Lisp in the same
sense as CLOS (Common Lisp Object oriented System)
([Keen 88]) is. It enables us to define and interpret com-
municating processes which pass values specified by Com-
mon Lisp functions.
It has the following features.

1. It supports the interpretation mechanism M7 de-
scribed in the previous section, which is sound and
complete for the class GWD (the class of well guard-
edly defined processes). '

2. It can handle every object of every data type of Com-
mon Lisp as a.value passed between processes.

3. It supports a Lisp-like interactive environment for
programming, debugging, and tracing.

5.2 The Syntax of CLITCS

The syntax of CLITCS is essentially the same as that
of ITCS. However, there are several modifications as fol-
lows. Some of them are due to the restriction of the char-
acter set, and others are for readability and generaliza-
tion. The syntactical classes <ProcVar> (variables of sort
Proc), <IProcVar> (variables of sort IProc), <ValVar>
(variables of sort Val), <LabVar> (variables of sort Lab),
and <ILabVar> (variables of sort ILab) are defined by the
following BNF’s.

<ProcVar> ::= P<Identifier>.
<IProcVar> ::= (Q<Identifier>.
<ValVar> ::= X<Identifier>.
<LabVar> ::= A<Identifiexr>.
<ILabVar> ::= B<Identifier>.

Moreover, ‘A’ and ‘y’ are represented by ‘lambda’ and
‘mu’ respectively.

We write “(mu P; (P, E1)---(P, E,))” in CLITCS
for “(ui(Pr--- Pn) (Ey--- Ep))” in ITCS.

Moreover, we may write “(mu P; E;)” instead of
“(mu Py (P, E}))” for short.

We write “(lambda (X) E)” in CLITCS for “(A X E)”
in ITCS for the generalization to permit process defini-
tions with several parameters.

Moreover, we omit the symbol ‘Apl’ and write “(F vy
for “(Apl F V).

In Common Lisp Transparent Mode (cf. Section 5.4),
every form of Common Lisp which can be evaluated is an
CLITCS term of sort Val. Otherwise the class <ValTerm>
is defined, e.g., as follows.

<ValTerm> ::= <Numeral> | <ValVar>
| (+ <ValTerm> <ValTerm>)
| (= <ValTerm> <ValTerm>)

| (* <ValTerm> <ValTerm>) ...

5.3 Process Definition and Interpretation

For naming process specifications, ‘defproc’ macro is used.
For example.

(defproc test-proc (mu P (! A P)))

You can interpret a process specification E by
“(interpret E)”.
Here, E may be process specification itself or a name of a
process specification given by defproc.
The interpretation is executed along the following steps.

1. Expanssion: A Process name defined by defproc is
expanded to its process specification.

2. Semicompiling: The expanded specification is con-
verted to an intermediate form.

3. Interpretation: The intermediate form is inter-
preted by the mechanism M7 described in the pre-
vious section.

The system prompts for input by printing “Action:”.
For input through a label a of sort Lab, the user should
type “a «”, where ‘=’ represents a carriage return.

For input through a label b of sort ILab with arity n,
the user should type “(B V; - - ‘Va) «”, where V; € T9a

(i € [n]).

5.4 Interpretation Mode

There are five parameters for mode, i.e., ‘koraclex’,
‘*input-modex’, ‘*read-times’, “¢val-expr-flags’,
and ‘xtracex’.

The variable ‘*oraclex’ specifies the 0-ary function which
is provided to the interpretation function M as the third
argument § (cf. Definition 4.2). The domain of “*oraclex’
is

{‘left-most’, ‘right-most’, ‘random’}.
In the case xoraclex = ‘left-most’, a constant function with
value 0 is specified as the oracle. In the case xoraclex =
‘random’, a function which returns 0 or 1 at random is
specified as the oracle.

The domain of the variable ‘«input-mode#’ is

{‘spontaneous’, ‘user-driven’}.
In the case *input-modex = ‘spontaneous’, the system
“ waits for input for a limited time (i.e., the value of

‘+read-timex’) in each step of interpretation. If no input
occurs in that interval, the system judges that there is no
input in that step. Otherwise, the system gets input from
the terminal, and it judges that there is no input, if only
carriage return is typed.

The variable ‘#val-expr-flags’ specifies, whether the
system is in Common Lisp Transparent Mode or not. In
Common Lisp Transparent Mode, the system considers
every Common Lisp form as a term of sort Val. In the
case xval-expr-flagx is non-nil, the system is in Common
Lisp Transparent Mode.

The variable ‘xtrace+’ specifies how to trace the CLITCS
interpretation. The domain of ‘#tracex’ is {nil, 0, - 3.0
*traces is null, then the interpretation is not traced, oth-
erwise it is traced in a certain way.

5.5 Usage Examples
The following example is taken from [Bolo 87].

Example 5.1 First, the definition of a process which rep-
resents a stack is presented in Figure 5. The interpretation
in a trace mode with *traces = nil is as follows.

>(interpret ProcZ)
*¥kk Action: A
***% Accepted.
d#k%k Action: A
**x* Accepted.
*kkk Action: A
*¥** Accepted.
*kkk Action: Ab
**k* Accepted.
**kk Action: Ac
hokkk

Action: Ab
*¥*kk Accepted.
*%kk Action: Ac
*kokk |

sokok Rk

% ko

Action: ~C

Here, an output “.” indicates silent action or 7-action (See
[Miln 80)). To halt the interpretation, type ‘~¢’.

6 Concluding Remarks

The following problems are remaining.

First, we have shown that for £ € GWD (the class
of guardedly well-defined processes), the interpretation
mechanism Mj - conforms to the denotational semantics
presented in [Hori 88] completely. However, some Pprocess
specifications defined recursively by unguarded expressions
can not be interpreted according to the denotational se-
mantics presented in [Hori 88]. The following example
presents one of such specifications.

Example 6.1
By the denotational semantics in [Hori 88), the following

(defproc ProcC
(mu PC
(+ (/ (72 A (& ($ PC (Rg Af) (Af Ag))
(7 Ag PC)))
Ag)
(7 Ab (! Af Stop)))))
(defproc ProcZ

(mu PZ
(+ (7 A
(/ (& ($ ProcC (Af Ag) (Ag Af))
(7 Ag PZ))
Ag))

(7 Az P2)))
Figure 5: Definition of Stack

two processes

“(+ (s p) (! « Stop))” and “(! & Stop)”
have the same denotation, but the first is interpreted dif-
ferently from the second with some oracles.

Second, we have only discussed interpretation mecha-
nism of the sort which reduce parallel execution to non-
deterministic sequential execution. It remains for further
study to investigate interpretation mechanisms of CCS-
like languages in the framework of multiprogramming or
multiprocessing or distributed processing ([Andr 83]).

There are related works for extending CCS. For ex-
ample, in [Yuen 88], dynamic communication naming has
been proposed. In ITCS, a similar facility can be sup-
ported, by introducing some function symbols with arity
(Val) and sort Lab or ILab. In that case, the denotational
semantics M and the interpretation mechanism M; de-
fined in the same way.

There are also related works for implementing lan-
guages based on CCS. For example, in [Tomu 88], a lan-
guage A has been proposed. In that paper, the notion
soundness and completeness of an interpretation mecha-
nism are defined in terms of a proof system, while they
are defined in terms of the denotational semantics here.

Acknowledgements

The author would like to thank Dr. Masaki Itoh and
Haruhisa Ichikawa for their helpful discussions and com-
ments.

References

[Andr 83] ANDREWS, G. R., AND SCHNEIDER, F. B.
(1983), Concepts and notations for. concurrent
programming, ACM Computing Surveys, Vol.
15, No. 1, pp. 3-43.

[Bakk 80] DE BAKKER, J.W. (1980), “Mathematical
Theory of Program Correciness” Prentice-Hall
International Inc.

[Bakk 82] DE BAKKER, J.W., AND ZUCKER, J.L
(1982), Processes and the denotational seman-
tics of concurrency, Inform. and Control 54,

pp. 70-120.

[Bolo 87] BovrogNEsI, T. (1987), Fundamental resulls
for the werification of observation equivalence,

a Survey, IFIP TC6, Zurich, May 5-8, 1987.

HinoLey, J.R., AND SeLDIN, J.P.
(1986), “Introduction to Combinators and \-
Calculus”, Cambridge University Press.

[Hind 86]

[Hori 88] HoRriTA, E. (1988), A fized point theorem
on the Bakker-Zucker process domain and its
application 1o theory of communication pro-
cesses, IEICE Technical Report, Vol. 88, No.

33, COMP88-17.

KEENE, S.E. (1988) “Object-Oriented Pro-
gramming in Common Lisp, Addison-Wesley
Publishing Company.

[Keen 88]

[McCa 60] McCaRTHY, J. (1960), Recursive functions
of symbolic ezpressions and their computation
by machine, Part 1, Communications of the

ACM, 1960, Vol.3, No.4.

[Miln 80] MILNER, R. (1980), “A Calculus of Commu-
nicating Systems” Lecture Notes in Computer

Science, Vol. 92, Springer Berlin / New York.

[Miln 83] MILNER, R. (1983), Calculi for synchrony and
asynchrony, Theoretical Computer Science 25,

pp. 267-310.

[Tomu 88] ToMURA, S., ISHIKAWA, Y., AND FUTAT-
sual, K. (1988), The proposal of a process al-
gebraic language: A, 5-th Conf. Proc. Japan

Soc. Softw. Sc. Tech, C6-1 (in Japanese).

[Yuen 88] YUEN, S., SAKABE, T., AND INAGAKI, Y.
(1988), Dynamic communication naming in
CCS, Preprints Work. Gr. for Software Foun-

dation, IPSJ, No.26-6.

— 78—

