Suss o EE 204
(1989. 2. 10)

RSHEMETL

THET WEER JrEE

IFEHRH MEF*E ETHEIER
HERF

ASME &t B8 HEDLHDOME LV OBAMNELERZ 52 5. ASM
BBEADVPHAEMBLTIVWR ASHERBEORE X2 HMR2 Y THH . H
TE X Lispk Prolog® MBAB 2D L THERENATWS, BRAMWERIZ. EH
LTWAMEA* TR, MREICRHATES, BERANICEBEL PN L
3124 2 BLispk PrologD ¥ A7 LK. ALERERS YO ELTEEZHEFL
HBLAZ2HERICEET I X SLEBLTETH L EHFHALPIZSA
6. FriomMiLY. R <ORELTLET X777 v BRI
HLBZEBTERLIOK L BabBEANERICHAWESEIEX. ES
B@%ﬁ%é‘ﬁb:ﬁdm‘(wé.
Abstract Symbolic Machine
Atsushi Nakamura Toshiya Yamada Tetsuo Ida
Doctoral Program College of Information Sciences Institute of Information Sciences
in Engineering and Electronics

University of Tsukuba
1-1-1 Tennoudai Tsukuba Ibaraki Japan 305

We give a formal description of the Abstract Symbolic Machine called ASM.
ASM is the basis of the meta computing environment which we are developing. So
far Lisp and Prolog systems are constructed on ASM. The formal description is
intended to precisely and concisely describe the implemented systems, and to show
how Prolog and Lisp which at first sight look quite different from semantical point
of view can be implemented on the common machine sharing most resources and
enabling fine grain communication between functions of Lisp and predicates of
Prolog. The description enables us to reason about architectures formally. The
language we use for formal description is based on denotational semantics.

(1)

1. Introduction

In this paper we are concerned with a formal

description of an Abstract Symbolic Machine (to

be called ASM for short) which is the basis of the

meta computing environment MC [1]. We have

implemented a subset of COMMON LISP (both

compiler and interpreter) and Prolog

(interpreter) built on ASM. The purpose of the

formal description of ASM is

(i) to precisely describe the implementation
methods for Lisp and Prolog incorporated in
MC, using concise mathematical notations,

and

(ii) to show how both Lisp and Prolog can be
combined at an abstract machine level sharing
common resources.

Since the full description of ASM is beyond the
scope of this paper, we concentrate on the
descriptions of formal semantics of ASM
instructions using the modified denotational
semantics.

As we give the formal semantics of ASM, we
introduce many notations. In our view the
notation is closely related to the fundamental
concepts of underlying computational models.
Hence, we hope that readers follow as far as
possible the expressions which look like
mathematical formulas.

2. Definition of Abstract Machines
We use following basic terminology in the
language of formal description.

2.1. Definition symbol and string

(i) A word is a unit of expressions which is
treated as a single denotation in the model of
the machine.

(i) A symbol is either a single word or a list of
words.

(iii) A string is a sequence of symbols.

(iv) The length of a string is the number of
symbols which constitutes the string.

v [a,...,B]denotes a coerced symbol from

strings o, ..., B. In other words, it is treated
as a single word rather than a string. We
assume that 'reverse-coercion' is possible so

that from [« , ... , B] we can extract each of ot ,
. B
22. Definition machine

Let I be a program, X be a set of states and S be a
state transition map; £ - X . A machine is
defined as a triplet <I,X,S>.

A program I is defined by instruction string I =
loi1...ln, where I; is an instruction symbol. i is
considered as an initial instruction. Each
instruction symbol i; is associated with an
integer j called label.

An architecture of a machine is specified by T
and S. Since ASM can be viewed as a combined
Lisp and Prolog abstract machine, we give
specifications of two machines separately and
later we show how the two are combined. First
for each Lisp and Prolog abstract machines we

give T and S.

3. Lisp Abstract Machine
Lisp abstract machine M, is defined as<1,X,
S [>

3.1 Definition state of M,

A state of the abstract machine M is a snapshot
of stores which are defined as 7-tuple

<K,R,M* C**F ,W** >

is an instruction store,
is a register,

is a multiple-value stack,
is a control stack,

is a frame stack,

is a full-word area, and

is a cons area.
The 7-tuple is called configuration.

where K

Abusing the above notation, we write x € K etc.,
to denote a string x stored in K. With this
notation we let 2, =<K ,R ,M,C ,F, W, ,U>
and define a state of machine M as 7-tuple

<K,T,i,0,n,0,A>e X,
ke K,

re R,

pe M,

0e C,

nekF,
we W and
AelD.

where

The superscript * in B* or *} for # =M, C,F, U,
D expresses a property that a string stored in R*
is concatenated only from right, and *R from

AN . X E RS 5 B & — R % (C)62580030
BV, BUNGSEERBEARZEZATO 27 P HEBROHY
ERTITAbhk.

(2

left. Here *R or H* is conceptually regarded as a
stack with read-write head position denoted as *.

3.2 Notations
1. Lower-case Greek alphabets denote strings
and Roman alphabets denote symbols.

2. € denotes null string.

3. - denotes some string or symbol stored in
stores.

4. A lower-case Greek letter a with a
superscript n, i.e. an, denotes a string a whose
length is n.

5. ~ with a superscript n, i.e. ~?, denotes a
string of length n. Symbols which constitute
that string are unspecified.

3.3 Definition state transition map Sp

The state transition map S;: instructions x L — T is
defined by exhaustive enumeration of state
transitions for each instruction of 2.

Although the number of instructions of the Lisp
abstract machine is small, it is beyond the scope
of this paper to give a full description of S,. We
only give partial description of S, for
representative instructions.

In the following description we use :

(1) a map ¢; which maps a label to a substring of
program I is defined as follows;

Q1 : labels — instruction strings
o) =341 ...0n, 0<j<n
o) =1 otherwise
Since I is implicitly given when talking about a
machine < I,Z,,S,> we generally omit
subscript I of gy and write it simply as ¢.

(2) Following maps which associate a symbol
with values:

updatey : I x SYMB x U —» W
lookupy : W x SYMB - U

where U is a set of symbols as defined in 2.1(i),
and SYMB is a set of LISP SYMBOLs stored in
w.

updatey and lookup; are a family of functions

indexed by Je { ¢ & 7).

updatey (0, y ,u) updates the value associated
with SYMBOL y and J in ® with value u, and
returns updated .

lookup, (®, y) searches for SYMBOL y in @ and
returns the value associated with y and J.

The uniqueness of symbol y in © is guaranteed
by the system (which we do not discuss in this
paper).
It is easy to see that
u = lookupy (updatey (@, y ,u),y).

Here are descriptions of S;. Table 1 gives
intuitive meanings of each instruction.

(1) Data movement
S;(L Rm<-,-,-,-,Mm,-,->
= <-,X,-,-,MN,-,->
wheren=[1"x7]1n'
note: [T x 1'] is a current frame
S.(STR m) <-,v,-,-,[™x7]In,-,->
= <-,v,-,-,[t"vTIn,-,->
(2) Control
S.(B) <k,-,-,-,-,-,->
= <K ,-,-,~,-,-,-> wherek =¢()

SL (ENTRY n) <"')')',[t]n"">

= <"'1'r"["’nt]ny"'>
S, (CALL d m n) <x,-,-,-,1,0,->
=<K'y',','y[[1€,'ﬂ]’1""][f"]TI','»'>

where n=[t 177"]n’

and X' = @(lookups(@ , id))
S. (RTN n)
<=, I, 1T, -, ->
= <",'»',',Tl',','>

SL (DEALLOC n) <-,',',-,[Vnt]n1'y'>

= <':'9',';[t]n7'!'>
SL(THROW m) <K,‘,',ey[TmXT']nr')'>
= <K',','y9','rl',';'>
where [0'[t,n', 111 = lokup,(x), t = Catch
and «' = ¢(l)
S, (RETURN m) <«x,-,-,0,[t"x71n,-,->

= <K',',-,9',11'.'»'>
where x=[0'[t,n',1]1],t=Block
€' =¢)

and

SL(GOm)<K,','yer[rmxlc']nv'>'>
= <K',',',9',Tl','s'>
where x=[0'[t,n',11], t=Go

(3>

and ¥ =¢()
SL(PUSHCONT t n <-,-,-,0,M,-,->
= <','y'1e[t’ny|]vn";'>

SL (UNB'NDPOP) <-,-,-,9[t,x,a],-,m,->

= <-,-,-,9,-,0)',->
where O = update(®,x,a)
and t=Bind

SL (CPOP ﬂ) <'1'3')e~n9'9',">

= <-,-,-,0,-,-,->
(3) List processing
S,(CAR m) <x,-,-,-,M,-,A>
= <K,V,=,=,M,=,A >
ifxeDandx=[[v,v']IA]
<¥',-,-,-,M,-,A> otherwise
wheren = [T x 7' 17 and ¥' = ¢(l)

S.(CDR m) <x,-,-,-,M,-,A>
= <K,V ,-,-,T,-,A>
ifxeVandx=[[v,v']IA]
<x',-,-,-,1N,-,A> otherwise
where= [1™1x 7]In'and x' = @)

note : cons are defined by the following function
consab <x,-,-,-,-,0,A>
= [<K1[xI]1',',')m;7c>

g

whereA'=[a,b]A

ifll @ A' Il < heap-size

otherwise

(4) Type check

S, (ERROR_CAR 1) <x,r,-,-,-,-,->

= [<¥x,r,-,~,-,-,-> ifr=Ni
1 otherwise
where k' = ()

(5) Special variable binding

S. (BINDPUSH m) <-,-,-,0,11 ,®,->
: = <-,-,-,0[t,x,al,n,0,->
where N=[1"x17'],t=8ind

a = lokup(® , X)

(6) Multiple-values
S, (SAVEMV n m) <-,-,H,-

and

r‘n",'>

<4

= <'.',H,-,[va"‘t"]'ﬂ',',->
wheren = [11" 1" I andp =vop'

S, (RESTORE_MV n m)
<=5, [tvt"In,-,->
= <-,-,V,-,1N,-,->
wheren = [Tt 1" 171

4. Operation of a machine

The operation of a machine is explained via
reduction. Below we define reduction for each
Lisp and Prolog machine, although the notion of
reduction can be generalized easily.

4.1. Definition reduction
Let o0,0'€ X;.

Reduction —»4,is a binary relation on states
defined by the following :

Vo,0'e€ Z.,
o=<kK,r,},0,n,@,A>,
0"=<K',!"»I»l',9'.71',0)',7~’>

O g, O S.i 6=¢

Intuitionally, instruction i is fetched from
instruction store and executed by S, and the

result is a new state ¢'. Reduction for M, is
defined similarly. A machine operation is a
transitive closure —*,4, of - ,4,. A machine is
said to be halt when S;,i o=0', where
o=<¢e,r,n,0,n,0,A>.
In other words, a machine is halt when there is
no more to be executed. An answer for the
execution of program I may then be extracted

from stores.
A state

o=<l,r,u,0,n,0,A>=1
denotes error, which we do not further elaborate.

5. Prolog Abstract Machine definition

As in the case of Lisp Abstract machine M,
Prolog Abstract machine Mpis defined as < I,
2, SQ >.

5.1. Definition state of M,

A state of the abstract machine My is a snapshot
of stores defined as

<K,[A**H L,B],C**F, W**U >

where L is alist pointer,

B is a backtrack pointer,

A is an argument stack,

R is a temporary stack, and

other symbols have the same meaning as in M.
This architecture is based on WAM [2].

5.2, Notations ,
Following additional notations are used in
describing M.

1. pef, &H
2. - is a special marker, which denotes a
special point in F.
3. A backquoted «, i.e. “a denotes a string that
may contain a — .
Namely, ‘a= p-oy
or By

5.3. Definition state transition map S,
Following auxiliary functions are used in the
definition of S,;.

(1) deref:Term xF xU — TAG x Term
where TAG ={ list, atom,

var-in-current-frame, - .
var-in-other-frame,
var-in-heap },

Term denotes a set of atoms, lists

and variables , and

Uar denotes a set of variables.

deref(t , M , A) dereferences the first argument 1
and returns a pair <t , v> of tag t and the

dereferenced value v.

The kind of values returned depends on the tag

and is classified as follows:
list : cons cell other than variables
atom :ground term other than lists
others :uninstantiated variable

The tags in the last case indicate the place of
this uninstantiated variable.

(2) bind: Uar xTerm xF xU—- F xU
bindt , v , M , A) updates the variable T with v. n
or A must reflect the change caused by the
update, depending on where (in either F or V) v
is allocated. The result of sindt,v,n,A)is <7’
,A' >. One of which is the same as before.

(3) unify: Term xTerm xF x U

— { success , failure } x F x I}

unify(t , T , M , L) unifies terms 7 and ©". It
returns success or failure and updated n and A ,

ie. <xn',A'>. In the case of x = success, some
of the variable may be instantiated. This

change is reflected in ' and A’
(4) traif: C x Var x F x B— C is defined as follows:
traif § , Tk, MM, n'>N")
= [0 when tke F and n< k<m
6 [t¥]
(5) mkyariable: UV — U
mkvariable(\) allocates an unbound variable in
heap. It returns updated A ,i.e. [Unbound,
Variable 1\ .
(6) mkeons: U xTerm xTerm —» U
mkeons(\ , o , B) allocates a new cons cell in
heap. It returns updated A ,ie.[a,B]1A.
(7) framevar: N XF > F
where N is a set of integer number.
framevar(n , 1) returns a n-th variable allocated
in current stack frame, ie. [T,-,-, -] where
m=n"-[1"1,-,-,-1n".

otherwise

Table 2 gives intuitive meanings of each
instruction.

(1) Control
Se (ENTRY n) <-,-,-,-[tln,-,->

= <',',',—‘)[~“y€,€,“]'ﬂ,','>
Sp(CALL id) <k,-,-,m—=n0",0,->

= <K','»‘,—)[[K,11]]TITI'»0)»'>

where k' = Q(lookup® , id))

Sy (EXECUTE id) <x,-,- ,n—>1,-,->

= <x,-,-,>[rInn,-,->
where n'=[-,-,-,rln"

and k' = Q(lookupi® , id))

Sy(GB id)_<K,-,-.—)[-,-,-»Y]Tl,'»'>
= <K‘,',"_)[r]ny'1'>

where k' = @¢(lookup® , id))
Ss (RTN) <x,-,- ,n>fn'nn,-,->
= <K',',',Tlfn'—”l"“,','>
wheref=[°,',°,[K',n]]

Se (DEALLOC)
<',',',—)[V"'5,'y',']1'l»':‘>

<5

<'9'1"—)[Ta""']n$'r'>

S (CDEALLOC n) <-,-,- ,n,-,->
<-,-,-,—1[7, In,-,->

fn=>[vr,-,-10"
<-ymymy My, =>

’ ’
otherwise

ST (B |) <K, ,-y= y=y=,->

= <x,-,-,-,-,-> where ¥ = ()
(2) Clause group
Se (TRY_ME_ELSE | n)
<"[p'7'"9‘“‘]»9’_)["8!57‘]n,')'>

- aatt

= <‘.[l~l,','. n].9.\1'\",'»'>
where N"=—>[-,[0,A,',¥,nl,u,-1In
and «' = ()

Sz (TRY | n)
<K7[ur'»')\n']’e)_')["s’er']n"rl>

= <K'»[l«l,',‘,\n"],ey\'ﬂ"y',x>
where "n"=—[-,[0,1,"n",x,nl,pn,-1n
and ¥ =0o() .

Sp (TRY_ME_ONLY 1)
<K,-,-,o[-,e,e,-I1,-,->
<K ,-,-,2[--,-,-1M,-,->
where ' = @(l)

note : Actually this instruction initiate two & for
garbage collector.

Se (RETRY_ME_ELSE
<-5-5"
= <')'r'y—)['y[',

I n)

» 7y

K,n],']n,',">
where ¥ = ¢()
|

)

S, (RETRY n)
<K,)_)["
<K',-,-,—)[-,

E]

1K:n])']n,','>
where x' = ¢(l)

Sy (TRUST_ME) <-, nml,-,Mm,-,->
where "ﬂ=—)[-.[’,',\f»',-];-,']'ﬂ"
<=, ,\f],',\ﬂ,",'>

LI I]

*» "y

note : backtrack is defined by the following function
backtrack <-,[-,-,-,Mml,0,-,0,A>
<K,[H“,-,-,‘T\"],9'y"fl",0)»7&>

(6>

where n=1'—>[-, [0 ,X,n",x,n],pn,-1
(3) Indexing
Se (SWITCH_ON_TERM s Iv Ic 1))
<x,[1,-,-,-1,-,"M,-,A>
when s = A, (other cases not given in this paper)
<x,[p,-d8,-1,-,"n,-,A>
where p=p"[tlp","n=n"-n",
<t,d8>=dere{T,M",1),and
K'= [¢(c) whent=atom
¢(ll) when t = list
(V) otherwise (8 € Dar)

1)

,X,'] YT T >

Se (SWITCH_ON_CONSTANT table
<x,[-,-
<x,[-,-,x,-1,-,-,-,->

where table is a map which maps an atom name to a label

or €.

kK'= [oplable(x)) if xe SYMB and table(x) =€
o) otherwise

(4) List pointer movement

Sz (CONS_SAVE Xq)

<K,[',§X§",T,'] 3T m ">
<KI[-’§[T]§"71)—],-7-!-)'>
Se (CONS_RESTORE Xy

<K’[’;§["]§ny',']
<Kr['sg[’clgnyty']v')')"'>

Y sty >

(5) Put operation
Se (PUT_VARIABLE s ac)

<_’[unxu"§,_,-] ,',\T\r',7\->

when ac = A, (other cases not given in this paper)
'<-y[u"[”~']ll',ﬁv','],',v-ﬁ'f\"»-ﬂo
when s=Yp
where T = framevar(m ,'n)
n=von
<n", - >=bindt , Unbound ,m', -)
<-,[Ll“[x]ll'»§'»'r‘],',‘ﬂa',w>
when 8=Xn
where £ =V yv'™m E=v [A]v"™
\'= mKopariable(\)

and

L

S (PUT_VALUE s ac)
<..’[-,-’xﬂ’-]’-,‘n,.’)"'[Ni|’_]x“ﬂ-1>
When s = Y, and ac¢ = car
(other cases not given in this paper)

and

= <‘,[',',x",']»':\n.',x[a,']l""'1>
where ' n=t—>[vav,-,-,-17

Sp (PUT_UNSAFE_VALUE Y, ac)
<-,[H'“xl»l'»'»',-].-,‘ﬂ,',x>
where ‘n=t1o1n,0 =MW[T1Vv,-,-,-1¢
and <t,3> =derefT,M',A)
when ac = A, (other cases not given in this paper)

= '<'»[ll"‘[7~']u'y-»-y-],-,ﬁﬂ"v‘»x>
if T = € and t = var-in-current-frame
where A'= mkyariable(\)
<n",->=3ind 8, ,n',-)
<-,[p[Blp,-,-,-1,-,"n,-,A>

otherwise

Sz (PUT_CONSTANT C ac)

<',[P-"xll's‘,',']:‘»'»‘»'>
when ac = A (other cases not given in this paper)

= <')[p'n[c]u"'»',']:'1')')'>

Sz (PUT_CONS ac)
<',[P:'11,V],e,\n»':7&>

when ac = A, or not specified
(other cases not given in this paper)

= [<-,[u"[AIp",0,2,v],-,n,-,A'>
when ac = A,

where p=p"nx p"
A'= mkeons(Nil , Nil , A.)
<-,[p,-,A",v],0,7>7n",-,A">

and

when ac is not specified
where =7 ->n",
A'= mkeons(Nil , Nil , 1)
<‘|1',A.">=5ina(‘l’,x,'f]",x)
0' = traift,0,M',V)
(6) Get operation
Sg (GET_VARIABLE s ac))
<')[u1§x§'"y's']"!'r'1'>
when s = X, and ac = Ay
(other cases not given in this paper)
= <'y[P~,§V§'"y',' 13T, m >
where p=p'm v u"

Sy (GET_VALUE s ac)

<Ks[l1;§.-,-],-,"ﬂ’-,7~>
when § = X, and ac = Ay
(other cases not given in this paper)

<x,[g,€,-1,-,1-1",-,A'>
if unifi{ v,x,n',A) =<success,n",A' >
where p=pmvp" ,E=ExE™
and ‘n=1-1
S»(B backirack) <k ,[p,€,-,-1,-,™n,-,A>
otherwise
Se (GET_CONSTANT C ac)
<-,[n,-,-,71,0,1,0,A>
where p=p" [t Ju", n=v-o1', and
<t, 8 =deref(7,M', L)
when ac = A, (other cases not given in this paper)
= [<-,[K,-,-,%],0,'n,0,A>
if t = atom and & = C (note : C is atom)
<-,[n,-,-,11,0,von",0,\ >
if 3¢ Dar (t=var...)
where <M", A" >=6ind 8 ,[C],N",0,L)
0'= traifl0,3,M',1)
S4B backtrack)<-,[p,-,-,11,9,n,0,A>
otherwise (& # C)

Se (GET_CONS ac i)
<x,[p,-,-,-1,-,"1,0,A>
where u=p"[1]p"," n=v-on'
<t,d>=deref(T,M',0)
when ac = A, (other cases not given in this paper)
= (SHB backtrack)
<x,[p,-,-,-1,-,"n,0,A>
if t = atom
<x,[p,-,8,-1,-,n,0,A>
if t = list
<«,[p,-,8,-1,-,"1,0,A>
otherwise (delar)
L where ' = ¢()

6. Abstract Symbolic Machine
From definitions 3.3 and 5.3, we observe the
following correspondence.

ML Ml’

K, K

R, [(R**K,L,B]
M*

’
C**F , W* *D C**F , W* *D

We see that

(7>

(i) two machines share C*,*F , ID**l , and that
(ii) usage of registers are different.

In other words, essential resources of stacks and
heaps are shared by the two machines, and the
registers used in procedure calls are different
besides additional registers L and B in Mp. Thus
when R ,M* and { A**4 ,L , B] are merged, two
machines can be integrated. We realize A* , *R

and M* on common resources, and make the
configuration of ASM as

<K,[R,L,B,A% *R], C**F ,W**) > .

Figure 1. Implemented configuration of ASM

Figure 1 shows how the configuration is realized
in real machine (Fujitsu M780). Since C*,*F ,
W * and *V are shared, there is no logical
inconsistency when instruction of M, and M, are
merged. Following instructions of M, and M,
are actually the same or are one of the optional
function of the other (inequality means that one
includes the other).

M, My
ENTRY = ENTRY
CALL > CALL
RTN = RTN
DEALLOC = DEALLOC
Bee > B

ST > CONS_SAVE
L > CONS_RESTORE
L > TRUST_ME

Moreover, primitives for input/output and
storage management (i.e. garbage collection and
object allocation) of the heap are shared by the
two machines.

The differences in register usages are related to
the ways that expressions of Lisp and Prolog are
composed. Lisp expressions are recursively
composed. This makes it difficult to assign
global registers to each arguments in compiling
function calls, whereas since Prolog expressions
are first-order, it is possible to assign global
registers to each argument of goal calls in
compiling goal calls.

In ASM, functions and predicates are mutually .
callable when due considerations are made to
assign input/output of values without switching
context between Lisp and Prolog which would
have been necessary when Prolog and Lisp
machines were designed separately.

7. Further work

Because of the limitation of the paper details of
the auxiliary functions are not given.
Furthermore, we do not discuss how compilers
relate meaning of Lisp and Prolog programs to
meaning of instructions. Meanings of programs
can only be completely specified by giving
compilation schemes using the same techniques
outlined here. This will be the next theme to
pursue.

References

[1] T.Ida, T.Matsuno and A.Nakamura, A
practical approach to combining functional
and logic programming languages, IFIP
Workshop on Concepts and Characteristics
of Declarative Systems, Oct., 1988, Budapest

[2] D.H.D.Warren, An abstract Prolog
instruction set, SRI International Technical
Note 309, 1983.

(8>

Data movement
(L rq[m)

(ST r w [m])
Control

(Bee 0
(ENTRY)

(CALL ids [targ]])
(RTN)

(DEALLOC gq)
(THROW)
(RETURN)
(GO s)
(PUSHCONTtype)

(UNBINDPOP n)
(CPOP n)

load ginto r [with address modified by m]
store rinto w [with address modified by m]

branch, cc specifies condition codes

entry of a procedure

procedure call to id with arguments stored in the frame stack starting from targ to s
return from a procedure

specify the limit of the current frame by deallocating g words of the current frame
execute throw using continuation stored in s

execute return using continuation stored in s

execute go using continuation stored in s

push continuation of type type, /is the label at which control is transferred when the
continuation is executed by THROW, RETURN or GO instructions.

unbind n binding pairs stored in the control stack

pop control stack by n words

Arithmetic and logical operations

(OP rq)
(OP n

List processing
(CAR's A
(COR s)

Type check
(ERROR_CAR -

(ERROR_CDR)

Special variable
(BINDPUSH s)

Multiple-values
(SAVE_MV ns)
(RESTORE_MV n s)

binary operation; rand q are operands
unary operation; ris an operand

take car part of s, if s is not cons then jump to /

; similar to CAR

check whether R is nil or not, If R is nil then jump to /, otherwise jump to the appropriate error
routine
similar to ERROR_CAR

binding
push a binding pair (R, s) onto the control stack

save n multiple values into the current frame starting at s

restore n multiple values stored in the words starting at s in the current frame to the multiple
value stack

Note: r specifies a general register.

s specifies a word on the frame stack.
q specifies one of r, s or S-expression.
w specifies either r or s.

m specifies addressing mode.

I specifies label.

n specifies integer

Table 1. Basic instruction set of the Lisp Abstract Machine

note: the instructions given above are slightly different from the 'machine’ instructions
given in definition 3.1. These instructions are translated to the 'machine’ instructions,
supplying parameters, if necessary.

<9)

Control

(ENTRY) entry of a procedure

(CALL @ [n]) procedure call toid

(EXECUTE ig) tail recursive procedure call to id

(GB id) jump to the tail recursive entry of the procedure specified by id

(RTN) return from a procedure

(DEALLOC) specify the limit of the current frame by deallocating n words of the current frame
(CDEALLOC ¢q) perform DEALLOC only if current frame is top of the frame stack

(B H" jump to the location specified by label /

Clause ‘group
(TRY_ME_ELSE | [n]) set retry continuation for n is the number of active argument registers
(TRY I'[n)) try I, setting retry continuation for the next address
(TRY_ME_ONLY) jump to /, clearing current retry continuation by GC collectable value
(RETRY_ME_ELSE I[n]) reset retry continuation by /
(RETRY In]) reset retry continuation by next address and jump to /
(TRUST_ME) update retry continuation by previous backirack address
(this instruction is used also as cut operator)

Indexing

(SWITCH_ON_TERM ac/v Ivic[l]) access clause groups by type of ac

(SWITCH_ON_CONSTANT ti[]) access to a clause group by the list pointer; jump to / if content of the list
pointer is not in tb/

List pointer movement
(CONS_SAVE X) save list pointer to x
(CONS_RESTORE x) restore list pointer from x

Put operation

(PUT_VARIABLE v ac) put unbound local variable vinto ac
(PUT_VALUE v ac) put bound variable vinto ac
(PUT_UNSAFE_VALUE y ac) put unsafe variable y into ac
(PUT_CONSTANT k ac) put constant k into ac

(PUT_CONS [ac]) allocate a new cons and put it into ac

Get operation

(GET_VARIABLE v ac) set unbound variable vto ac

(GET_VALUE v ac) unify bound variable v and ac

(GET_CONSTANT k ac) unify constant kand ac

(GET_CONS acl) prepare unification of a cons; jump to /if ac is a variable

Note: Liviell specifies label.

X specifies temporary variable.

y specifies permanent variable.

v specifies x or y.

ac specifies argument register or a car or cdr part of a cons pointed by the list pointer.
thl specifies hash table consisting of labels.

k specifies constant.

n specifies integer.

Table 2 Basic instruction set of the Prolog Abstract Machine
note: the instructions given above are slightly different from the 'machine’ instructions

given in definition 5.1. These instructions are translated to the 'machine' instructions,
supplying parameters, if necessary.

(105

