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Abstract We propose a sufficient condition for confluence of noetherian mem-
bership conditional term rewriting systems and its application to a com-
pletion algorithm of such systems. We introduce contextual rewriting
preserving contexts and critical pairs with contexts. It is shown that
noetherian membership conditional term rewriting system is confluent if

all such critical pairs are convergent.

1. Introduction

Equality has been occupied a very special position in our computation, most of our
computation are carried out by the usage of this relation. To execute calculi based on
equality automatically and to treat computation on machines formally, we regard equali-
ties as rewriting rules by introducing order. In this direction, classical unconditional TRS
has been studied, stressed on its two principle characteristics, termination and confluence.
The former guarantces existence of results of computation in TRS and the latter does
uniqueness of those respectively. When we try to apply the results for automated theorem
proving, algebraic specification, verification and transformation of programs, we face to a
difficulty. In real program, for example, the application of equalities is usually restricted by
some conditions, then we come to a natural extension, conditional TRS in which rewriting
rules have conditions for their usage. Such systems have already been mvestigated well,
and we can find also results on confluence of such systems. But there is another approach
for conditional TRS, membership conditional TRS whose rewriting rules are restricted by
membership condition for its variables in lefthand sides of rules. Such systenﬁs seem to
realize restrictions on types and values for variables in real programs naturally, and will
enable us to discuss automated theorem proving, specification, verification and transforma-
tion based on them. Discussion on confluence of conditional TRS can be classified roughly

in two, one assumes some kind of normality for their conditions [4] and another noetherian
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property for systems whole [8]. As for membership conditional TRS, the results in the
former category are already known [11] and we are going to show that in the latter. and

we propose a completion algorithm for membership conditional TRS.

2. Term Rewriting Systems

In this section we briefly explain about term rewriting system, TRS in short and
prepare necessary notions for the following sections. We assume that the reader is familiar
with TRS and he can consult with, for example, [2],[3],[5],[7], if nccessary.

A term set T' = T(F,V) is the set of first order terms composed of the elements in
a denumerable set of variables V, and a set of function symbols F' graded by arities such
that FNV = ¢. We use Var(t) for a term ¢t € T the set of all the variables in ¢.

For any term ¢t € T we can define its occurrences O(t) C N'* the set of sequences of
positive integers and subterm ¢/u of t at occurrence u € O(t).

Ot)=Aandt/A=t fort=2€V
O)={AU {iuli=1,---,n,u € O;)},t/A =t and t/iu = t;/u

where f € Fit, € Tfor t = ft;---t,.
A is the empty sequence in N'*.
Next for ¢t,s € T and u € O(t), we define ¢[u « s] or simply [s] by:

tlu —s]=s, fti-taliues]=ft; - -tiistipr - ta.

A substitution 6 is a map from V to T(F, V) such that §(z) = = almost everywhere.
A rewriting rule on T is a pair of two terms ({,7) with Var(l) D Var(r) and [ ¢ V.
We denote a set of rewriting rules by v, and write {7 if ({,7) € >. A term t reduce t' at

occurrence u of term t, ¢ — t' by a rewriting rule !> 7 is defined as follows:
t — t' if and only if t = s{u « 18], = s[u « 78] for some s € T, 4.
We call t/u a redez of the rule.

We define term rewriting system:
Definition 2.1. (Term Rewriting System)
A TRS is a structure (T, —), with object set T' and a binary rclation — defined by a set

> of rewriting rules on 7.

We express by —* the transitive reflexive closure of —. A terimn ¢ is said to be a normal

form when there is no t' such that ¢t — t', and ' called a normal form of ¢t when ¢t —* ¢
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and t' is a normal form. Two terms t and t' converges, if t and ¢’ have an identical term

as their normal forms.
When two rules of [;or; for i = 1,2 with no common variables in TRS are overlapping,
if
[;6;/u = 1;8; for some 6;,0;,u € O(t) such that Li/u g V.
We can define a critical pair of two overlapping rules.
Definition 2.2. (Critical Pair)

A critical pair (P, @) of two overlapping rules [; >r; for i = 1,2 is:
P =10[u—rsb], Q=rsf
where 6 is the most general unifier of [} /u and l,.

The following two notions characterize TRS.
Definition 2.3. (Noetherian)

A TRS R = (T,—) is noctherian, if every reduction in It terminates, i.e., there is no
infinite reduction sequence as

t; =ty — t3 — -+ wheret; € T.
Definition 2.4. (confluence and Local Confluence)
A TRS R = (T, —) is confluent, if
Yu,v,w € T[u —* v,u —=* w = Fu' such that v =" u',w =~ u']
and locally confluent, if

Yu,v,w € Tlu — v,u — w = Ju’ such that v =" v, w —~ u'].

These two properties have been of our chief concern, because noectherian property
guarantees the existence of normal forms and confluence does uniqueness of normal forms
provided existence of them. If a TRS is equipped with both properties, the system has
necessarily an unique term reduced from every term. For noetherian classical unconditional

TRS the following results on confluence are well-known:

Lemma 2.5.

A noetherian relation is confluent if and only if it is locally confiuent.
Lemma 2.6. (Critical Pair Lemma)
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A TRS R is locally confluent if and only if every critical pair of R converges.

Combining these two lemmas, the next theorem on confluence of noetherian TRS
holds.

Theorem 2.7.

Let R be a noetherian term rewriting system. IR is confluent if and only if every critical
pair of R converges.

3. Mémbership Conditional Term Rewriting Systems
We introduce a kind of conditional TRS, membership conditional TRS.
Definition 3.1. (c-Term, MC-Rule)

A c-term is a term with a membership condition on the variables in the term:
tZ(I],"',IEn)E Sl X e X Sn

where {21, " ",Zn} = Var(t) and §; C T for all ¢, and write simply as t : c. A MC-rule is

a reduction/rewriting rule with a membership condition on the lefthand side of the rule:
Ilor:c
where [ 7 is a reduction/rewriting rule of TRS, and [ : cis a MC-term.

Definition 3.2. (Membership Conditional TRS)

A membership conditional TRS, is a term rewriting system defined by a set of MC-rules.

We say a term ¢ reduce t' by a MC-rule lbr : (21, ,&n) € 51, , S, in a membership
conditional TRS, when

t = s[lf], t' = s[rf) for some s € T,0

and
.'L'lg € S],"',Ine S Sn~

Below is an example of membership conditional TRS and its reductions.
Example 3.3.
Let F = {eq,d,+,5,0} and F' = {4,s,0}. We can define a membership conditional TRS
R which represents addition in the set of natural numbers V' = T({s,0}).

x4+ 0>z
z+s(r)ps(z+vy)
eq(z,z)paif z € T(F')
d(z)va +xif z € T(F)

I
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In this system, we have the following reduction sequence:
eq(d(0),d(0)) = eq(0+0,d(0)) — eq(0+0,04+0) - 0+0 — 0.

Note that a direct reduction eq(d(0), d(0)) — d(0) is impossible by the third rule in R since
d(0) ¢ T(f').

On the confluence of UN-noetherian membership conditional TRS, there are some
results in [11]. And there seems to be some criteria on confluence providing noetherian
property as in classical unconditional TRS and some other conditional TRS (cf. [1], [4],

(8])-

4. Contextual Rewriting
Here we introduce contextual rewriting which does not modify context parts of terms
and differs the one studied in [12]. This is prerequisite to discuss critical pairs of MC-rules.

but ours does not modify context parts of terms, therefore, differs from it.

Definition 4.1. (c-Reduction)

A c-term t @ cis c-reducible by a MC-rule (b7 : (21, ,2,) € S7 X - - Sy, if some subterm
t' at occurrence u of ¢t is 1§ for some substitution ¢’ and =,8' € S; for i =1¢,---,n hold
under ¢. Then t : ¢ c-reduces s : ¢ = tfu « r6'] : ¢, and we denote ¢ : ¢ —, s : ¢. When
we have s : ¢ from t : ¢ by c-reduction of zero or more times, we denote t : ¢ —* 5 : ¢. In
the above definition, because each z;8' includes variables restricted by context ¢, we have
to verify that z;6' € S;. A c-term ¢ : ¢ is a c-normal form when there is no ¢’ : ¢ such
that t:¢c —. 1" : ¢, and t' : ¢ is a snormal-form of t : cif t: ¢ =* ' : c,and t' : cis a

c-normal-form.

This is a kind of contextual rewriting that preserves contexts, ¢ in the definition, and
we show an example.
Example 4.2.
By a MC-rule f(z)b g(z) if z € N,

hf(s*() iy €N —c h(g(s*(¥) iy € N

where N is a set of natural numbers. In this case, we have to check s2(y) € N under
y € M and succeed.

We formalize the relation between terms and c-terms.
Definition 4.3. (Instance of c-Term, Associated c-Term)
A term tf is called an instance of a c-term ¢ : ¢, if 26 satisfies the condition ¢ for any

variable € Var(t). Conversely, we call ¢ : ¢ an associated c-term of t. We call a set of



c-terms Ty = {t : ¢[t € T,cis a membership condition on variables in V(t)} as associated
c-term set of T'.

We have to establish a correspondence between TRS and ¢-TRS and one between
terms and c-terms.

Lemma 4.4. (Existence of Associated c-Term)

For any term t there is some associated c-term ¢' : ¢’ and t = 1'6.
Proof.

Clear by the following inclusion map:
t——t:a; € {21}, ,2Tn € {zo}. Q.E.D.

Lemma 4.5.

Ift : ¢ c-reduces s : ¢ and t0 is an instance of ¢ : ¢, then there is an instance sf of s : ¢ such
that t — 5. That is, the diagram below is commutative:

Proof.
Let t : ¢ —c s:cbyacrule {>r: ¢&applying on a redex t/u : c of t : c. If the rule is

applicable also for ¢0/u, then we have the below commutative diagram:

t= td):c —c srfl:c
1 !

3

t0[16'6) —  s8[rf'd]

Then it remains only to show the rule is applicable for ¢t6/u. Let y € S be one of the
conditions in &, then y8' € S under ¢ = (z1,--*,%n) € S1 X <+ X S,.. From the definition
of instance (216, --,2,0) € S1 X -+ - X Sy, so we have yf'8 € S, e, td/u is also a redex of
the rule. This concludes this proof. Q.E.D.

By lemmas 4.4 and 4.5, we can define an associated ¢TRS (T, —¢) of (T, —):
Definition 4.6.
For a TRS R = (T, —), we have a set of associated c-terms Tt and c-reduction relations
—., and a TRS (T, —.) called an associated ¢TRS of R. Moreover we can necessarily
define an associated ¢TRS for a TRS.



Based on the notion of c-reduction, we can define critical pairs of membership condi-
tional rewriting rules in ¢TRS:
Defintion 4.7. (c-Critical Pairs)
A critical pair of two MC-rules (1i) {; > r; : ¢; for 7 = 1,2 with no common variables is
defined as follows. Let (P, Q) be a critical pair of (r1) and (r2) in classical unconditional
TRSby ignoring their conditions ¢;, that is,

P=16u«1y06], Q=ryb.

When there is the most general membership condition ¢ on variables in Var(l;6) such that
both ¢;8 and ¢, hold under ¢, we say (r1) and (r2) c-overlapping. We call a triple (P, Q,c)
a c-critical pair of two MC-rules (rl) and (12).

5. Confluence of Membership Conditional Term Rewriting Systems

The following is our key lemma:
Lemma 5.1.
A TRS R = (T, —) is locally confluent, if its associated ¢TRS R, = (Te, —¢) is locally
confluent.
Proof.
Let ¢, ¢2 be two terms reduced from a single term ¢ in (T, —), then there are three
associated c-terms s : ¢, sy : c and s : ¢ of ¢, ¢; and £, respectively such that s; : ¢, 82:¢C
are c-reduced from s : ¢ in (T¢, —.).

s:c
VA RN
sy ¢ t S2:¢C
I 7 N
ty %4 b2
s'ic
R A 4
tl

By hypothesis there is a c-term s’ : ¢ such that sy : ¢ =% &' : cand s, : ¢ —*s" 1 c. Then

we have an instance t' of ' : ¢ and t; —* ¢/ and t, —* #' by Lemma 4.5. Q.E.D.

This a critical pair lemma for ¢TRS.
Lemma 5.2.
If all the c-critical pairs of a ¢TRS R, = (T.,—.) are convergent, then R, is locally
confluent.
Proof.
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Let a c-term ¢ : ¢ c-reduces two distinct c-terms ' : ¢ and ¢ : ¢, by two MC-rules (rl)
lipry ey and (r2) I3 p 7y : ¢ on redexes t/u and t/v respectively, where v and v are two
occurrences of t.

There are three cases by the relative position of u and v.
Casel: u and v are disjoint.

Reductions at t'/v by (r2) and ¢''/u by (rl) result both in an identical term.
Case2:

When u and v are not disjoint, we may assume t/v is a subterm of t/u and we have
only to consider t/u a subterm of t.
Case2a: v = u - w and l;/w = z (variable).

Let

{w,w}, -, wi,}:= {all the occurrences of z in t'/u} w might not be contained,

{w,w!, -, wi}:= {all the occurrences of z in t"/u}.

Then we have the same term by applications of (12) on redexes ' /w, t'/w], - -+, t' /),
of t'/u, and by those of (r2) on redexes t" /wy, -+, " Jw), of #" /u followed by that of (r1)
on t''/u whole.

Case2b: v = u-w and I, /w # variable.

Only in this case, (t',t",c) is a c-critical pair and converges by the hypothesis, namely,

R, is locally confluent. Q.E.D.

Now we can give a criterion of confluence similar to one for noetherian TRS.
Theorem 5.3. (Main Theorem)
Let R be a noetherian membership conditional TRS. If every c-critical pairs of It converges,
R 1s confluent.
Proof.
We have an associated cTRS R, of R, and R, is locally confluent as its all the critical pairs
are convergent by lemma 5.2. Then also R is locally confluent by lemma 5.1, moreover

confluent for its noetherian property and lemma 2.3. Q.E.D.

We can design a completion algorithm as in classical unconditional case ([6], [10]) and

in one of conditional cases ([9]).

Let a set of membership conditional equations E and sowe reduction ordering > be
given, and if the following completion algorithm stops then we have a complete set of
MC-rules It.

Completion Algorithm
E : a set of MC-equalities (given)
R : a set of MC-rules (initially = ¢)
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Loop while E # ¢ do
if E = ¢ then return(R) ;;; Stops with success, It is complete.
fi=m=n:c ;; acandidate of a new rule, chosen from E
ri=Ivr:c ;;anewrule, [, r are c-normal forms of m : c,n:c
;3 by the current rule set R and > r
555 If c-normal forms of m : ¢ and r : ¢ are IN-comparable by > then
stops with failure.
R={l'vr':c € RIlI': ¢ or ' : ¢ c-reducible by f}
Reyg:={l'=r":CI'vbr': € R}
R:=R+{r}-R
E:=E—~{f}+R,,+CP(R,{r}) ;; CP(R,{r})is all the c-critical pairs

553 between the rules in new R and r.

Now we show a theorem on the completeness of above algorithm and its proof.
Theorem 5.4.
For a given set of MC-equations E, when above algorithm stops and we have a MC-TRS
R, then R is complete, that is, confluent and noetherian and moreover =p=~p. Here =g
and ~p denotes equivalence relations generated by = of E and — of R respectively.
Proof.
We express E, R, etc. in i-th loop as E;, R;, and so on. As =g U~ D=g U ~p,,
clearly and its converse is also true by =cp(ri,r:yC=p; U =y, we have =g=~p. When
E = ¢, from R is locally confluent because there is no critical pair, and noetherian for the
ordering used in the algorithm. Q.E.D.

6. Conclusion

We investigated the confluence of noetherian membership conditional TRS. For that
purpose we introduced contextual terms, contextual rewritings which preserve contexts of
them, and cofitextual critical pairs. Using such notions, it was shown that a noetherian
membership conditional TRS is confluent if every contextual critical pair converge. Based
on this criterion, we proposed a completion procedure for membership conditional TRS.

As membership conditional TRS is a natural model of equational logic and programs
expressed by equations, so our algorithm is applicable to automated theorem proving,
verification and transformation of programs.
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