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MODULARITY OF SIMPLE TERMINATION OF TERM.,
REWRITING SYSTEMS
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A term rewriting system, which is a computer programn written as a set of rewrite rules, is said
to be simply-terminating if, intuitively, its termination is proved with the simplification ordering
method of Dershowitz. The direct sum Ry R, of term rewriting systems Ry and R; is their disjoint
union. A property of term rewriting systems is said to be modular if its validity for Ry £, is implied
by the validity for Ry and R;.

In this paper, we prove the modularity of simple termination, i.e., that Ry@®R; is simply-
terminating if and only if each of Ry and R; is so. The result is novel in that it depends only
upon how we proved both Ry and R; terminating, rather than syntactic properties of the terminat-
ing systems. It is practically useful for the semi-mechanical termination proof of ‘modular’ computer
programs written as the set of term rewriting systems.
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1 Introduction

A term rewriting system [3] R is a program ex-
pressed as a finite set of rewrite rules, each of
the form £ — r, where £ and r are terms con-
structed from function symbols and variables.
The program is executed by rewriting; that is,
by repeatedly applying rewrite rules to some
given initial term, using single-directional pat-
tern matching and subterm replacement. A
rewrite rule £ — r may be applied to a term
if the term contains a subterm which is an in-
stance of the left-hand side ¢; then the subterm
is replaced by the corresponding instance of the
right-hand side r.

A term rewriting system is terminating if
there is no infinite rewriting sequence. Termi-
nation is a crucial property not only for en-
suring that a program eventually produce the
expected result, but also for verilying the con-
fluence because the termination is required for
inferring the ‘total confluence’ from the ‘local
confluence’[3]. However, the problem is that
the termination is undecidable. Thus it is un-
likely that computers prove the termination au-
tomatically. The proof would require, more or
less, the assistance of humans. But we should
say that the intelligent power of us humans is
too restrictive to assist the termination proof
of large and complex systems.

A natural approach to, the solution is the
‘divide-and-conquer’; divide the problem into
smaller ones whose solutions can be easily ob-
tained and combined together to make the solu-
tion of the original problem. In the community
of term rewriting systems, the related concept
of ‘modularity’ [6] is defined and extensively
investigated; a property of term rewriting sys-
tems is modular if its validity for the systems
hierarchically composed of some smaller ones is
implied by the validity of that property of the
constituent systems.

Since this field is still young, many re-
searchers assume as a start the most simple way
of the composition — the direct sum. The di-
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rect sum Ro@ Ry of two term rewriting systems
Ry and R is defined only when the set of func-
tion symbols contained in Ry and R; is disjoint;
then Ro@® R, is just a union of the both set of
rules. ‘

On the modularity of confluence, Toyama
[10] succeeded in proving the following useful
result:

Ro® R, 1s confluent iff both Ry and
R, are so.

On the termination, however, the analogous
conjecture
Ry@ R, is terminating iff both Ry and
R, are so
was refuted by the counterexample by Toyama
[11].
Then Toyama conjectured that
Ro® R, is complete iff both Ry and R,

are so

where a system is complete if it is both ter-
nminating and confluent. However, this con-
Jecture was also refuted by the counterexam-
ple by Klop and Barendregt [11]. Investigat-
ing this counterexample, Hsiang presented a
revised conjecture but it was also refuted by
Toyama [11].

It was in 1987 that the first positive results
were discovered by Rusinowitch [7]:

Ro® R, is terminating and non-
collapsing iff both Ry and R; are so.

Ro®D R, terminating and
duplicant iff both Ry and R; are so.

is non-

where a system is collapsing if it contains a rule
whose right-hand side is a variable, and dupli-
cant if it contains a rule whose right-hand side
has strictly more. occurrences of one variable
than its left-hand side. However, these results
are too restrictive to be applied in practice, be-
cause most of the practical systems are collaps-
ing and/or duplicant. (The results were further
investigated by Middeldorp [5] in 1989, but his
result is not modular, although it is a sufficient
condition for the termination of a direct sum.)



In 1989, Toyama, Klop, and Barendregt {12]
proved a reasonably practical result:

Ry®B R, is complete and left-linear iff
both Ry and R; are so

where a system is left-linear if no variable oc-
curs more than once on the left-hand side of
a rule. This result is reasonably practical be-
cause, when we write a functional program as a
term rewriting system, almost all systems can
be written within the restriction of the com-
pleteness and the left-linearity.

However, term rewriting systems have im-
portant applications in automated theorem
proving for first-order logic with equality, in
which it is very common for a system to be
non-left-linear.

To solve this problem, we take a completely
different approach. Note that those three re-
sults explicitly depend upon the syntactic prop-
erties of the systems, such as non-collapsing,
non-duplicant, and left-linear. In this paper,
however, we present a new result discovered
from another point of view:

Ry® R, is simply-terminating iff both

Ry and R, are so
where a system is simply-terminating if, intu-
itively, it’s termination is proved with the sim-
plification ordering method of Dershowitz [1].
The result is novel in that it depends only upon
how we proved both Ry and R, terminating,
rather than the explicit syntactic properties of
the terminating systems. The result is practical
because many practical systems which appear
in functional programming, theorem proving,
and any other areas fall into the classes whose
termination is semi-mechanically provable with
the simplification ordering method.

2 Formal Preliminaries

2.1 Term Rewriting Systems

Let V be a set of variables, denoted by z, y,
z,..., and F be a set of function symbols, de-

noted by f, g, h,.... Each function symbol
may have variable arity, or may be restricted
to a fixed arity. A function symbol with arity
zero is called a constant.

A term is either a variable or a constant
or is of the form f(¢;,...,1,) for some terms
t1,...,t, and a function symbol f with vari-
able arity or fixed arity n > 0. The root of a
term ¢, notation root(t), is f if ¢ is of the form
f{t1,...,t,); otherwise, it is ¢ itself. Every in-
termediate term we use in building up a term
t (including ¢ itself) is called a subterm of t. A
proper subterm of ¢ is one that is distinct from
t itself. We denote terms by s,¢,u, ..., the set
of terms on F and V by T(F,V), and the set
of terms on F by T(F). We use 7 for T(F,V)
when the context makes it clear.

A substitution 6 is a mapping from V to 7.
As usual, it is naturally extended to a mapping
from T to T — 6(c) = c if ¢ is a constant, and
Q(t) f(g(tl))‘-'vg(in)) ift = f(t1)~~)tn)>
n > 0. We write t6 instead of 8(¢).

Let O be an extra constant called a hole. A
term C on F U {0} and V is called a context
on F. A context C is trivial if it is the O.
When C'is a non-trivial context with n holes,
Cl[t1,...,t,) denotes the result of replacing the
holes by the terms ¢,,...,, from left to right.

A rewrite rule on 7 is a pair £ — r of terms in
T such that £ is not a variable and any variable
occurring in 7 also occurs in £. A term rewrit-

ing system R on 7 is a set of rewrite rules on
T. A term s is rewritten to a term t by R, nota-
tion s —pt, if there exists a rewrite rule £ — »
and a substitution § such that s = C[£§] and
t = C[rf] for some context C (where the sym-
bol = denotes the ‘syntactic equality’). The
term £6 is called a redez. The pair s — gt of the
terms s and ¢ is called a rewriting or a reduc-
tion. The transitive closure of a relation, say,
—p is denoted by —}. The reflexive transi-
tive closure of — 5 is denoted by —%. In the
rest of this paper, we restrict the relation —p
to be defined only on the ground terms 7 (F).
This is just for clarifying the discussions, and



our major results are easily shown to hold for
the more general case.

2.2 Direct Sum Systems

Let Fg and F; be disjoint sets of function sym-
bols, and let F = Fy U Fy; then the term
rewriting systems Ry on T(F,, V) and R; on
T (F;,V) are said to be disjoint. The union of
the disjoint systems Ry and R;, which is a term
rewriting system on 7 (F,V), is called the di-
rect sum system, notation Ro@R;. In the rest
of this paper, we assume that R = Ry® R;. For
mnemotechnical reasons we will paint the func-
tion symbols — the function symbols of Ry in
black, and those in R, in white. We say that
a non-variable term or a non-trivial context is
black-rooted (or white-rooted), if its root sym-
bol is black (or white). A non-variable term
or a non-trivial context is (entirely) black (or
white) if every function symbol in it is black
(or white); otherwise, it is mized. We also say
that the rules in Ry is black and those in R,
is white. To distinguish in print between them,
the black symbols are printed in upper case and
the white ones in lower case.

Definition 2.1 An alien! in a term ¢ is a non-
variable proper subterm u of ¢ which is maxi-
mal with respect to the ‘subterm’ relation, such
that root(t) and root(u) have distinct colors.

We write t = C[ty,...,t,] if t1,...,¢, are
all the aliens in ¢ (from left to right) and
C is the context obtained by replacing each
alien by a hole. For example, the term ¢ =
F(G(b,z),h(A,c)) has the two aliens b and
h(A,c); thus t C[b, h{(A,c)], where C =
F(G(0O,z),0). Note that all the function sym-
bols in C have the same color, and actually, C
is the maximal of such contexts.

Since each alien ¢; in ¢ may have aliens in
itself, we can identify a hierarchy of aliens de-

fined below:

Yalso called a principal subterm

Yot

(-

Definition 2.2 The alien tree AT(t) of a term
t is the tree each node of which is either a black
or a white context such that:
1. if t has no alien, then AT'(¢) consists of a
single node ¢, the root of the tree;

Cift = Cfty, ..., 1] (n > 0), then AT(t)
consists of the root C and the subtrees
AT(t),1<i<n.

The rank of a term ¢, notation rank(t), is the

height of the alien tree of t.

[Se]

As an example, the alien tree of ¢
F(G(b,z), h(A,c)) with rank 2 is depicted be-
low:

It is known that the rank of a term never
increases after rewriting [10]:
Lemma 2.3 If s —pgt then
rank(s) > rank(t).

Proof. Routine, by induction on rank(s). O

Lemma 2.4 Ifs—gt and rank(s) = rank(t),
then root(s) and root(t) are in the same color.

Proof. Routine. O

When discussing reduction by a direct sum
system, it is often useful to distinguish inner
reductions and outer ones[10]:

Definition 2.5 The reduction s —pxt is an in-
ner reduction if the redex occurs in an alien in
s; otherwise it is an outer reduction.

Lemma 2.6 Let s = CJsy, ..
rank(s) = rank(t). Then

1. If s—pt is an inner reduction, then

.y 8n] =gt and



tEC[Sl,.,

for some 1, where s;—gt,.

i) Si—lutl‘) Si4ly -0y sn]]

2. If s—pt is an outer reduction, then

t= C’[IS,‘“. .. ,s;m]]
for some contert C' in the same color as
C,and1<1,...,4, < n.

Proof. Routine. O

Comment: The second part of the lemma
says that, when rank(s) = rank(t), an outer
reduction never creates new aliens, although it
might duplicate some existing aliens. To intu-
itively understand why, assume that the con-
text C is black. Then the rule which reduces
s is black. Since aliens are white-rooted, each
alien in a redex must be entirely ‘covered’ by
some variable of the black left-hand side of the
rule, and ‘embedded’ in the black right-hand
side of the rule. Thus, the alien is again an
alien in the resultant term ¢, never ‘collapsed’
into a small alien nor ‘surrounded’ by any white
context to become larger alien.

When dealing with non-left-linear rules, the
following notion, introduced first by Toyama
[10], is useful:

Definition 2.7 A term s is proportional to a
term ¢, notation s o< t, if s = C[sq,..., s,], t =
C[ty,...,t.], and that s, = s; implies ¢; = ¢,
(1<ij<n).

Lemma 2.8 Let s —gt be an outer reduction
such that rank(s) = rank(t), and let s’ be a
term such that s oc s'. Then there exrists a term
' such that s' —pgt' is an outer reduction, and
t ot

Proof. Apply to s’ the same rewrite rule that
reduced s. O

(5)

3 Modularity of Simple
Termination

3.1 Simple Termination

Definition 3.1 A term rewriting system R is
terminating if there is no infinite rewrite se-
quence tg —g t; —g -

Consider a partial ordering (a transitive and
irreflexive relation) > on the set of terms 7.
When the ordering is monotonic, a ‘local’ re-
duction always ensures the ‘global’ reduction in
the ordering:

Definition 3.2 A partial ordering > on 7 is
monotonic if it possesses the replacement prop-
erty,
s>t
for all terms in 7.

FCos  )mflt..)

implies

Many orderings used in practice is in the
class of simplification orderings which ensure
that ‘syntactically simpler’ terms are always
smaller in the orderings:

Definition 3.3 A monotonic partial ordering
> is a simplification ordering for 7 if it pos-
sesses the subterm property,

Floot ),
and the deletion property,
flotoo -G . ),

for all terms in 7.

We relate simplification orderings to rewrit-
ings, by the following notion:

Definition 3.4 A simplification oi‘dering > on
T supports a rewriting s —gt, if s>-t. It sup-
ports a system R if it supports every rewriting
s—pt defined by Ron 7.

Now, we are ready to define the simple ter-
mination of term rewriting systems:

Definition 3.5 A term rewriting system R on
T is simply-terminating if there exists a sim-
plification ordering > which supports R.



It is known that the simplification ordering
- is well-founded [1], so there is no infinite re-
duction sequence to>t;> - --. Therefore:

Theorem 3.6 (Dershowitz)
A simply-terminating system 1is, in fact, ter-
minating.

Note that such orderings may not exist even
if the system is terminating.

As mentioned in the introduction, the pur-
pose of this paper is to prove that Ro@ R, is
simply-terminating if and only if both Ry and
R, are so. The following definitions and lem-
mas will become useful for that purpose:

Definition 3.7 The minimal support for R,
(a = 0,1) is the relation =, on 7 (F,,V) de-
fined as:

o =(—r, U= U —ua)?

where
s—ap t Ml s=C[f(...u...)] and
t = Cluy],
s—gq t Mt s=C[f(...u...)] and
t=C[f(... ... ),

for some C, f, and u; In both definitions, the
occurrence f(...u...)in sis called a redez, and
we use the terminology ‘inner’ reduction and
‘outer’ reduction in the same manner as in the
definition 2.5.

We introduce two abbreviations:
~Fasd = “Re U ~sub U —del » (a = 01 1)
—01sd = —R, U =R U = U —ya

Notice that », is the transitive closure of

asd -

Lemma 3.8 If R, is simply-terminaling, then
the minimal support >, 1s a simplification or-
dering which supports R,.

Proof. The lemma is proved by showing that
the relation », has the following six prop-
erties: irreflexivity, transitivity, monotonicity,
subterm, deletion, and support for R,. The
transitivity, the subterm property, the deletion
property, and the support for R, are obvious,
since », is a transitive closure which includes

suby del, and ““R, -

(6)

To show the irreflexivity, let >, be a sim-
plification ordering which supports every re-
duction s —g,t defined by R,. Then s —,,qt
implies s>,¢, because (1) if s =g, ¢t then obvi-
ously s».t, (2] if s—,,t then from the sub-
term property and the monotonicity of >, we
see s>,t, and (3} if s—4qt then s»,t from
the deletion property and the monotonicity of
4. Therefore, if there were a cyclic deriva-
tion t—,,4 -+ —a,qt, then we would have
t-g - >qot, thus t>,¢, which contradicts the
irreflexivity of »,.

To the monotonicity,
that —,,; is monotonic, because each of
the —ng,, and —g4q 1is monotonic.
Hence, —asat implies f(...s...)
—asd ** —asd f(-..t...). Therefore, s>t im-
plies f(...s..)»af(...t...). O

show first note

sub)

S asd "

3.2 Alien Replacement

Definition 3.9 An alien replacement p is a
mapping from the range N of the rank func-
tion to the set of terms 7 (F,V). It is extended
to a mapping from T(F,V)UN to 7(F,V) by
p(Clty, .- ta])
= Clp(rank(t1)), .. ., p(rank(t,))], »n > 0.

Example Let p(0) = £, and p(1) = F(F).

Then
p(F(A, g(A), b)) = F(A, F(E), E).
Note that the aliens, which we have under-
lined, were replaced by the terms determined
by their ranks.

Definition 3.10 Let F be the distinguished
black function symbol, E € Fy, with variable
arity. We assume that E is not used in the
rules in Ry (nor, of course, in R;). The alien
replacement p determined by a ‘black-rooted’ fi-
nite sequence
80 —01sd $1 ~01sd " T?01sd Sm

where root(s;) € Fo (0 < ¢ < m), is defined
inductively by



E
E

(P(O), p(l)) Ty p(r - l))
p(t’l)a p(té)a e ,P(tc;,))
,r>1
where {t{,1},---,1, }, which is determined for
each r, is the set of terms ¢’ such that:
(3k) sk —01sd Sk+1 is an inner reduction, and
(3t) si=C[...t...], rank(t) =r
skp1 = C[. .t ], root(t') € Fy
1 —01.a t.
In other words, t' is a black-rooted term derived
from a white-rooted alien ¢ with rank r.

Note:

e rank(t') < rank(t) = r, so p(t') can be
computed if p(1), ..., p(r — 1) are already
determined.

o p(r) = p(r), if r > 1.

o p(r) —uwp(t'), if t' satisfies the above con-
ditions.

e Since E'is black and ¢’ is black-rooted, we
can verify, by induction on ranks, that p(r)
is entirely black (r > 0).

e Since s; is black-rooted, p(s;) is entirely
black (0 <7 < m).
Example Consider the systems
Ry = {F(z) — G(z,z,1)},
R, = {h(x,h(z, y)) - y}'

and the sequence

Sp = F(t)
—R, $1 = G(L)t)t)
sub S2 = G(A) é) t)

—nr s3= G(A F(b),¢t)

where t = h(A, h(A, F(b))) and the underlined
terms are redexes. Then the alien replacement
p determined by this sequence is:

p(0)=E
p(1) = E(E)
p(2) = E(E, E(E), A, F(E)).

(7]

Note that
ol50) = F(u)
—p, p(51) = G(u, u, u)
— b p(52) = G(A, u, u)
—u p(s3) = G(A, F(E),u)

where u = p(2) = F(E, E(E), A, F(E)).

This definition might seem too complicated
to understand. Actually, the definition was in-
troduced just for technical reasons. The idea
comes from the intention that, when there is a
cyclic sequence

S =*01sd " T01sd S
of black-rooted mired-color terms, we want to
construct a cyclic sequence

P(8) —0sa ==+ —0sa p($)
of entirely black terms, thus uncovering the
contradiction to the irreflexivily of the mini-
mal support > for the black system Ry. The
proof of the following lemma would show you
more exactly how this definition is used:

Lemma 3.11 If p is the alien replacement de-
termined by the sequence

5= 80 —01sd * —016d St = S
of black-rooted terms with the same rank, then

p(s)zop(s").
where ¥ is the union of the minimal support
=0 and the syntactical equality =; that is, g
15 the reflexive transitive closure of —q,q =
—Ry U = U —ger .

In particular, if the sequence contains at least

a single outer reduction, then

p(8)0p(s').
Proof. To prove the lemma, we show that
p(sk)op(sp+1) for 0 < k < m. As stated in
the section 2.1, we assume that the terms s;
(0 < k < m) contain no variable.

CASE 1. s; —p skq1 (outer reduction).

In this case, sy —g, sp41 since the outermost
context of si is black. Recall that s, and s,
have the same rank. Since sy o p(si), p(sk) is
reducible with the same rule that has reduced



sk, and obviously p(sy) — g, p(sk+1) (Lemma
2.8). Therefore, p(sx)>=o0p(sk+1)-

CASE 2. s, —g sk41 (inner reduction).
Assume, without loss of generality, that the
first alien was reduced:

Sk = C’It],tz,...,tn],

p(sk) = Clp(rank(ty)), p(rank(ts)), ...,
p(rank(t,))],

ske1 = Cfth, ta, -y ],

t, —rt).

SUBCASE 2(A):
this case, we see that t}
is an alien in sgq1, thus:

Sk+1 = C[[tg) t2) .. tn]
p(srs1) = Clp( rank ), p(rank(tz)), ...,
p(rank(t,))].

Therefore, p(sx) = p(Sk+1)-

SuUBCASE 2(B): rank(t;) > rank(t]) and
¢, is white-rooted. Then, t] is an alien in sy4;:

Sky1 = Cl[tll,tg, - ,tn]l,
o(sk+1) = Clp(rank(ty)), p(rank(t2)), .. .,
p(rank(t,))].

Since rank(t;) > rank(t]), we see that
p(rank()) — s p(rank(t})).
Therefore, p(si) —sub p(Sk+1), thus
p(sk)>o0p(sk+1)-
SuBcase 2(c): rank(t;) > rank(t}) and
t) is black-rooted. In this case, we see that

plsien) = Clo(t}), plrank(ta)), .,
s(rank(ta)]
because ¢} is not an alien in sg4; but the aliens
By the definition,
p is constructed such that p(¢}) is contained
as an argument in p(rank(t;)), so p{rank(t,))
—p p(ty). Therefore, p(sx) —uup p(sk+1),
thus p(sx) >o p(sk+1)-
CASE 3. sg —,ub k41 (outer reduction).

rank(t;) = rank(t}). In
is white-rooted, so t}

in t{ are aliens in sg41.

Recall that s; and spy; have the same
rank. Obviously, p(sx) —.ubp(Sk41), sO
p(sk)>0p(sk+1)-

CASE 4. s — 4 Sg41 (inner reduction).
Assume, without loss of generality, that the
first alien was reduced:

(8)

sk = Clta, tay - - ],
spg1 = Cth, t2, . tal,
t1 —aub i
By the arguments similar to Case 2, we can
verify that
if rank(t;) = rank(t}), then
p(sk) = p(sk+1)-

if rank(t;) > rank(t}) and
t} is white-rooted, then
p(rank(ti)) — b p(rank(t])) and
ﬂ(Sk)“*mbP(SkH)v

o il rank(ty) > rank(t}) and
t1 is black-rooted, then
p(rank(ty)) — . p(t}) and
p(85) = sub P(8k41)-

CASE 5. S —qa Sk41 (outer reduction).
Obviously, p(sx) —vdet p(Sk+1), SO
p(sk)>0p(sk41)-

CASE 6. s —rger k41 (inner reduction).
Similar to Case 2, except that we need not con-
sider the subcase (¢). O

3.3 Modularity of Simple Ter-
mination

Now, we can extend the Lemma 3.8:

Lemma 3.12 Let = = —qgqt = (—p, U
—p U = U —4)t. If Ry and Ry are
simply-terminating, then > is a simplification
ordering which supports Ro® R;.

Proof. We have to show that the relation >
has the following six properties: irreflexivity,
transitivity, monotonicity, subterm, deletion,
and support for Rg@®R;. The most difficult
part is the irreflexivity. The other five proper-
ties are easily verified by the arguments similar
to Lemma 3.8.

To show the irreflexivity, we prove by in-
duction on rank(s), that there is no cyclic se-
quence s

= S0 —01sd S1 "01sd —0isd



s, = s, where we assume without loss of gen-
erality that s is black-rooted. Note that all the
terms have the same rank and, as a result, are
black-rooted.

Supposing that there is such a cyclic se-
quence, we will derive a contradiction.

Base Case: rank(s) = 0. Since rank(s;) = 0,
all the terms are entirely black. Hence the
cyclic sequence may be expressed as s —q,q

- —0sa §. This means that s»¢s, which con-
tradicts the irreflexivity of »¢(Lemma 3.8).

Induction Step: rank(s) > 1. From the
induction hypothesis, it is impossible that all
the reductions in the sequence be inner reduc-
tions. Thus at least a single reduction is an
Let p be the alien replace-
ment determined by the cyclic sequence. Since
we assumed that E is black, p(s;) is entirely
black. Then, from Lemma 3.11, we have that
p(s)=o p(s). This again contradicts the ir-
reflexivity of »,. O

outer reduction.

Theorem 3.13 Ry®R; is simply-terminating
iff both Ry and R, are so.

Proof. The only-if part is trivial. The if part
is direct from Lemma 3.12. O

Example Consider the following system:

R { Tz —>7T,

Tl )= (Y +(z-2)

Ry ={(z7")" -z}
Ry is shown to be simply-terminating by the re-
cursive path ordering (which is a simplification
ordering introduced by Dershowitz [1]). R, is
also simply-terminating. Therefore, by our the-
orem, Ry® R, is simply-terminating. Note that
the termination of RyéR; cannot be proved
by the three results by Rusinowitch, Toyama,
et al. because Ry contains collapsing, duplicant,
and non-left-linear rules.

Many orderings suitable for semi-mechanical
termination proof fall into the class of the sim-
plification ordering. For example, the recursive

(9)

path ordering (RPO) of Dershowitz, the path
of subterm ordering (PSO) of Plaisted, and
the recursive decomposition ordering (RDO) of
Jouannaud are typical simplification orderings
widely used [2,8]. It is known that there is a
term rewriting system, say Ry, whose termina-
tion is proved with PSO but not with RDO nor
RPO, and also there is a system, say R;, whose
termination is proved with RDO but not with
PSO nor RPO [8]. Thus the termination of
Ro® R, is proved with neither PSO nor RDO
nor RPO. However, by our theorem, Rq® R,
is simply-terminating, because both Ry and R,
are so.

4 Conclusion

We have presented a novel result on the modu-
larity of the termination of term rewriting sys-
tems. The authors claim that not only the re-
sult itself is novel but also the class of the result
is novel in that it focuses on the termination
proof method, rather than explicitly restricted
syntactic properties. Also, the result is inde-
pendent of the confluence.

Proof with simplification ordering is one of
the most powerful methods that are suitable
for semi-mechanical termination proof. There-
fore, our result is practically useful for the semi-
mechanical termination proofs of ‘modular’
computer programs written as the set of term
rewriting systems. You can load and merge
several disjoint, simply-terminating systems to-
gether, without losing termination. Our result
is also useful for other applications which re-
quire semi-mechanical termination procedures.
Inductionless induction theorem proving (on
‘direct sum’ theories) based on Knuth-Bendix -
completion procedure [9] is an example.

We feel that the result by Toyama, et al. and
our result in this paper are practically the final
solutions to the problem on the termination of
the direct sum of term rewriting systems, and
will close the series of the discussions so far.



The results will promote the research and the
development of modular languages [13] based
on term rewriting systems.

Our interest in future works will be in non-
direct sums — under what conditions and
strategies may the function symbols be shared
among systems without losing termination and
confluence? The problem is worth challeng-
ing, and some restricted results are already ob-
tained [2]. Also, a novel approach to the mod-
ularity is proposed [4]. We believe that the
solution would greatly contribute to the devel-
opment of large-scale programs written as term
rewriting systems, and thus enhance the mech-
anization of software engineering in the future.
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