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ABSTRACT

We show how synchronization affects the evaluation partial order in parallel func-
tional programs and examine in detail the synchronization primitive proposed by Hughes.
Despite the fact that it may cause deadlock, it is proved useful even on a single processor
implementation because it makes programs use less space. Moreover on parallel proces-
sors it increases parallelism and makes the total evaluation time shorter. Instead of trying
to prove programs free of deadlock, we give a practical method to construct deadlock-
free programs. At present we do this informally, but our method based on strictness
analysis and annotation of parameter mechanism seems promising. We also propose a
translation rule for a higher level notation into parallel code which will run synchro-
nously. This relies on an implicit synchronization mechanism inherent in strict functions.
Execution profiles on an experimental system support our idea.
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1. Introduction

It has been suggested that functional paral-
lel programming is much easier than writing
This belief is
founded on the fact that any functional program

imperative parallel programs.

has an important property called referential tran-
sparency; the meaning of a program (expression)
depends only on the values of its constituent
expressions, and these subcxpressions may be
frecly replaced by others with the same value.
The values of such subexpressions depend only
on the context and irrelevant to any procedures
for obtaining them or the order of replacing
expressions with their values. Hence functional
programmers feel no concern about whether a
particular expression is evaluated before others or
not. This holds both for sequential and for paral-
lel programs.

It is obscrved, however, that the order of
evaluation has significant effect on the efficicncy.
Finding an optimal evaluation order is difficult
even in the sequential case. In eager evaluation
all arguments to a function are evaluated before
the function is called. Since many imperative
languages adopt this strategy for long years, the
behavior of functional programs evaluated this
way is easily understood in analogy with impera-

tive programs. Another strategy called lazy

This material is based upon work supported by Grant-in-
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evaluation dclays evaluation of every argument
of a function until it is required in the body of the
function. The non-strict functional languages
based on lazy evaluation have recently attracted
considerable attention in their unique features that
are not supported in other languages. Everything
has its drawback, however. A weakness of the
non-strict languages is the difficulty of rcasoning
about their spacc and time bchavior [Peyton-
Jones87, Chapter 23). There have many works
done for correcting the weakness. For cxample,
strictness analysis [Mycroft81] allows the optimi-
zation of programs by identifying the parameters
that can be evaluated eagerly and avoiding the
need to build data structures for lazy cvaluation.
Program transformation based on lazy evaluation,
e.g., [Takeichi87] opens up oppotunities for
reducing the resource consumption.

Parallel evaluation of functional programs
extends these evaluation stratcgics. As in scquen-
tial evaluation, the cvaluation order is irrelcvant
to the meaning of programs but it has practical
importance. Onc of thec most promising works in
non-strict parallel functional programming is
included in [Hughes84). Hughes suggests that
even on a single processor implementation some
form of parallelism is ncccssar‘y for functional
programs (o Such quasi-
paralleclism may improve scquential programs.

run efficiently.

In this paper we show how the evaluation
partial order of non-strict parallel languages is



controlled by synchronization mechanisms. Sec-
tion 2 introduces primitive functions for parallel-
ism proposed by Hughes [Hughes84]. Experi-
mental results that support his statement are also
shown. In Section 3 we give a pragmalic solution
for avoiding deadlock that Hughes’ synchroniza-
tion primitive may cause. Implicit synchroniza-
tion mechanisms inherent to strict functions in
lazy evaluation are attractive because they never
cause deadlock at all. We show in Section 4 how
a higher level notation is translated into parallel
code that behaves much like programs using
explicit synchronization primitives.

2. Evaluation order and synchronization

Burton proposes a method with which a
functional programmer can control the evaluation
partial order of parallel programs [Burton87].
The aim of his method is to

. increase parallelism
. reduce storage requirements, or
. reduce the total amount of work performed.

He uses a combination of three parameter passing
mechanisms, i.e., call-by-value, call-by-name,
and call-by-speculation, which is annotated at the
function definition. The call-by-speculation
mechanism is considered as an cager form of
that is the default

adopted by non-strict languages. Controlling the

call-by-need mechanism
evaluation order this way relies on how a function
deals with its parameters before the function is
called. Omission of call-by-need may cause
difficulties in applying this method to non-strict
languages where expressions are not evaluated
until their values are actually required and expres-
sions are replaced with their values after they are
evaluated.

Hughes proposes an alternative method
which is simpler and is applicable to non-strict
languages [Hughes84]. The expression

par e
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is equivalent 10 e but evaluated in parallel with
the expression containing this construct. Thus

f (par e)
is scmantically equivalent to
fe

but evaluates € in parallel with applying f to e.
The argument passed to the function f might be
wholly evaluated or more possibly in a transicnt
state.
call-by-parallel-evaluation. As an implcmenta-

Hughes call this paramcter mechanism

tion technique, the future structure of Mullilisp
[Halstcad86] might be used. It would be a better
idea, however, to take such an argument as a
thunk with a transient state, because these struc-
tures are alrcady present in lazy evaluators.

The primitive par introduces speculative
parallclism without any fixed principle. If not
used appropriately too many tasks might be
spawn 10 evaluale unnccessary expressions.
Strictness analysis {[Mycrof181] works in this
situation. It derives the information from the pro-
gram text and decides whether arguments will

certainly be required.

Hughes proposes a synchronization primi-
tive synch as a function. The value of

synch e
is a pair
(e.e)

except that e will not be evaluated until both the
fst and the snd of (synch e) are required. For
example, if we write

let (x,y)=synch(1+2) in
par (fac x) + par (fib y)

then we are sure that 1+2 will not be evaluated
until both fac and fib are ready to use the result.
In fact, if the functions are defined as



fac x = if x=0 then 1 else ...
fib x = if x<=1 then 1 else ...

then demands are transmitted to 142 after two
processes reach x=0 and x<=1, respectively. The
process that arrives earlier at that point will be
The two
processes are thus synchronized according to the

suspended until the other arrives.

demands.

An important application of the function
synch is to produce a synchronized list syn-
chilist:

synchlist [] = ([].[])
synchlist (x:xs) =
let (xs1,xs2)=synchlist xs
and (f1,f2)=synch x in
((f1;(x:xs1)),{12;(x:xs2)))

where (f;e) means that evaluate f and wait for
evaluation to finish, then return . The synchron-
ized list is useful for evaluating two functions in
parallel and consuming the list elements at the
same rate. For example,

average xs = (sum xs)/(length xs)

may be converted into a parallel program which
uses bounded space if we use synchlist:

average xs =
let (xs1,xs2)=synchlist xs in
par (sum xs1) / par (length xs2)

A parallcl program obtained by simply annotating
par at the two opcrands of / cannot be evaluated
in bounded space; the elements having been con-
sumed by the fastcr process must remain in the
heap until they are used by the slower process.

It should be noted that this method docs not
alter the program structure, and as far as the value
of the program concerned we may ignore par and
treat (synch e) as (e,e). It is, however, difficult
to decide whether a given parallel program using
synch is deadlock-frce. We show a practical
solution to this problem in Section 3.
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To illustrate the effect of the use of syn-
chlist in practice, let us consider the definition of
a functional quicksort program. Hughes analyzes
this program in detail from a theoretical view
point.

sort[] =]
sort (x:xs) =
sort [yly<-xs;y<x] ++
(x : sort [y|ly<-xs;y>=x})

where [e|x<-xs;...] is the list comprchension
notation by Tumer [Tumcr85] and ++ is an
operator that appends a list to another list. We
assume herc that list comprchensions are
translated into sequential code. Another transla-

tion rule will be discussed in Section 4.

A vparallel version of the program without
synchlist is

sort (] =]
sort (x:xs) =
par sort [y|y<-xs;y<x] ++
par (x : par sort [y|ly<-xs;y>=x])

which sparks 3n proccsscs to sort n clements.
Figure 1 shows a parallelism profile obtained by
an execution of the above program written in PFL
(Parallel Functional Lisp), which is implemented
on an ELIS workstation using TAO [Takeu-
chi86]. Created processes arc mapped onto tasks
of TAO which are executed by a single processor
in turn. Task generation timings are illustrated as
if events had been taken place at an equal interval
of time and do not represent actual period of time.
Instead the ratio of the CPU time is shown at the
right. It is observed that most of the time is spent
by a few tasks and improvement of runtime
would not be expected if many processors
become available.

A synchronized version of the quicksort
program looks like



sort[] =]
sort (x:xs) =
let (xs1,xs2)=synchlist xs in
par son [y|ly<-xs1;y<x] ++
par (x : par sort [y|y<-xs2;y>=x})

Hughes analyzes this program and concludes that
it will sort n elements in time proportional O (n)
using O (log n) processors in the best case, or
O (n) processors in the worst case. The parallcl-
ism profile is shown in Figure 2. It should be
noted that the CPU time is shared by many tasks
which perform significant amount of work. The
total runtime will become much shorter if these
tasks are executed on different processors.

Although synch has been devised for mak-
ing programs use less space, synchronization
leads to an effective way of sparking tasks with
appropriate granularity. Experiments show that
synch may control evaluation partial order of
lazy evaluation to some extent in spite of its sim-
plicity.

3. Deadlock-free synchronization

As described in [Hughes84], par intro-
duced in the last section does not affect seman-
tics, but synch may cause deadlock, although it
cannot otherwise affect the values computed.
Hughes suggests that temporal logic might be
appropriate to prove programs free of deadlock.
To do so, for a given program using synch, it is
necessary to attach logical formula to the program
components and then prove the formula for the
whole program. An alternative approach to writ-
ing safe programs would be to combine par and
synch in a way that the program thus obtained
are always deadlock-free. We show here how
simple application of strictness analysis helps us
to find the rules for constructing safe programs.

When we want to write parallel programs,
we usually find out several tasks to be performed
independently but communicating each other.
For simplicity assume that our parallel program is
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described by two functions f and g both of which
take a common argument to communicatec. Con-
sider a sequential program

Hx=F (t x) (g x)
wherefx=..andgx = ..

If we want to use a parallel version, a program
like

H x = F (par (f x)) (par (g x))

would be obtained from the sequential onc. In
order to evaluate (f x) and (g x) synchronously,
we have

Hx =
let (x1,x2)=synch x in
F (par (f x1)) (par (g x2))

Is there any possibility of dcadlock in excculing
this program? Yes. If either of the function
bodies f and g happens to fail to access the argu-
ment, the other function cannot procecd any

more.

Strictness analysis [Mycroft81] may be
used to determine whether arguments of a func-
tion will be eventually evaluated or not. Consider
first functions on flat domains such as the
intcgers. We use an abstract domain

D =(T.1)

containing two elements. Between the clements
T and { the order is defined as

lc?

Morcover, there should be an abstraction function
which maps xe D into x*e D* satisfying the pro-
perty

xcy implies x* cy*
Every non-bottom element in D maps onto T, and
the bottom element of D maps onto the bottom

element L of D*. A function f is strict with
respect Lo its argument X if



=1

where f* is an abstract function derived from f.
Intuitively this means that if f takes an argument X
of which computation will never terminate, then
(f x) will never terminate. It is equivalent to say
that the value of the argument is certainly
required in the body of the function.

In the case of our parallel program, if either
of f or g does not satisfy

Ali={
g¥l=1

then deadlock cannot be avoided because either
of them will not access the argument forever. In
order to ensure that the program bccomes
deadlock-free, we have to do more. Since the
cquation like

=14

defines the least fixed point of the relation derived
from f, a function definition

fx=1x

also satisfies the equation of the abstract function
f*. In this case, we come across deadlock even
if f*1 = 1. What we have to do is to make the
strict argument of the function be called by value.
We write

f(val e)

to specify that the argument e is cvaluated before
f is called. Consequently, we have a deadlock-
free parallel program

Hx=
let (x1,x2)=synch x in
F (par (f (val x1))) (par (g (val x2)))

provided that f and g are strict with respect to
their arguments.

If functions which deal with data structures
arc considered, strictness analysis on non-flat
domains [Wadlcr87] may be used. Let us take a
parallel program using synchlist
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Hxs =
let (xs1,xs2)=synchlist xs in
F (par (f (val xs1))) (par (g (val xs2)))

As in the case of flat domains, it will become
apparent that we have to evaluate strict arguments
in order to avoid deadlock. We have alrcady
annotated as such in the above program.

For strictness analysis of list processing
functions, necded is an abstract domain D** for
the concrete domain D* of lists of which ele-
ments in D. Although Wadler explains how to
construct D**, what we nced here is that D**
should have the bottom | and an element co
corresponding to non-termination and any infinite
list, respectively, and that the elements of that
domain form a chain

lgeowg - T

Strictness analysis described in [Wadler87] tells
us to what extent the argument can be safely
evaluated. If f#* | = |, the argument of f may be
evaluated before the call; i.e., the function is strict
with respect to its argument. Similarly, if f# co =
1, it is safe to evaluate the argument and to evalu-
ate the tail of this argument. Wadler says that
such a function is strict in the tail.

Simple calculation determines whether a
function f is strict in the tail. By continuity of the
list constructor function cons or the operator :
which are assumed non-strict by default,

frocf! (Tio)

holds. See [Wadler87] for details. Hence we can
say that f is strict in the tail if f¥ (Tio)=1. It
should be noted that strictness in the tail implies
strictness with respect to the argument.

Now we return to the discussion of our
parallel program. As we have done, arguments
must be annotated with val for the strict functions
f and g. Morcover we have to ensure that the tail
of the argument will always be evaluated pro-
vided that the functions are strict in the tail. To



do this we simply insert val to the tail of the data
constructor operator if any as

a:(val b)
As an example of analysis, consider a
higher order function

foldrfafl=a
foldr f a (x:xs) = f x (foldr f a xs)

This function can be used to define many func-
tions that traverse lists. If we write

h* = (foldr f a)*
and sct x” =T and xs* =00, we have
h* o c f* T (h* o)
To find the least fixed point, we start with
h*oxs* = lforany xs*eD™
and iterate substitutions to have
hY oo = £ T(h¥; o)

=fATETC P T o))
=T TC- T

This tells that if
A=
then
foldrt a

is strict in the tail. That is, if f is strict with
respect to its second argument, (foldr f a) is strict
in the tail. In that case, a new definition

foldrfa[l=a
foldr f a (x:xs) = f x (foldr f a (val xs))

may be used to ensure that parallel programs with
synchlist are deadlock-free. The functions sum
and length used in the average shown in the pre-
vious section are defined using foldr as
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sumi = foldr (+) 0
length = foldrinc 0
where incxy = y+1

where both (+) and inC are strict with respect to
the second argument. Hence the program rewrit-
ten as

average xs =
let (xs1,xs2)=synchlist xs in
par (foldr (+) 0 xs1)/
par (foldr inc 0 xs2)

is also dcadlock-free.

It is worth noting that the function map
defined as

mapt[]=]]
map f (x:xs) =fx:mapfxs

is not strict in the tail. Conscquently map alone
should not be used in synchronized parallel pro-
grams. Combinations of map and other functions
may become strict in the tail and may appcar
safely in synchronized parallel programs with
annotations inserted as necessary.

4. Implicit synchronization

As a simplc example of implicit synchroni-
zation of lazy functional programs, considcr

par (fac 5) + par (fib 10)

Two processes are created to cvaluate (fac 5) and
(fib 10). Although the current process which has
created these two processes becomes ready to add
two values, it will be suspended until both
operands become available. In this way par and
strict functions like + achicve synchronized paral-
lel evaluation. Such a synchronization mechan-
ism is different from that of par and synch, how-
ever. If we understand that par bchaves as the
fork opecration of imperative parallel program-
ming, synchronization by strict functions is con-
sidered as the join operation.

In this section we show how implicit syn-



chronization works as the synch function. One
of the advantages of implicit synchronization is
that it does not require the programmer to do a
subtle business of inserting synch in the right
place. Moreover, the program does never cause
deadlock which is the most annoying probiem of
the synch primitive.

It is not true that an arbitrary functional
program would run efficiently in parallel. The
program to be executed in parallel must contain
algorithmic parallelism. In modern functional
programming such inherent parallelism should be
specified in higher level notations. One of such
notations is a list comprehension, or a sct notation
by Turner [Turner85]. The expression

[f x] x<-xs]
specifics the list consisting of
fxnfxy . f x,
if xs stands for
[xy, %0 -0 x, 1.

It would be easy to understand that such an
expression contains inherent parallelism; every
f x; may be evaluated in parallel with each other.
Of course, we have to assume that xs should
represent a finite list.

Translating comprehensions into combina-
tions of map, filter, and concat is carricd out
according to the rules [Bird88, p.631:

(1) [x]x<-xs] = xs
(2) [f x|x<-xs] = map { xs
B)[e|x<-xs;p X; ...] =
[e|x<-filter p xs; ...]
4) [e]x<-x8;y<-YS; ...] =
concat [[e[y<-Ys; ...]|x<-Xxs]

The functions used in the translation are assumed
to be evaluated sequentially.

map f[] =[]
map f (x:xs) =fx :map f xs

filterp[l=1l

filter p (x:xs) =
x :filter p xs, p x
filter p xs, otherwise

concat ] =[]
concat (xs:xss) = xs ++ concat xss

[[++ys =ys
(X:X8)++YS = X:(XS++YS)

Observing that the rule (2) translates inhcrent
parallelism into sequential list manipulation, we
replace it with a parallel version:

(2°) [f x|x<-xs] = parmap f xs

parmap f[] =]
parmap f (x:xs) =
par {f x) : val {parmap f xs)

This introduces parallclism in a straight way.
Then, from where does implicit synchronization
come out? In the above transformation, we do
not use any strict functions at all except parmap
that spawns processes in turn. The reason why
strictness arises in the program is that a strict
function like show to see the value on the termi-
nal is usually applied at the top level of the pro-
gram. Strictness of the top level function is pro-
pagated to the function concat where actual syn-
chronization takcs place.

As an example of the use of a parallel
comprehension, we show execution profiles of
two programs for the S-queens problem. Both
programs are contained in [Bird89]. The first
program looks like

queens 0 = [[}]
queens (M+1) =
[p++{n]|
p<-queens m;n<-[1..5];safe p n]

where safe is implemented directly by a function
in our program. Bird uscs a list comprchension to
define safe. Another version of this problem is



sneeuq 0 = [[]]
sneeuq (M+1) =
[p++[n]in<-[1..5];p<-ps;safe p n]
where ps=sneeuq m

Figures 3 and 4 illustrate execution profiles. The
root task (the topmost process) consumes large
portion of the total CPU time because the top
level function show need to transmit demands to
the program body. Putting this aside, remaining
CPU time is shared by many tasks much the same
way as in Figure 2. We may say that implicit
synchronization works well in the parallel list
comprehension.

5. Remarks

We have examined the property of the syn-
chronization primitive synch in detail. Although
Hughes originally introduced synch in order to
make parallel programs run in bounded space, it
appears that the use of synch may bring out a
desirable tasking mechanism for actual parallel
functional systems.

In order to write deadlock-free programs
which contain synch for synchronization, we
have proposed a practical method to avoid
dcadlock by building up programs from safe
functions. It is somewhat informal for brevity,
however. More formal treatment would be wel-
come.

Synchronization by strict functions is
inherent in lazy evaluation and is commonly
observed in programs that deal with numbers. It
may work to some extent for list processing func-
tions as well. We have demonstrated this by a
parallel implementation of the list comprehen-
sion. There is more work to be done before it can
become a higher level notation of parallelism.
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