VI by THEBER 356
(1990. 5.24)

SHFBICHERREE % D R v ov s v TR E TRS OBk owT
Membership Conditional TRS with Infinite Sets in Conditions
(Extended Abstract)

IHENEZ A (NTT ZERFEET)
Junnosuke Yamada
NTT Basic Research Laboralories
3-9-11, Midori-cho, Musashino, Tokyo 180 Japan

Abstract

A membership conditional term réwriting system (MCTRS) is a term rewriting system such
that applications of its rules are restricted by membership conditions on the variables. This
paper introduces a new technique of split for testing the confluence of MCTRS. The point
of this technique is to divide membership conditions into simpler parts. By considering
inductive structures of infinite splits, the confluence is shown for a MCTRS having infinite
sets in its membership conditions. As an application of this split technique, a completion
of McCarthy’s 91-function is demonstrated.

1. Introduction

Term rewriting system, TRS in short, is an excellent machinery for automated theorem proving, algebraic
data specification, and program verification and transformation. Conditional TRS arises naturally as its
extension, and much rescarch has appeared (e.g., [1]). Membership conditional TRS proposed by Toyama [16]
is one of such extensions. Their rewriting rules are restricted by membership conditions on the variables in left
hand sides of rules. Restrictions on types and values for variables in real programs can be expressed naturally
using them. Moreover, such systems can describe an infinite number of rules in one rule. H. Kirchner {11}
also proposed another notion called schematization to handle an infinite number of rules.

Discussions on the confluence of unconditional TRS can be classified into two categories: one assumes
TRS to be left-linear and non-overlapping and the other assumes noetherian and overlapping. Research on
conditional TRS also has two similar approaches. The results on membership conditional TRS in the former
category are already known [16],{17] and the results in the latter will be shown here. The result is a critical
pair lemma for membership conditional TRS. For that purpose the notions of critical pair and reductions
are reformulated, so as to be able to handle membership conditions attached to rules and terms. This paper
can treat a wider class of membership conditional TRS than previous work [18] by introducing contextual
rewriting [19] which allows modification of context parts called split. The notion of split is necessary to
overcome the difference of reductions in contextual TRS and its underlying membership conditional TRS. A
completion algorithm for membership conditional TRS will be also proposed.

Sections 2 and 3 give preliminaries of TRS and membership conditional TRS respectively. Section 4
introduces contextual rewriting and related notions. Section 5 shows the critical pair lemma and a completion
algorithin. Furthermore our algorithm demonstrates a property of the McCarthy’s 91-function which needs
some inductive method for its proof.

2. Term Rewriting Systems
This section briefly reviews TRS (cf., [2],[3],[5],[8]) and prepare necessary notions for the following

sections.

A term set T = T(F, V) is the set of first order terms composed of the elements in a set ol function

symbols I graded by arities and a denumerable set of variables V such that F NV = ¢. The set of all the
variables in a term ¢ is Var(t). The identity of terms is denoted by =.

For any term t its occurrences O(t), sublerm ¢/u of t at occurrence u € O(t), and replacement t[u « s}
or simply t[s] for ¢,s € T and u € O(t) are defined completely same as in [5].

A substitution 8 is a map from V to T'(F, V) such that = z almost everywhere. Substitutions are
naturally extended as morphisms of T'.

A rewriting rule on T is a pair of two terms (I,7) with Var(l) D Var(r) and I ¢ V. A set of rewriting
rules is indicated by >, and {7 iff (I,7) € b. A term ¢ reduces {o a term ¢’ at occurrence u € O(t) by a
rewriting rule [> iff ¢ = s[u — 16], ' = s[u « 0] for some s € T, substitution #, and occurrence u € O(t)
such that t/u ¢ Var(t). The relation of the two terms is indicated by ¢ — ¢’ and the subterm ¢/u is called a
redez of the rule in t. The transitive reflexive closure of — is denoted by —*.

Term rewriting system is defined as follows:
Definition 2.1. (Term Rewriting System)
A TRS is a structure (T, —) with an object set T" and a binary relation — defined by a set of rewriting rules
>on T.

A term t is said to be a normal form iff there is no ¢’ such that ¢ — ¢’. A term t' is called a normal form
of ¢t iff t —* ¢/ and t’ is a normal form and denoted by ¢ |. Two terms ¢; and {5 converge or are convergent
iff there is a term s such that t; —* s and ¢; —* s.

Two rules [; > r; for i = 1,2 with no common variables in a TRS are overlapping iff 1;6;/u = 1;8; for
some 0;,0;,u € O(t) such that ;/u € V. llereafter any two rules are assumed to have no common variables,
if not stated.

A critical pair of two overlapping rules is defined.
Definition 2.2. (Critical Pair)
A pair of terms (P, Q) is a critical pair of two rules l; > r; for ¢ = 1,2 overlapping in u € O({;) is:

PEllg[ul——ng], QET;H
where 0 is the most general unifier of l; /u ¢ V and 5.

The following two notions characterize TRS.
Definition 2.3. (Noetherian)
A TRS R = (T,—) is noetherian iff every reduction in R terminates, i.e., there is no infinite reduction
sequence as ty — ty — t3 — -+ - where t; € T\

Definition 2.4. (Confluence and Local Confluence)
A TRS R = (T, —) is confluent iff

Vit ty € T[t —* t1,1 —" 15 = 3¢’ such that t; —* t',{; —»* ']
and locally confluent iff

Vi,t1,ty € T[t — 11,1 — 1o = 3t' such that t; —* ¢/,15 —* t].

A TRS possessing both properties called complete. In such systems, every term necessarily has a unique
normal form.

These two properties have been of our chief concern, because noetherian property guarantees the ex-
istence of normal forms, and confluence guarantees uniqueness of normal forms provided they exist. As
they are generally undecidable, much research focuses to investigate some sufficient conditions of them. For
noetherian unconditional TRS the following results on the confluence are well-known.

Lemma 2.5. (Critical Pair Lemma)

A noetherian TRS R is locally confluent iff every critical pair of I? converges.

Note that the following lemma for general noetherian relations holds.
Lemma 2.6.

A noetherian relation is confluent iff it is locally confluent.

Combining these two lemmas, the next theorem on the confluence of unconditional noetherian TRS
holds.
Theorem 2.7.

A noetherian TRS R is confluent iff every critical pair of R converges.

3. Membership Conditional Term Rewriting Systems

A kind of conditional TRS, membership conditional TRS was initially proposed in [16]. The rewriting
rules of the system are restricted by membership conditions on the variables in the left hand sides of the
rules. Membership conditional TRS are suitable to describe the restrictions on types, values of variables and
treat an infinite number of rules in one. Membership conditional TRS treated in this paper are all assumed
to be well-defined.

Definition 3.1. (c-Term, MC-Rule)

A c-term is a term with membership conditions on the variables in the term:

(e, ,an) € S1 X - xSy
where {x1,---,2,} = Var(t) and S; C T for all i. A c-term is written simply as t : ¢ where ¢ =
(1, -,2n) € Sy X +++ x Sy, and ¢ is called the contezt of the c-term. An MC-rule I>7 : ¢ is a rewrit-

ing rule I > r with membership conditions ¢ on the variables in .

A term ¢ reduces to a term t' by an MC-rule [>r @ (=1, -,2,) € S1 X -~ X Sy in a membership
conditional TRS, when

t =t[i6], t' = t[r0] for some substitution ¢ such that 10 € Si, -+, z,0 € S,.

Definition 3.2. (Membership Conditional TRS)
A membership conditional TRS is a term rewriling systemn defined by a set of MC-rules.

An example of membership conditional TRS and its reductions are shown below.

Example 3.3.

Let F = {f,d,+,s,0} and F’ = {+,s,0}. Next membership conditional TRS R defines the addition +, the
double d, and f on the set of natural numbers N = T'({s, 0}).

z+0bz:zeT
z+s(y)>s(z+y):(z,y) e T2
dz)vz+z:ze T(F)
flzx)pz:z e T(F)

R:

In this system, the following reduction sequence is obtained:
F(d(0),d(0)) — f(0+0,d(0)) — f(0+0,040) =040 — 0.
Note that f(d(0),d(0)) cannot directly reduce to d(0) by the third rule in R since d(0) ¢ T'(F").

Rules in membership conditional TRS might cause some interaction each other in a very different way
from those in the other TRS. The following membership conditional TRS illustrates the situation:

Jf@ph(z) zeg(T)UkD)
R'{g(x)bx rzeT

where g(T") and k(T') denote sets of terms with outermost symbol g and k respectively, and g(T) U k(T) a
union of them. A single term f(g(z)) can be reduced by the both rules. A reduction sequence f(g(z)) —
h(g(x)) — h(z) is obtained by using the first rule and the second subsequently. However, if the second rule
is applied preceding the first we have f(g(z)) — f(z), and R is not confluent. This problem is resulted
from f(z) is no longer satisfying the membership condition of the first rule. Then the following notions are
introduced to prevent us from this problem.

Definition 3.4. (Closed, Quasi-Closed)

A set of terms S is closed iff Vs € SVt € T[s — t =t € S] A set of terms S is quasi-closed iff s |€ S for all
s € S. A membership conditional TRS R is closed (resp. gquasi-closed) iff every set S(# T') in membership
conditions of its rules is closed (resp. quasi-closed).

As for noetherian membership conditional TRS, it is not necessary to assume closedness and it is
sufficient to assume quasi-closedness.

4. Contextual Rewriting

In membership conditional TRS, membership conditions attached to their rules must be carried by some
mechanism. For that purpose the notions of context and contextual rewriting are introduced. The contextual
rewriting introduced in this paper differs from the one in [19] whose rules and terms have conditions of boolean
values.

We say t(z1,-++,2,) € S holds under ¢ where ¢ = (1,+-, %) € St X -+ X Sp iff t(s1,---,80) € S for
all (51, ,8n) € S1 X -+ X Sn.

Definition 4.1. (c-Substitution)
Amap 0 fromz:z e S toactermt:cisa c-substitution il 0 = a almost every where and z6 ¢ S holds
under ¢. Naturally this map can be extended on c-terms.

Definition 4.2. (c-Match)

Let t:c and t' : ¢ be two c-terms. ¢/ : ¢’ c-maiches to ¢ : ¢ iff there is a c-substitution 8 from ' : ¢/ to ¢ : c.

Now we define c-unifier of two c-terms which need some additional information on the domains of the
variables substituted.

Definition 4.3. (c-Unification)

Let ¢, : ¢; and t3 : co be two c-terms with no common variables and ¢; = (1, ,Zm) € S1 X --+ X Sm,
2 = (Tmt1, "y Tmtn) € S1 X =+ X Sman. A c-unifier of ¢1 : ¢; and 2 : ¢z is a pair of c-substitution ¢ and
membership conditions ¢ = (z1, "y Tmgn) € S} X -+ x Sl 4, where S C Sisuch that z;6 € S; holds under
c. A c-unifier (0,c) is a most general um’ﬁcr of two c-terms ¥ : ¢; and i3 : ¢p iff 6 is a most general unifier
of t; and i,.

Definition 4.4. (c-Reduction, c-Convergence)

A cterm t : ¢ is c-reducible by an MC-rule I r @ (®1,--+,%,) € S1 X +-- X Sy iff some subterm ' = t/u
at occurrence u of ¢ is 16’ for some substitution ¢ and z;0’ ¢ S; for i = 1,---,n hold under ¢. Thent: ¢
c-reduces 10 5 : ¢ = t{u « r0'] : ¢ and we denote ¢ : c—»s : c. In this definition, as each z;0’ includes variables
restricted by context ¢, and 2;6' € S; have to be verified. The transitive reflexive closure of —» is denoted by
—#*_ A c-term ¢ : ¢ is a c-normal form ifl there is no ¢’ : ¢ such that ¢ : c—»t' : ¢, and ¥’ : ¢ is a c-normal form
oft:cifft:c»*t : ¢, and t' : ¢ is a c-normal form. Two c-terms with a common context ¢ : ¢ and 3 : ¢
c-converge iff there is a c-term s : ¢ such that ¢; : c»*s:cand {5 : c»"s:c.

The relation between terms and c-terms is formalized.
Definition 4.5. (Instance of c-Term, Associated c-Term)
A term 0 is called an instance of a c-term ¢ : ¢ iff 28 satisfies the condition c for any variable x € Var(t).
Conversely the c-term ¢ : ¢ is called an associated c-term of t@. The set of all the associated c-terms of a
term set T is denoted by T, and called an associated c-term set of T'.

Definition 4.6. (cTRS)
For a TRS R = (T,—) there are a set of associated c-terms T, and a c-reduction relation -, and a TRS

R, = (T,) called the associated cTRS of R. Moreover the associated ¢TRS can necessarily be defined for
any TRS.

Based on the notion of c-reduction, a critical pair of two MC-rules can be defined. Before that, the
notion of overlapping of MC-rules have to be clarified.

Definition 4.7. (c-Overlapping)

Two MC-rules with no common variables

Lori(zy, o zn) € Sy X x S, and
12 D7yl (xm+1; M) :l'm-l-n) £ Sm+1 X e X Sm—{.-n
are c-overlapping in u € O(ly) such that Iy /u ¢ V iff there is a c-unifier (6, (1, *+, Tm4n) € ST XX Shryn)

of I;/u and I3 under the membership conditions in the rules.

Now c-critical pair of two c-overlapping rules can be introduced.

Definition 4.8. (c-Critical Pair)
Let
Lbry(zr, 2m) € St X xS, and
Lo 1o (Zmgts 5y Emgn) € Syl X+ X Smgn
be two MC-rules c-overlapping in occurrence u € O(l;). The MC-criticol pair (P,Q):c of the two MC-rules
inueO()is

P=4L0lu—ryf], Q=rb, and c= (21, Tmgn) €EST X - X Shin

where (0,c) is a most general c-unifier of of two left hand sides c-terms of the two MC-rules with each
membership conditions.

For example we find a c-critical pair of the following two rules:

FUU@)) e h(y):y e g(TYUR(T) and
fle(z))pg(z): 2 ¢ T.

There is a substitution y/g(z) to make the two rules c-overlapping. Then some membership condition on z
satisfying both z ¢ T and g(z) € g(T)UR(T) have to be found. From the former condition, some subcondition
of z £ T is obtained from g(z) ¢ g(T) U h(T). In this example, such a condition z ¢ T and a c-critical pair
(F(9(2)),h(g(2))) : z € T can be found immediately.

Contextual rewriting as c-reduction and related notions are too restricted.” Here the following mem-
bership conditional TRS which defines the addition add on the set of natural numbers N = T'({s,0}) is
considered.

add(z,0)pz :axeN (1)
add(z, s(y)) > add(s(z),y) : (z,y) e N> (2)
add(z, s(y)) > s{add(z,y)) :(z,y) e N* (3)
Two rules (2) and (3) are c-overlapping in the associated ¢TRS and we have:

add(z, s(y)) : (¢,y) € N?

s(add(z,y)) : (z,y) € N? d add(s(z),y) : (z,y) € N?
These two c-terms are c-irreducible, even though the corresponding membership conditional TRS is locally
confluent. To overcome the difference of the reduction power, c-reduction is extended using a new concept
defined below. Then the extended c-reduction can handle this example properly.

Definition 4.9. (Split)

A context ¢ = (1, -+, @) € Sy X -+~ x St has a split into ¢y, -+, ¢n iff Si’s are disjoint unions of several sets,
ie., >S,‘ = Uj,EJ,.S?"), and there is at least one 7 such that J; has more than one elements. This is denoted
byc=ciU---Uec, where ¢; = (z1, -, 2k) € ng‘) X oo X S,(cj").

Definition 4.10. (c-Reduction with Split)
A c-term ¢ : ¢ c-reduces c-terms {; : ¢;’s with split iff there is a split ¢ = L¢; such that ¢ : ¢;—»1; @ ¢; for all 4.

Definition 4.11. (c-Convergence with Split)
Two c-terms ¢, : ¢ and £, : ¢ with a common context ¢ c-converge or are c-convergent with split ill there is a
split ¢ = ¢y U+ -+ U ey such that 3 : ¢; and 13 : ¢; are c-convergent for all 7.

By a split N> = N x {0} UN x {r > 1}, the pair of terms in the preceding example s(add(z,y)) *
(z,y) € N? and add(s(z),y) : (z,y) € N? c-converges.

5. Confluence of Membership Conditional Term Rewriting Systems
Next lemma is the critical pair lemma for membership conditional TRS.

Lemma 5.1. {Critical Piar lemm for MCTRS)
Let R be a noetherian quasi-closed membership conditional TRS and R, be its associated ¢TRS. If every
c-critical pair in R, c-converges with split, then R is locally confluent.
Proof.
Let a term t reduces two distinct terms ¢’ and " by two MC-rules (r1) ly> 7y : ¢; and (x2) Iz > 7y : cp o1
redexes t/u and t/v respectively, where u and v are two occurrences of t.
There are two cases by the relative position of v and v.
Casel: u and v are disjoint.
Reductions at /v by (r2) and ¢ /u by (r1) result both in an identical term.
Case2: u and v are not disjoint.

Without loss of generality /v is a subterm of t/u and we have only to consider a subterm ¢/u of ¢. This
case has two subcases.

a. v=u-wwhere w € O(ly) and L, /w ¢ V.

Only in this subcase, t'/u and ¢ /u are instances of two c-terms P : ¢ and @ : ¢ where (P,Q) : cis a
c-critical pair in .. Then there exists a substitution @ such that t//u = PO, t”/u = Q0 and z;0 € S; for
every variable and its condition @; € S; appearing in ¢. As they c-converge also their instances converge.
Even if either P :cor @ : ¢ does not irreducible, we can choose appropriate ¢; from some split ¢ = Uc; such
that (P, Q) : ¢; c-converges.

b. v = u-wp - wy where wo - wy € O(ly) and l; /we € V.

We assume that (rl) dose not erase the variable {3 /wg. First ¢’/v-wg reduces to its normal form s which
exists from noetherian property. Subsequently all the subterms of ¢ which correspond to the variable reduce
to s, and a term i is obtained. Similarly ¢’ reduces to i’ using t/v - wg —* s. By quasi-closedness (r1) is
applicable to #* and # reduces to #’. When (rl) erases the variable !; /wp, the proof is similar to this proof.
O

Thus we obtain a sufficient condition on the confluence:

Theorem 5.2. (Main Theorem)
Let R be a noetherian quasi-closed membership conditional TRS, and R, be its associated ¢TRS. If every
c-critical pair in R, c-converges with split, then R is confluent.

Proof.

It is clear from lemma 5.1 and noetherian property using lemma 2.6. O

Based on theorem 5.2, a completion algorithm can be designed as in the unconditional case ([6], [12])
and the other conditional cases (e.g., [10]).

Let a set of quasi-closed membership conditional equalities £ and some reduction ordering >~ be given
as inputs of the algorithm. In this algorithm, selection of equality m = n : ¢ from E assumed to satisfy the
fairness hypothesis in [6]. The hypothesis ensures every equality E will be selected within a finite number
of steps.

Completion Algorithm
E : a setb of quasi-closed MC-equalities (given)

R : aset of MC-rules (initially = ¢)
While E # ¢ do
begin
fi=m=n:c ;; A candidate of a new rule, chosen from E.
R*:={li>pr;:c}
;3; New rules, I;, r; are c-normal forms of m ¢, n i ¢;
;3; by the current rule set R and l; > 7;. If c-normal forms
;33 of m:¢; and n : ¢; are IN-comparable by =, then it stops with failure.
R :={l'vr':c € R|lI':c' or 7' : ¢ c-reducible by some l;br;iic; € R*}
Ry :={l'=r":|l'vr:c €R}
R:=R+R*'-R
E:=E—{f}+ R, +CP(R,R")
;5; CP(R, R*) is all the c-critical pairs between the rules in new R and R*.
end
return(R) ;; E = ¢ and it stops with success, R is complete.

Now a completeness theorem on the completeness of this algorithm and its proof is shown.

Theorem 5.3.

For a given set of quasi-closed MC-equalities I and a reduction ordering >, if this algorithm stops and a
membership conditional TRS R is returned, then R is complete, that is, noetherian and confluent. Moreover
=p=~p. Here =g and ~p are equivalence relations generated by = of E and — of R respectively.

Proof.

E,R,--- in i-th loop are indicated by E;, R;,- - with suffix i. We prove by the induction on i. Base case is
clear and i+ 1 case is shown assuming i case. As =p,,, U ~pg,,,D=p; U ~rg, clearly and its converse is also
true by =cp(n;,r;)C~R; U =y, We have =g=~pg. When E = ¢, R is locally confluent because there is no
critical pair, and noetherian by the ordering used in the algorithm. O

This completion algorithm can be used as a proof method similar to inductionless induction in the
unconditional case [7]. Under axioms described by a complete membership conditional TRS R, it can be
proved whether or not m = n : ¢ is a theorem of R by trying to complete RU{m =n: c¢}. If the completion
stops with success the equality is a theorem and if it stops with failure, it is not a theorem.

Example 5.4. (91-function)
McCarthy’s 91-function f in [13] is recursively defined by

f(z) = if £ <100 then f(f(z+11)) else z—10

and has a property
f(z) =91 for all z < 100.

The definition of f can be reformulated by the following membership conditional equalities (1) and (2), the
property by (3). Membership conditions are indicated by equalities or inequalities which define them. e.g.,
z < 100 means z € {n € N|n < 100}.

fzy=2-10 :101 <z (1)
E: { f(@)=f(f(z+11)) :2<100 (2)
Flz) =91 :z <100 (3)

Now the property (3) is proved using our completion algorithm for membership conditional TRS. That is,
our completion generates a complete set of MC-rules from the MC-equality system E. Before completing
above E, we notice that our algorithm also succeeds in completing {(1),(2)}. From now on, the current
MC-rule set is denoted by R and assume the order = defined from f 3> s > 0 where s is the successor
function and N = T'({s,0}).

The following membership conditional TRS R is obtained by choosing (1) and (3) from E or reverse
order.

,{f(z)m—lo (101<a (1)
flz)p91 :2 <100 3"

The last equality (2) in E is chosen as a new rule, and the equality is reduced as below by (1) and (3').
f):2<100 = f(f(z+11)):2<100 - f(z+1):90<2<100 -+ z-—-9:z=100
¥

4 ¥ ¥
91:2 <100 F(91) 12 < 89 91:90 <z <99 91:z =100
l
91:z <89

This shows that the both sides of equality (2) reduce to the same, there remains no equality in £ and our
completion succeeds.

Thus the intended property of 91-function is proved, applying our completion algorithm to the mem-
bership conditional TRS which defines the function and states the property. If membership conditional TRS
is not utilized, then f must be defined by the following unconditional TRS which includes many rules and
takes much effort for completion.

J(s11(0)) > £(0)
F(s'1(5(0))) > F(5(0))
(™ (s(5(0))) > £ (5(5(0)))

F(s(s*1(0)) > £(s°1(0))

£ (2)) > 5% (z)
Compared with this method, our method is simpler and more efficient as it has much fewer equalities and
rules.

Remark 5.5.

This completion algorithm computes normal forms of c-terms in contextual critical pairs with split to know
their convergence. However there appears a nonterminating computation of normal forms even in the follow-
ing very simple membership conditional TRS R with two rules f(s(z))>f(z) : z € Nand f(z)>f(0) 1z e N.

f@):zeN —» f@):z’eN —» f@@):z"eN —»
¥

4
f(0):z=0 f(0):z=1 f(0):z=2

where z = s(z') = s(s(«")) = ---. This example shows that even if a membership conditional TRS R
is noetherian, the ¢TRS which is associated with R is not noetherian for c-reduction with split. This
phenomena is caused by extractions of infinite patterns in a membership condition, and is stated as a
divergence in breadth in [11]. For treating infinite splits cases as above, the completion algorithm should
have some mechanism which find inductive structures of infinite splits and execute inductive proofs on them.
We believe that the techniques proposed in [14},[15], can be effectively applied to this purpose. This direction
is our further work.

6. Conclusion .

A completion algorithm for membership conditional TRS has been presented. A new framework for
contextual rewriting of membership conditional TRS has been introduced based on [19]. A new technique
of split has been utilized to show the confluence of membership conditional TRS, which cannot be proven
without splif. Finally the completion algorithm has been demonstrated by an inductive proof for a property
of McCarthy’s 91-function.

To extend split technique for the case of infinite splits is our further work. Since our membership
conditional TRS has a close connection to the metarewriting system proposed by H. Kirchner in [11], we
believe that split technique will be also effective to prove confluence of the metarewriting system.

Ackncwledgement

The author is very grateful to Yoshihito Toyama for helpful discussions and valuable suggestions. He
also thanks colleagues in Koyama Research Group of NTT Research Laboratories for their careful reading
of the preliminary form of this paper.

References
[1] Bergstra, J. and Klop, J. : Conditional Rewrite Rules, J. of Comp.and Sys.Sci. 32 (1986), pp.323-362.
[2] Buchberger, B. : History and Basic Features of Critical-pair/completion Procedure, J. of Symbolic Computation 3 (1987),
pp.3-38.
[3] Dershowitz, N. : Termination of Rewriting, J. of Symbolic Computation 3 (1987), pp.122-157.
[4] Dershowitz, N., Okada, M., and Shivakumar, G. : Confluence of Conditional Rewrite Rules, Springer LNCS 308 (1988),
pp-31-44.
[5] Huet, G.: Confluent Reductions : Absiract Properties and Applications to Term Rewriting Systems, J. of ACM 27 (1980),
pp.797-821.
[6] Huet, G. : A complete Proof of Correciness of the Knuth-Bendiz Completion Algorithm, J. of Comp. and Sys. Sci. 31
(1981), pp.11-21.
[7] Huet, G. and Hullot, J.-M. : Proofs by Induction in Equational Theorics with Consiructors, J. of Comp. and Sys. Sci.
35 (1982), pp.239-266.
[8] Huet, G. and Oppen, C. : Equations and Rewrite Rules : A Survey. in R. Book (ed.) : Formal Language : Perspectives
and Open Problems, Academic Press (1980), pp.349-405.
[9] Kaplan, S.: Conditional Rewrite Rules, Th. Comp. Sci. 33 (1984), pp.175-193.
[10] Kaplan, S.: Simplifying Conditional Term Rewriting Systems : Unification, Termination and Confluence, J. of Symbolic
Computation 4 (1987), pp.295-334.
[11] Kirchner, H. : Schematization of Infinite Sets of Rewrite Rules Generated by Divergent Completion Processes, Th. Comp.
Sci. 67 (1989), pp.303-332.
{12] Knuth, E. and Bendix, B. : Simple Word Problems in Universal Algebras, in J. Leech (ed.) : Computational Problems
in Abstract Algebra, Pergamon Press (1970), pp.263-297.
[13] Manna, Z. et al. : Inductive Methods for Proving Properties of Programs, Proc. ACM Conf. on Proving Assertions on
Programs (1972).
[14] Sakai, M., Sakabe, T. and Inagaki, Y. : A Method for Inductive Properties of Algebraic Specification, IEICE Japan Tech.
Rep. COMP#88-86 (1989).
[15] Thiel, J.-J. : Stop Losing Sleep over Incomplete Data Type Specification, Proc. of 11th POPL (1984), pp.76-82.
[16] Toyama, Y. : Term Rewriting Systems with Membership Conditions, Springer LNCS 308 (1988), pp.228-244.
[17] Toyama, Y. : Membership Conditional Term Rewriting Systems, Trans. IEICE Japan, E72 (1989), pp.1224-1229.
[18] Yamada, J. and Toyama, Y. : Confluence of Membership Conditional TRS, IEICE Japan Tech. Rep. COMP89-8 and
IPSJ Tech. Rep. SF-89-28-8 (1989).
[19) Zhang, H. and Remy, J.-L. : Conteziual Rewriting, Springer LNCS 202 (1985), pp.46-62.

