V7 M TR
(1990, 5.24)

353

WMEBE7 7w AT AEMUBEREROBRERBE L LTOF— % 70—

ITR } #

(B RS T8

Dataflow for Logic Program

as Manipulator of Equivalent Substitutions Sets

Susumu Yamasaki

Department of Information Technology

Okayama University, Tsushimanaka, Okayama, Japan

Abstract

This paper shows a method of constructing a dataflow, which denotes the deductions of a logic program,

by means of a sequence domain based on equivalence classes of substitutions. The dataflow involves fair

merge functions to represent unions of atom subsets over a sequence domain, as well as functions as
manipulations of unifiers for the deductions of clauses. A continuous functional is associated with the

dataflow on condition that the dataflow completely and soundly denotes the atom generation in terms
of equivalent substitutions sets. Its least fixpoint is interpreted as denoting the whole atom generation

based on manipulations of equivalent substitutions sets.

1. Introduction

Many researches as to the semantics of logic programs have
been made since van Emden and Kowalski defined a semantics
for finite computations/deductioné of logic programs [1,2,4,5,7,
8,9,10,11,12]. Among them there are distinguishable approach-
es to grasp the semantics in the sense that they are concerned
with sequence domains. M.Fitting defined a" deterministic
Prolog fixpoint semantics, which represents all the answer se-
quences with the goals for a given logic program. M.Baudinet
proposed a method of transforming a logic program into a
recursive program which represents manipulations of substi-
tutions caused by the computation of the logic program and
denotes a fixpoint semantics of the given logic program [4,7].
Her approach is regarded as an advanced version of defining
Fitting’s semantics in that its sequence domain is not based on
the Herbrand base but on a substitution set. Different from
those approaches to define semantics of logic programs over
sequence domains, this paper deals with semantics of a logic
program, based on dataflow construction approach.‘

The semantics proposed in this paper reflects the behaviour
of dataflow for a logic program as a manipulator of substi-
tutions. It will be defined over a sequence domain based on
the quotient set for a substitution set. The quotient set is
obtained on the basis of an equivalence relation on the substi-
tution set. The reason to adopt the quotient set is to eliminate

nondeterminism occurring in selecting one substitution among
equivalent substitutions in accordance with a resolution deduc-
tion. We will construct a dataflow to realize manipulations
on the quotient set for unit deduction. At the same time, it
defines a continuous functional based on a sequence domain.
The sequence domain is constructed as the set of all finite and
infinite sequences from the quotient set with a symbol repre-
senting time delay or the hiaton in [13]. The dataflow for a
logic program will be defined as a recursion equation set as to
sequence variables and a continuous functional is to be asso-
clated with the recursion equation set. We will see that any
item (equivalent substitutions set) is denoted in some sequence
iff the original logic program generates a corresponding atom
subset with the item. Therefore the least fixpoint of the func-
tional is closely related with a semantics for the given logic
program to represent all the items by which deductive atom
subsets are denoted.

2. Basic Notations and Fundamentals

In this paper a logic program means a set of definite clauses.
A definite clause takes the form such as A — B; ... B, (n > 0),
where A,B,,..., and B, are atoms. An atom is an expression
of the form P(ty,...,t,), where P is a predicate symbol and

t; are terms. A term is recursively defined as: (i) a variable is
a term, and (i) f(t1,...,t) (k > 0)is a term if f is a k-place
symbol and ¢; are terms.

In this section we have technmical terms and fundamentals
concerning substitutions for unifications in the deductions of
logic programs.

Let Term be a set of terms and Var a set of variables.
Note Var C Term. A substitution is a function from Var to
Term. For a substitution 6, Vare denotes the set { z € Var
| 8(z) # =z}, that is, the domain of 0.

For the treatment with the substitution as unification of
variables, a substitution 6 is assumed to satisfy the condition
that Varg N { y | y occurs in some 6(z) for z € Varg} is empty.
The condition guarantees that the terms substituted for the
variables do not involve any corresponding variables on which
a given substitution operates. That is, the condition means
the idempotence of the substitution. From now on, Sub means
the set of all idempotent substitutions. The substitution 6 is
especially denoted by ¢ if Varp is empty. That is, £(2) = &

_for any z € Var. The effect of a substitution for the term or
atom, and the composition of substitutions are defined by the
following formalism.

Let Ezp = Term U Atom, where Atom is the set of atoms.

For 0 € Sub and E € Egzp, Ef is recursively defined:

o(z) if E=zforz € Var,
F(t18,...,t20) i E= f(t1,...,t,) € Term,
P(t10,...,tm9) ifE:P(tl,...,tm)EAtOm.

Ef=

For 0, € Sub, the composition of 8 and ¢, denoted by 6,
is defined: 8(z) = 8(z)p for z € Var, as long as pf € Sub.
Also we see that (Ef)p = E(p) for E € Ezp and 6,9 € Sub,
if ©8 € Sub. :

Definition 2.1. We say that § is more general than ¢, in an-
other word, ¢ is less general than @ for 6,0, € Subif ¢ = 0.
By ¢ < 0 it is meant that 6 is more general than ¢.

Note that < is not a partial order.

Definition 2.2. A relation ~ on Sub is defined: 6 ~ g iff
© <0 and 6 < p.

It is seen that ~ is an equivalence relation.

Sub/ ~ denotes the quotient set of Sub by means of the
equivalence relation ~, which is refered to just as the quotient
set from now on. Any element in SU B is regarded as a subset
of Sub.

To restrict the domain of the substitution to some appropri-
ate set, the following definition is exploited.

For a substitution o and a set of atoms {A1,...,Am} (m >
1), a restriction of ¢ with respect to {A41,...,Ap}, that is,
[6]{as,..am}: Var — Term is defined as follows.

o(z) if z occurs in either Ay,..., or Am,
z otherwise,

[o](ay,..am} (%) = {

for z € Var.

It follows that [¢](s,, . am} ~ [f}{a;,.,4m} il ¢ ~ 6. The
following is an extension of the restriction of a substitution.

Definition 2.3. Assume that © C Sub, and {4;,...,4n} C
Atom (m > 1). Then we define

{[6]{14"__,,&"1} |6 €O} if © is nonempty,

(€] =
[Olia1,...4m) { empty if @ is empty.

As a restriction of the equivalence class (in SU B), which is
regarded as a subset of Sub, we have the following definition.

Definition 2.4. Let € SUB and {4;,..., An} C Alom. A
restriction of & with respect to {4, ..., An} is [[®]](4,,..,an}
= ¥, where ¥ € SUB such that [®]14,, 4,} C¥.

3. Description of Deduced Atoms
by Means of Quotient Set SUB

In this section we have a sketch on the deductions of atoms,
that is, the computations for a given logic program, in terms
of manipulations on SUB introduced in the previous section.

Assume that a set of clauses {C « Di... D, Dy —, ...,
D!, om «} is given, where ¢1,..., om € Swub. Then an atom
CH — may be derivable from the set, and 8 can be calculated
by means of 1, ... ,@m with the unifications between D; and
D! (1 € i< m). We will see how § can be decided. On
the assumption that C8 «— is deductive from the above set,
we will see the property that C¢' « is derivable from the
set {C «— Di...Dp, Digh —, ...,.Dinpr, =} i 0} ~ ¢
(1 < i< m)and ¢ ~ 0. This leads to our observation that
the set ST B might be taken into account, in order to represent
the deduced atoms.

Firstly we need some definitions concerning unifications, and
investigate related properties.

Definition 3.1. Let A be a nonempty subset of Atom. We
define unif(A) = {8 € Sub | VA1, Ay € A: A160 = A6} . Also
we define mgu(A) = {0 € Sub | o € unif(A) and o is most
general } . When A is empty, we regard unif(4) as Sub and
mgu(A) as { € }, respectively.

Note that each substitution in mgu(A) is a most general
unifier of A in the usual sense. The next lemma is well known.
Also for the lemma to state there exists an idempotent unifier
which is most general for a unifiable set, see [6].

Lemma 3.2. Assume that mgu(A) is not empty for A C
Atom. T 6, ¢ € mgu(A), then § ~ ¢, that is, mgu(A)/ ~is a
singleton.

Definition 3.3. Let A be a subset of Atorn. We define
MGU(A) = mgu(4A)/ ~.

Next we observe the deduction for definite clauses as manip-
ulations on Sub/SUB.

Unit resolution is an inference to derive C8 «— D16...D;_10
D;410 ... Dy8 from two clauses C «— Djy...Dp, and E «,
where 8 € mgu({D;, E}). A unit deduction from a set S of
definite clauses is a sequence of definite clauses Gy,..., Gy,
where each G; is either in S or infered by unit resolution from
some G; and Gy (j,k < i).

The unit deduction is thought of as one of ways for the
generations of atoms from a logic program, and is interpreted
as computing mechanism. We will see in the following that
the unit deduction might be realized by some manipulations
on Sub/SUB.

Definition 3.4. consis : 250 — 25%b and comb : 2540 — 25%%
are defined:
consis({61,...,0,}) =
{0|3o1,..., on: 0101 = ...=0nbp =0 },
comb({61,...,0.}) =
{p| p € consis({61,...,6,}) and pis most general}.
We define consis() = Sub and comb() = {e} for the empty
set.

Example 3.5. Let 6; and §3 be defined by:

01(z) = f(y), Varg, = {z};

92(y) = g(z), Varg, = {y}.
Then 8 € comb({61,62}), where 8(z) = f(g(2)) and (y) =
g(z) for Varg = {z,y}.

As is the case for mgu(A4), comb({01,...,0,}) is either empty
or contains substitutions which belong to an equivalence class
of SUB. That is, we have the following.

Lemma 3.6. comb({61,...,6n})/ ~ consists of one equivalent
class for any 8y, ..., 0,.

Tt is easy to see the following lemma from the definition
that the comb function causes the same effect for the equiv-
alent substitutions in the sense ‘~’ as the initially considered
substitutions.

Lemma 3.7. comb({61,...,0,}) = comb({0},...,
P1<i<n

91 })if 6 ~

Based on Lemmas 3.6 and 3.7, we have the COM B func-

tions as follows:

Definition 3.8. COM B: 25VF _, SUB is defined by COM B
({©1,...,0,}) = comb({61,...,6,})/ ~ for some §; € O, (1 <
i< n).

Note COM B({©y,..., ©,})is an equivalence class (in SU B),
and § € COM B({©,. .., ©,}) means § € comb({1,..., On})
for some 6; € ©; (1 < i < n), because we regard any class in
SUB as a subset of Sub. Before investigating the method of
describing the unit deduction in terms of the COM B function,
we have the following representation of the set of atoms with
attached substitutions.

Definition 3.9. For an atom A and © € SUB, we define A®
={A0 —|6cO}

At the same time, for each predicate symbol, we adopt a
standard form of the atom involving the predicate symbol as
follows:

Definition 3.10. For each predicate symbol P; € PRED(L),
a tuple of variables Z; is attached to P; such that

(i) ; contains no variable occurring in I,
(it} Pi(%;) is an atom,
(iii) #; and Z; have no common variable if i # j,

where PRED(L) means the set of all predicate symbols ap-
pearing in L.

P;(%;) is refered to as a standard atom (with P;). For an atom
D, Stand(D) means the standard atom with the predicate
symbol involved in D.

Now we examine the unit deduction by means of the comb/
COM B functions. First of all, a basic lemma for the relation
between the mgy and comb functions is given.

Lemma 3.11. Let C and D be atoms, and ¢ € Sub, 4 €
mgu({C, D}). Then mgu({C, Dy}) = [comb({6, [¥]plic,pv}-
Proof. Assume that o € mgu({C, Dy}). Since C8 = Df and
Ca = (Dy)a, there exists § such that ayp = 9. As o is most
general, it is conceded that & € [comb({9, [¥]{py})]{c, Dy}
Thus mgu({C, Dy}) C [comb({d, [¥](p1}){c,py}- On the
other hand, assume o € [comb({, [¢](p} Dlic,py}- Then
= Bo = y[$](p) for some B, v € Sub. Taking the idempotence
of ¥ and the domain of « into account, it is concluded that
v = B61, [9]{p} = b2, § = 626 and C; = (DG)f; for some
adequate 0y, 8. Therefore C(f6;) = (C,)8 = ((D6)61)8 =
(Dy)(861). That is, v is a unifier of C and D¢. 7 should
be most general, as v € [comb({9, [¥]{p1})l{c,py}- This com-
pletes the proof.

Making use of Lemma 3.11, we have the folllowing theorem,
which expresses the unit deduction only in terms of equivalent
classes of substitutions, which are interpreted as attached to
atoms.

Theorem 3.12. Assume a definite clause C « Dy ... Dy, in
which the predicate symbol of D; is P, for 1 < i < m. Also let
¥; = [[0.]]{pyzs)} € SUB, 1 <4 <m. Then C' — is derivable
by unit deduction from Ui<i<m Pi(2:)¥; U {C — D1...Dp}

iff C! —€ CO for © = [COMB({A1, Us,...., Am, U Hllic)
and A; = MGU({D;, Pi(%:)}),1 <i<m.

Proof. We can have a proof by induction on m. In case
m = 0, the theorem holds, since Ce — is derivable and ©@ =
{e}/~.

Induction Step: Assume the theorem holds for m < k — 1.
Let m =k and © = [[COM B({A1,¥1, ..., A, T}y As-
sume that Cy « € CO. Then ¢ € [comb({dk, ¥, vx})]{c) for
some 0 € A, Y% € ¥y and g € [[COM B({A;, ¥4,. .., Ag-1,
¥.—1}ll{c,p:}- By the induction hypothesis, Cor — Drpy, is
derivable. Applying Lemma 3.11, we can conclude that ¢ €
[mgu({Drwx, Pi(Zx) ¥x}licy. Thus Cp — is derivable from
Ui<i<k Pi(8;) U {C — Dy...Dg} . On the other hand, assume
C' « is derivable from Ui<;<x Pi(%;)¥%; U {C «— Dy ... D;} .
By the induction hypothesis, C’ « is derivable from Pi(Zx)
Wi U {Cypr — Dypr}, where g € [[COMB({As, ¥y, ...,
Ag—1, Tr—1})l{¢,p,3- Therefore Cp — = C' «— is derivable,
where ¢ = [¢](c} such that ¢ € [mgu({ Doy, Pe(Zx)¥r}(c)
for ¢, € ¥;. By applying Lemma 3.11, we conclude that ¢ €
[comb({8k, ¥k, })]{c}. Thus ¢ € [[COMB({A1, ¥1,..., Ay,
¥ Dl{cy- This completes the proof.

The next theorem is necessary to form Py(Z;)¥, which is
equivalent to the atom set C'© such that the standard atom of
C is Pi(;).

Theorem 3.13. Assume that CO is derivable for © = [[¥]](¢}
€ SUB. Also assume that P(%) is the standard atom of C.
For ¥ = [[COMB({T, O}]}(p(zy: P(2)¥ = CO, where T =
MGU({C, P(z)}).

Proof. For 8 € O, mgu({C8, P(z)}) = [comb({7, 6‘})]{09,};(5)}
by Lemma 3.11, where v € I'. Note that for any ¢ € [comb({7, 0

Nlice,p@)s there exists ¢ € [comb({7,6})]{p(z)} such that
P(z)y = P(z)p. Thus we see the lemma holds.

4. Dataflow for Deductions of Logic Programs

In this section, we have a dataflow to realize the deductions
for a given logic program L.

We take the translations of substitutions based on Theorems
3.12 and 3.13 into account. As shown in Theorem 3.12, the
clause C «— D;...D,, can be interpreted as a node emitting ©
= [[COMB({A1, U1, ..., A, Yu})lliey for {¥y, ..., ¥m}
(zegarded as an input set) with a determinate set {Aq, ...,
A}, whete MGU({D;, Stand(D;)}) = A;, 1 < i < m, and
Stand(D;)¥;, 1 <1 < m are assumed to be generative. (Note
that Stand(D;) is a standard atom for D;.) The node for a
clause can be extended to a manipulator of input sequences by
providing an output item for each tuple of input items. Each
item emitted by such a node is transformable into another by
means of the relationship between the head of the clause and
its standard atom. This transformation is based on Theorem
3.13. For the transformation, there may be more than one head

of clauses with the same predicate symbol and thus the same
standard atom. Thus transformed items should be gathered as
one sequence. The device of the merge in [13] is most adequate
to gather sequences and form a sequence. Fairnessin the merge
is necessary for any item to be transfered to other nodes as an
input. .

To deal with the sequences, we have a base domain DO
= SUB U {r}. 7is a special symbol not in SUB, to denote a
time delay or a pause occurring in a sequence. It is exploited
to manage the merge as continuous.

DOM®™ denotes the set of partial functions from the set
of natural numbers (denoted by w) to DOM such that if u €
DOM* and u(p) (p € w) is defined then u(g) is always defined
for ¢ < p. That is, DOM™ is regarded as the set of all finite
and infinite sequences from DOM. nil is the function such
that n#l(p) is undefined for any p € w. Note nil is thought of
as the empty sequence.

Now assume a logic program L = {Cly, ...,Cl;}, where CI;
is C; = Dy1...D;p, (n > 0) for atoms C; and D;; (1 <
J < mn;). Also let PRED(L) = {Pi,..., P} and {Pi(g1),
-+, Pu(Z1)} be a set of standard atoms. Stand(D; ;) = Pi,(%;;)
is assumed for 1 <i<kand 1 <j < n;.

To equip sequence variables for the representations of out-
puts emitted by the nodes for clauses, we assume {u1, ..., ug}
in accordance with {Cly, ..
sequence in DOM ™. Also we prepare for a set of sequence
variables {v1, ..., up} to express the sequences whose items

., Cli}, where each u; denotes a

are connected to standard atoms, where each v; denotes a se-
quence in DOM®™.

To identify an input tuple with a natural number, we adopt
a bijection I, : w — w™, and we define a projection J; :
W™ = W by Jmi(P1s -+ Pm) = Pi- Jimi © Im, that is, the com-
position is denoted by Ip, ;.

Then, based on Theorem 3.12, we define

[[COMB{ Aix,vi(Lns1(P))s -
Ains, '”in,-(In;,in,- (7)) })]]{C,-}:
if the right-hand side is defined,
T otherwise,

(41} ui(p) =

for 1 € 1 < k, where A;; = MGU({D;;, Stand(D;;)}) for
1<j<n;

Next we have a representation of a set of clauses, whose
heads have the same standard atom. For 1 < j < h, we
define Pred(j) = {i | C; « Di1...D;,, € L and Pj(z,;) =
Stand(C;)}. The cardinal number of Pred(j) is denoted by
NO(F). To gather the sequences emitted by the nodes for
clauses, we need fairmerge?: (DOM™)P — DOM*, which
denotes one of functions interleaving input sequences without
neglecting any part of any input. Based on Theorem 3.13, we
define

(4.2) vj = fairmergeNOW(w;,, ... » Winogy)s

for 1 < j < h, where

(1) Pred(]) = {jlv s 7jP]O(])}:
(ii) wy; denotes a sequence in DOM ™, and is de-
fined by

([COM B({T;;, wi)£y (35,0}
if the right-hand side is defined,
T otherwise,

wj,(q) =

for I'j; = MGU({Cy;, Py(z5))})-

(4.1) as well as (4.2) is regarded as defining a dataflow for a,
logic program L.

5. Semantics of Logic Programs
over Sequence Domains

In this section, we will see that (4.1) and (4.2) are complete
and sound in representing the substitutions with which the
atoms are deduced from a given logic program.

First we have a semantics for (4.1) and (4.2), which is given
by introducing a partial order on (DOM)* and by the fix-
point approach.

Definition 5.1. A partial order < on DOM is defined by:
7 < 6 and © < O for any © € SUB. A partial order C on
DOM > is defined by: u C v for u,v € DOM™ iff u(p) < v(p)
for any p € w whenever u(p) is defined.

The partial order [is easily extended to act on (DOM *)™:
(U1 - stn) © (V14 - yU) iffuy Ty for 1 <4 <

The least upper bound of T C (DOM>)™ is denoted by UT.
Note that [is sequentially complete in the sense that any
{w® = w! C...} has a least upper bound.

(4.1) shows that the finite part of u; depends on only finite
parts of inputs. Also (4.2) consists of mappings {rom finite
parts of inputs into finite parts of outputs and fairmerge
functions. Since u;, 1 < ¢ < k and v;, 1 <+ < h, which
are defined in (4.1) and (4.2), are infinite by means of 7, the
following lemma is easily seen.

Lemma 5.2. Assume (4.1) and (4.2) for a given logic pro-
gram. Let fi: (DOM®)F+h — (DOM®)*+h be a function
such that (u1,...,ug, v, .., va) = FL(¥1pe - - Up,V1ye .., Up) is
defined by (4.1) and (4.2). Then £ is continuous and there is
a least fixpoint of f7,.

Now we define the least fixpoint of fy, in Lemma 5.3 as
(4.3) (uf .o uf,of o of).

(4.3) is a semantics for (4.1) and (4.2). (4.1) and (4.2) are
based on Theorems 3.12 and 3.13, respectively, which are rep-
resentations of unit deductions and transformations of sub-
stitutions over SUB. Therefore (4.1) and (4.2) are sound in
generating atoms from a logic program. Thus the following
theorem holds.

Theorem 5.3. Assume the least fixpoint fi as denoted by
(4.3). Then P;(%;)¥; is generative from L if ¥; = vf(p) for
any p € w as long as vf(p) # 7. Also C;0; is deduced from L
if©; € uf(q) for g € w as long as u,f(q) #T.

The completeness of (4.3) in denoting the atoms generative
from a logic program I is guaranteed by the completeness of
unit deduction in atom generation and the equivalence of the
unit deduction with the manipulations by the COM B func-
tions, and by the assurance of the fairmerge functions to
transfer all the parts of infinite inputs.

Therefore we have:

Theorem 5.4. Assume that C;0; is deduced from L for ©;
= [[®]ljcy € SUB. Then ©; = uf(p) for some p € w. Also,
when P;(z,)¥; is assumed to be generative from L for ¥; =
[[®llic; € SUB, ¥; = v;(q) for some ¢ € w.

To remove 7, that is, time delay from a sequence, the fol-
lowing function delete: DOM™> — SUB* is useful.

delete{u)(p) = if w(0) =7 then delete(next(u))(p)
else if p =0 then u(0)
else delete(nezt(u))(p — 1)

for u € DOM™ and p € w.
The nest function is similar to the function in Lucid (See

[3])-
nexct(u)(p) = u(p + 1)

foru € DOM®™ and p € w.

Finally (delete(u{),‘ R delete(ui), delete(v]), ..., delete(u,’:
)) is interpreted as a semantics of a given logic program over
SUB*.

6. Concluding Remarks

We have constructed a dataflow for a logic program as a
recursion equation set over a sequence domain, which is on
the basis of the quotient set SU B for the substitution set Sub.
SU B is obtained by means of an equivalence relation, that is,
generality relation on Sub.

The dataflow denotes unit deductions for the original logic
program, and is regarded as involving the nodes to express
deductions through clauses, and the nodes to transform and
to merge sequences. We adopted hiaton in [13] as time delay,
to represent the timing at which no atom exists by means of
deductions.

The dataflow defines a continuous functional from a direct
product of sequence domains into itself. The sequence domain
is the set of all finite and infinite sequences from the union of
SUB and the set consisting of the hiaton. It completely and
soundly produces the items in SUB with which atom subsets
can be generated from the originally given logic program. It is
thus concluded that the least fixpoint of the functional is much
concerned with a semantics of the original logic program.

Acknowledgement

The author is grateful to Dr.Stephen G. Matthews for his
comments on dataflow during the author’s visit to University
of Warwick. This work was partially supported by the Royal
Society of London.

References

1.

10.

11.

12.

13.

14.

Nait.M.A.Abdallah, On the interpretation of infinite com-
putations in logic programming, Lecture Notes in Com-
puter Science 172 (1984) 358-370.

. K.P.Apt and M.H.van Emden, Contributions to the the-

ory of logic programming, J. ACM 29 (1982) 841-864.

. E.A.Ashcroft and W.W . Wadge, Lucid-A formal system

for writing and proving programs, SIAM J. Computing
5 (1976) 336-354.

. M.Baudinet, Proving termination properties of PROLOG

programs: A semantic approach, Research Report STAN-
CS-88-1202, Computer Science Dept., Stanford Univer-
sity (1988).

. M.H.van Emden and R.A.Kowalski, The semantics of

predicate logic as a programming language, J. ACM 23
(1976) 733-742.

. E.Eder, Properties of substitutions and unifiers, J. Sym-

bolic Computation 1 (1985) 31-46.

. M.Fitting, A deterministic Prolog fixpoint semantics, J.

of Logic Programming 2 (1985) 111-118.

. M_.Fitting, A Kripke-Kleene semantics for logic programs,

J. Logic Programming 2 (1985) 295-312.

. G.Frauden, Logic programming and substitutions, Lec-

ture Notes in Computer Science 199 (1985) 146-158.

G.Kahn, The semantics of a simple language for parallel
programming, Proc. IFIP 74 (1974) 471-475.

J.L.Lassez and M.J.Maher, Closures and fairness in the
semantics of programming logic, Theoretical Computer
Science 29 (1984) 167-184.

J.L.Lassez and M.J.Maher, Optimal fixpoints of logic
programs, Theoretical Computer Science 39 (1985) 15-
25.

D.Park, The ‘fairness’ problem and nondeterministic com-
puting networks, in: de Bakker and van Leeuwen, eds.,
Foundations of Computer Science IV (Mathematisch Cen-
trum, Amsterdam, 1983) 133-161.

W.W.Wadge, An extensional treatment of dataflow dead-
lock, Lecture Notes in Computer Science 70 (1979) 285-
299.

— 26—

15. S.Yamasaki et al., A fixpoint semantics of Horn sentences

based on substitution sets, Theoretical Computer Sci-
ence 51 (1987) 309-324.

