V7Y = 7TERER 36-—3
(1990. 9. 21)

ETSEHTRE R & L OER Sk

HZBRET
BUERA BB IEET

AR ARRALE) eSS]

BiE

Logical Framework % & OEFEDOBEERIC B 2EREOBE—LFHRE X Mrd b HEL2HT
Teickbh, CHEFAFHRE L LTHWR C LR TE D C L% EMT %, fFiK. Logical Frame-
work KB 2 EREDOE—{bLFHEr b, T v 7T LAEHIC X 5T Prolog D4 v 4 —7Y 523348
b3 T EETTo ’

Higher-order Unification as a Theorem Proving Procedure
Masemi Hagiya
RIMS, Kyoto University

Sakyo, Kyoto 606, JAPAN
hagiya@kurims.kyoto-u.ac. jp

Abstract

It is shown that higher-order unification procedures for higher-order type systems such as
Logical Framework can be used as a theorem proving procedure if projection is also allowed on
flexible-flexible pairs. In particular, Prolog interpreter is derived from a higher-order unification
procedure for Logical Framework by program transformation.

(1)

1 Introduction

There have been developed a number of theorem provers
or proof checkers that use higher-order unification
as their pattern matching procedure. For example,
APROLOG [8] successfully incorporated higher-order
unification into Prolog and establishéd a foundation for
Prolog-based theorem proving and program transforma-
tion. Isabelle [9] also has a higher-order unifier as one
of its repertoire of unification procedures. EIf [10] is
another example, in which higher-order unification for
dependent types and surjective pairing is used as a pat-
tern matching procedure.

For those systems, higher-order unification is only a
part of a whole theorem proving procedure. This paper
pursues the opposite direction; it shows that a unifica-
tion procedure for a higher-order type system having
dependent types, without any further device, can also
serve as a theorem proving procedure for the type sys-
tem.

Higher-order unification for simple type theory was
first formulated by Huet [7]. He devised a practical
procedure for higher-order unification, called preunifi-
cation, in which flexible-flexible pairs are not solved and
left as constraints for the resulting answer substitution.
In practical situations, flexible-flexible pairs seldom ap-
pear and preunification works very well.

Roughly speaking, preunification is a procedure for
systematically generating terms for a given simple type.
Leaving flexible-flexible pairs as constraints means to
stop the systematic generation of terms where no in-
formation is suggested by the original unification prob-
lem. However, among the operations of preunification,
projection can be applied on flexible-flexible pairs with
no modification. We propose in this paper to extend
preunification by allowing projection on flexible-flexible
pairs for systematically generating proofs for a given
proposition.

In order to use higher-order unification as a theorem
proving procedure, we have to depart from simple type
theory. As Barendregt neatly describes in [1], higher-
order type systems can be classified by three dimensions
in what he calls A-cube. Simple type theory is the sim-
plest system in A-cube and called A— (Jambda arrow).
Under the most powerful system in A-cube, called A\C
or CC (Calculus of Constructions [2]), we can define
types depending on individuals and types. Such types
are called dependent types in general. The smallest sub-
system of CC having types dependent on individuals is
called AP or LF (Logicel Framework [4]). In LF or in
CC, by the Curry-Howard-de Bruijn isomorphism [6],
formulas can be represented by types and proofs by
terms.

Preunification was recently extended to LF by Elliott
[3] and is also used as the unification procedure for EIf.
The essence of the extension is to unify types of terms
as well as terms themselves. One of the most important
results of the extension is the possibility of unification
between terms representing proofs.

Given a type representing a proposition, we can sys-
tematically generate terms representing proofs of the
proposition using the unification procedure for LF, pro-
vided that the procedure allows projection on flexible-
flexible pairs. Particularly, SLD-resolution of Prolog can
be completely simulated by high-order unification for
LF. '

As a theorem proving procedure, higher-order unifica-
tion is less efficient than the Prolog interpreter because
it explicitly constructs proofs, which correspond to pro-
gram traces in Prolog. This drawback, however, can be
overcome by program transformation. Using the stan-
dard unfold/fold transformation rules for Prolog pro-
grams [12], we can transform the unification procedure
written in Prolog into the Prolog interpreter itself. Dur-
ing the transformation process, the code for construct-
ing proofs is stripped out and the code for computing
constraints among variables is extracted.

QOutline of the paper: In Section 2, we briefly explain
higher-order unification for A— and LF. In Section 3,
we define LF and its unification procedure with the ex-
tension of allowing projection on flexible-flexible pairs.

Section 4 is the most important part of the paper.
We show that the extended unification procedure, with
a slight modification, can completely simulate SLD-
resolution of Prolog. In Section 5, we formally prove that
higher-order unification can simulate SLD-resolution by
transforming the unification procedure into Prolog in-
terpreter using the unfold/fold transformation rules for
Prolog.

Section 6 is devoted to conclusions and related works.

2 Introduction to Higher-order
Unification

Higher-order unification is a procedure for nondeter-
ministically generating all the possible substitutions for
functional variables. As an example in higher-order uni-
fication, consider the following unification problem

(f0, 0 +0),

where f is a free variable, + a binary function, writ-
ten in infix notation, and 0 a constant. In this prob-
lem, we should match the pattern (term containing free
variables) fO against the closed term’0 + 0 and obtain
a substitution for the free variable f. The problem is
called higher-order because the free variable f denotes
a function, i.e., the type of f is N — N, where N is the
type of natural numbers.

By the imitation operation, we substitute for f the
following term: ‘

f — Az{fiz) + (fox),

where fi and f2 are new free variables of type N — N
and z is a bound variable of type N. This operation
imitates the outermost function symbol + of the given
term 0 + 0. The pair (0,0 + 0) then becomes

{(£10) + (f20), 0 +0)

€2)

after B-reduction. By the decomposition (or simplifica-
tion) operation, the pair is decomposed into two pairs:

(flo) 0)7 (.f207 0)
The decomposition rule for + is, in general, of the form
(M1+M2: N1+N2) = (M17 Nl)i (M27 NZ)'

Using the projection operation on the pair (f10,0), we
can substitute for f; the following term:

i« Az.z.

Note that the term Az.x represents a function that does
projection on its first (and only) argument. The pair
(f10,0) then becomes (0,0), which immediately disap-
pears by the decomposition operation because the term
0 does not have any argument. If we use the imitation
operation on the pair (f20,0), we can substitute for fo
the term
fz — Az.0.

This completes the unification process and we have sub-
stituted for f the term
[< Azz+0.

Depending on whether to do imitation or projection
for f; and fo, we can nondeterministically obtain the
following four substitutions for f:

f — Xz0+0
f «— Azaz40
f «— Az0+z
f « Azz+ez

Unlike imitation, the projection operation only de-
pends on the pattern and not on the form of the term
against which the pattern should be matched. As an
example, consider free variable f of type N — (N —
N) — N and term

Az.As. fzs,

where the type of z is N and the type of s is N — N.
This term is the so-called long normal form of f. As a
unification problem, we consider the pair of two copies
of Az.As.fzs, i.e.,

(Az.Xs.fzs, Az)s.fzs).

By the projection operation on the first argument z in
fzs, we obtain the substitution

f — Az.)s.z.

On the other hand, by the projection operation on the
second argument s, we obtain the substitution

f — Az.xs.s(fizs),
and the pair
(Az.)Xs.f1zs, Az.Xs.fi2s)

after decomposition, where f; is a new free variable and
is also of type N — (N — N) — N. By the projection
operation on the first argument of f;, we have

fi « Az.ls.z,
i, for f ,' we have obtained
[«— Azs.sz.

Depending on the argument on which to do projection,
we can successively obtain the following substitutions
for f:

Az As.z

Az As.sz

Az.As.s(sz)

Xz.Xs.s(s(sz))

“h th th S

T

Note that these are all the closed (normal) terms of type
N — (N — N) — N that do not contain constants and
are known as Church’s numerals. This example shows
how the projection operation can serve as a generator of
closed terms for a given type.

LF (Logical Framework) is a higher-order type system
in which a type may depend on individuals. For exam-
ple, an array f of natural numbers whose length is n is
declared in LF as follows:

f : Narray n,

where Narray n denotes the type of an array of natural
numbers whose length is n. Note that the type Narrayn
depends on the individual n of type N. Let zeroarray
be a function such that zeroarray x returns an array
of length = whose elements are all 0. Using Narray, we
can declare the type of zerdarray as follows:

zeroarray : llz:IN Narray z.
The type Ilz:A.B denotes the function space (indexed

product)
113,
T€EA

‘where B may depend on the element z of A. If B does

not depend on z, IIz:A.B simply denotes the function
space A — B, i.e., A — B is considered to be an abbre-
viation of Ilz:A.B if z does not occur free in B.

Assume that f and n are both free variables and con-
sider the unification problem

(f, zeroarray 3).
Solving this problem, we not only obtain
f « =zeroarray 3,

but also
n «— 3,

because we have to unify the types of f and zeroarray 3,
i.e., Narray n and Narray 3. This is the essence of the
unification procedure for LF; we unify types of terms as
well as terms themselves.

(3)

3 Higher-order Unification for
- LF

In this section, we give the formal definition of LF and
its unification procedure. LF consists of three layers of
expressions: kinds, types and terms. Types are denoted
by A, B, etc., terms by M, N, etc. and kinds by K,
etc. In this paper, we adopt a variant of LF having the
kind of propositions, denoted by Prop, in addition to the
kind of types Type. Kinds, types and terms are defined
as follows: i

K = Type | Prop | Iz:A.K
A=z |Oz:A.B| AM
M=z | :AM|MN

By an abuse of notation, however, we allow M, N, etc.
to denote types and A, B, etc. to denote kinds.

As in untyped A-calculus, variable z is said to be
bound in term Az:A.M; z is also bound in type IIz:A.B.
A context is a sequence of pairs of a variable and its type
of the form z:A and denoted by T, A, etc. A concatena-
tion of contexts is written with a comma as in ', z:4, A
and the empty context is denoted by (). We say that
z is declared in T if 2:A is a member of the sequence T
for some A, and use the expression V(T') to denote the
set of all the variables declared in T. If I' = I'y, x:4, T,
and z is not declared in I';, we use the expression I'(z)
to denote A. If I' = z1:4;,---,2,:4,, we use the ex-
pressions AI' and IIT' to denote Azi:A;.---.Az,:4,, and
Iz1:Ay. - Iz,:A,, respectively.

The 8- and n-reduction rules are defined as in untyped
A-calculus. We have -

(Az:AM)N —4 [N/z]M,

where [N/z] denotes the substitution that maps z to N,
and .

Az:A.Mz —, M,

where 2 does not occur free in M. We write M =g, N
if M and N are fn-convertible to each other. The a-
conversion is implicit in this paper.

- There are four kinds of judgement: “I' context” means
that I is a valid context, “T' - K € Kind” means that
K is a valid kind under T, “I' F A € K” means that A
is a type of kind K under T, and “T' - M € A” means
that M is a term of type A under I. These judgements
are defined by the following inference rules, in which K
and K} denote either Type or Prop.

() context

I' F K € Kind
T,z:K context
' - A€ Ky
I',z:A context

T' context
I' F Type € Kind

I' context
I' F Prop € Kind

T context =€ V(I)
I'F zel(x)

' A€Ky T,2:A F KeKind
T F IIz:A.K € Kind

I'' A€ Ky T,z:A}+ BeKj)
I' + Ox:A.B € K|,

IzzA - MeB T,z2:A Be K|
T F Az:AMellz:A.B

' - Mellz:AB T F NeA

I' - MN € [M/z]B

THFMcA Awmg A T+ A€k,
TF MeA
Kmp, K' T F K'€Kind
TF A€k

In the second and third rules, we assume that z is not
declared in T so that variables in a valid context are
always distinct.

' - A€ Kp

' AeK

Definition 3.1 (atomic type) If ¢ is a variable and
I'(z) = Uxy: Ay~ T2y :Am. . Type or

I'(z) = Haq:41. - - ay,: Ay Prop then zMy --- My, is
called an atomic type under I'. By an abuse of termi-
nology, Type and Prop are also called atomic types.

In the following discussions, we fix a context I's such
that

Is = [Ty, V(D)NV(Iy) = 0.

Variables declared in I', are called consiants and vari-
ables in T'; free variables. - We further assume that
I's F Ts(f) € Type or I'y + T4(f) € Prop for each
f € V(Iy); i.e., we do not have free type variables..

Definition 3.2 (equation, unification problem
and unifier) An equation is an unordered pair of terms
or types. A unification problem is a multiset Uy of equa-
tions such that if (M, N) € Uy then
I's-MeA, TgstF NeB

for some A and B, and (A,B) € Uy unless A = B. A
unifier of Uy is a substitution ¢ for free variables in Ty
such that for each f € V(Ty), T, - ¢(f) € ¢(T';(F)) and
&(M) =g, ¢(N) for each (M, N) € U,.

As is described in [11], unification procedures includ-
ing higher-order unification can be formulated as a set
of transformation rules on a multiset of equations. We
use U, U’, etc. to denote a multiset of equations. For
example, let

U' = {(aM;--- My, aNy---Np)} U U,

(4)

where .a is a constant and U denotes the union opera-
tor for multisets. The decomposition rule can then be
formulated as follows:

UI S U”,
where
U’ = {(M,', N,;) | ISZSm} U U.

More formally, the unification procedure is defined as
a set of transformation rules on a triple of a multiset
of equations, a substitution and a context of free vari-
ables. A context is included in a triple for recording
the type of each new free variable. It is initialized with
I'; and modified as free variables are newly introduced.
If the substitution and the context of a triple are not
changed under a transformation rule, they are not writ-
ten explicitly; i.e., in a transformation rule of the form
U = U’, the substitution and the context of a triple
are not changed. In such cases, the unchanged substitu-
tion is denoted by # and the unchanged context of free
variables by T'.

Definition 3.3 (flexible and rigid)

Let M = AA.hM; --- My, be such that (T, T, A)(h) =
Mz :4y. - ey, :Ap.Ao and Ag is an atomic type un-
der T,. If h is a variable (or a constant), M is called
a long head normal form and h the head of M. If h is
a constant in T', or a variable declared in A then M is

called rigid, and if -h is a free variable in T then M is
called flexible.

The unification procedure for LF, which allows projec-
tion on flexible-flexible pairs, is presented below. In the
following descriptions, we assume that A and A’ are of
the same length and the sequence of variables declared
in A is the same as that of A’.

(head-f-reduction)
{(AA. (e MYMoM; - - My, N)} U U
= {(AA([Mo/2]M)M; ---M,,, N)} U U.
(head-inverse—n-reducﬁon)

{(AA.aMy - M, N)} U U
= {(AAXz:A.aeM;---Mpz, N)} U T,

where a is a functional variable taking more than
m arguments, i.e.,

(T, T, A)a) = Hzy:A;.--- Mey,:A, Oz:AB.

(decomposition)

{(AA.aM;y --- My, AA'.aNy--- Np)}
uvru
= {(AA.M;, /\A/.Ni) |1<i<m} U U,

where a is a constant in I, or a variable declared
in A such that

(Te,A)a) = Hz1:41.--- Hzp:A,.C

and C is an atomic type under I, (or C = Type or
C = Prop).

(type decomposition)
{()AIIz:A.B, AA'Ilz:4’ B'Y} U U
= {(AA.4, AA".4"),
(A Az:A.B, AA'Az:A'.B")} U U.
(imitation) Let (AA.fM; ---M,,, AA’.aN;--- Ny,) be

a pair in U, where f is a free variablein I and a is
a constant in I’;. We further assume

r = Fl) f:F) T,
F = Hz;:Ay. .- Mzp,:An Ao
I‘c(a) = HylzBl.‘ e .IIy,.:B,..Bo,

where Ay and By are atomic types under I'.. Let L
be the following term:
Ary:Ay. - Az Am.

a(flxl . ..zm) ...(fnml . ..zm)’
where f; are new free variables. We then have

U0, T = [L/VV{{A,B")}, [L/f]e¥,
(Flffl:Fly"'7fn:Fn)[L/f]F2)>

where

A, =)\$1:A1."'./\a}m:Am,Ao‘

BI = A$12A1A‘“.)\$m2Am.

[fize - @&m/y1,- -, fa1 - Zm/yn]Bo
H171:A1. s .H~$m3Am.

[fizr- @m/y1, -, fici21 - Tm/yi—11B;

F =

for 1 < i< n. [L/f]U denotes the result of replac-
ing f with L in U. [L/f]of denotes the composition
of the substitutions [L/f] and 8. [L/f]'2 denotes
the result of replacing f with L in Ts.

(projection) Let (AA.fM;---M,,, N) be a pairin U,
where f is a free variable in I'. We further assume

T = rl)f:F’ I
F = H(III ZA1. cee .Hl‘m IAm .Ao
A, = Iy:By.--- Ily::By.By

for some p such that 1 < p < m, where Ag and By
are atornic types under I';. Let L be the following
term:)

AryiAy. Az A

zp(frzr - @m) - (fez1e Tm),

(5)

where f; are new free variables. We then have

T = [L/AUU{(A,B)}, [L/f]o,
(Fl3fl;Fls B fk:Fk,'[L/f]Pz);

U, 9,

where
A = AzyiAr o ATmiAm.Ao
B’ AzyiAy. AT Am.
[fizr - @m/y1, -, fez1 2m [ye] Bo
F; = Tzi:Ap.---lzp:Ag,.
' [fiz1 - Zm/y1, -, fim121 - Em [Yim1] Bs

for1<iLk.

Notice that in the course of higher-order unification, ex-
pressions that are neither terms nor types in LF may
appear. In (imitation) or (projection), we add ex-
pressions of the form Azy:A;. - - . A2p, 1 Ap Ag, where 4
is an atomic type. Such expressions are decomposed into
terms by (decomp osition). See also (type decompo-
sition).

Assume that T, contains only type constants, i.e.,
T. T.(c) € Kind for each ¢ € V(I';). Under this
assumption, the rule (imitation) becomes useless, and
we have the following proposition.

Proposition 3.1 (ground completeness) If (f, f) €
Uy for each f € V(Ty) and ¢ is a unifier of Uq then there
exists a sequence of triples

UD:[]an =--=>{}10,()
such that ¢ = 0y, where V = V(Ty).

{ } denotes an empty multiset, [] an empty substitution
and () an empty context. 8]y denotes the substitution
n such that n(f) = 0(f) if f € V and n(f) = f other-
wise. The proposition is proved by the existence of long
normal forms in LF; i.e., every well-typed term in LF
can be reduced into a unique long normal form. There-
fore we can assume that ¢(f) is in a long normal form
for each free variable f in T'y. If we use ¢ to guide the
application of transformation rules, we can reach in a
finite number of steps an empty multiset. The proposi-
tion is simpler than the corresponding one in [3] because
flexible-flexible pairs are also selected.
Conversely, we have

Proposition 3.2 (gound soundness) If (f,f) € Up
for each f € V(I'y) and there exists a sequence of triples

UCI»[]rFf = :>{ }70y()
then 8|y is a unifier of Uy, where V = V(Ty).

4 Higher-order Unification as a
Theorem Proving Procedure

Proposition 3.1 is the basis for using higher-order uni-
fication as a theorem proving procedure. Let I'; be a

context of type constants and A a context of constants.
Let A be a type such that)

T.,A - A€ Prop.

‘Since the problem of pro;/ing A is that of finding a term

M satisfying
T.,,A F MeA,

we can prove A by solving the fcﬂlowing unification prob-
lem: : :

Up = {(fvf>})

By Proposition 3.1, if A has proof M, we can find a
unifier ¢ such that ¢(f) =gy AA.M.

Let us try to solve a query in Prolog under our frame-
work. Consider as an example the following Prolog pro-
gram: ' : ‘

'y = f:IA.A.

append(nil,X,nil).
append(cons(E,X),Y,cons(E,Z)) :-
append(X,Y,Z).

This program has three constants: nil, cons and
append.
Let T, be the following context:

N:Type, Nlist:Type, ok:Prop, . '
append:(N1ist — Nlist — Nlist — Prop),

where Nlist denotes the type of a list of natural num-

bers and append is a tertiary predicate on Nlist. ok is

a proposition denoting the success of a Prolog query.
Let A’ be the following context:

0:N, L:N, 2:N,

nil:Nlist, cons:(N — Nlist — Nlist),
b:B, s:5,

where B and S are defined as follows:

IIz:Nlist.append nil z x
S = Ie:N.Iz:NlistIy:Nlistllz:N1list.
append ¢ y z
—~ append (cons e z) y (cons e z).
b:B corresponds to the first clause of append (base case)
and s:S to the second clause of append (recursion step).

Consider the following query for the above Prolog pro-
gram:

7- append(X,X,cons(1,cons(1,nil))).
In order to answer this query, let
A = AaA,
where

A = Iz:Nlist.

append z ¢ (cons 1 (cons 1nil)) — ok.

(6)

We then declare free variable f : IA.ok. Finally let
U = {{f, f}}. Since a is the only variable that can be
the head of a term of type ok, if there exists a unifier ¢
of Uy, ¢(f) must be of the form

&(f) = AA.aMN,
where

T'.,A F M €Nlist
I'., A + Necappend M M (cons 1 (cons 1 nil)).

M is the answer for X in the above Prolog query and N
is the justification proof for the success of the query.

By Proposition 3.1, the unification procedure for LF is

guaranteed to find the unifier ¢. However the procedure
is far more redundant and inefficient than the ordinary
SLD-resolution procedure of Prolog because it not only
tries to generate proofs but also tries to directly generate
answers to queries. In the above example, it tries to find
the term M by generating closed terms consisting of 0, 1,
2, nil and cons, such as cons 0 (cons 0 (cons 0 nil)).
In Prolog, on the other hand, the answer to a query is
obtained from the structure of the proof by first-order
unification. ‘

Consider the previous example again. In order to di-
rectly simulate SLD-resolution of Prolog, let I'. be the
following context:

N:Type, Nlist:Type,

append:(Nlist — Nlist — Nlist — Prop),
0N, LN, 2N,

nil:Nlist, cons:(N — Nlist — Nlist)

and A be .
b:B, s:S,

where B 'and S are defined as before. I'; now consists
of the following two free variables:

X IIA . Nlist
f : IlA.append (Xbs) (Xbs) (cons 1 (cons 1 nil)).

The free variable X corresponds to the variable X in
the query. Let Uy = {{X, X){f, f)}. Note that (X, X)
and (f, f) immediately become (AA.Xbs, AA.Xbs) and
(AA.fbs, AA.fbs) by (head-inverse-7-reduction).

Since A consists of only variables corresponding to Pro-
log clauses, the procedure is now expected to work ex-
actly as SLD-resolution of Prolog. Unfortunately, how-
ever, it still tries to directly generate the term for X
and in this case, worse than before, it immediately fails
because 1, nil and cons are not in A but in I';. We
therefore have to make a distinction between X and f.

Definition 4.1 Let

(T, T,A)(h) = Tazy:A;. - Tam:Am.cNy -+ N,
I':(¢) = MOy:By.-- - Iy,:B,.K.
Term AA.hMy ---M,, is called an individual term if

K = Type and a proof term if K = Prop. By an abuse

-M,, is also called individ-
Jiz:Am. Type or Te(h) =

of terminology, AA.hM; --
ual 1fI‘c(h) = IIa:1:A1.~~
HOzy:A;.-- - dzpy:Ap, Prop.

Note that AA.Xbs is an individual term and AA.fbs a
proof term.

In order to completely simulate SLD-resolution of
Prolog, we modify the unification procedure as follows:
Projection is allowed on a flexible-flexible pair only if it
is a pair of proof terms. We further assume the follow-
ing priority for selecting an equation from a unification
problem:

1. rigid-rigid pairs
2. flexible-rigid pairs of individual terms
3. flexible-flexible pairs of proof terms.

In case of simulating Prolog, we further restrict the pro-
cedure so that only imitation is applied on flexible-rigid
individual pairs.

As for the example, we can successively obtam the
following substitutions for f:

F o AA.fbs

P MG sh)

Foe AA.s(~-)(---)(~--)(m)(b(.--))

f ~— AAs1nil (coz';s 1 nil)(cons 1 nil)

(b(cons 1 nil))

Note that selection among clauses exactly corresponds
to selection among arguments (b or s) in projection. The
uninstantiated individual terms are denoted by (- - -) and
they are instantiated by imitation on flexible-rigid pairs.

If projection is not allowed on flexible-flexible individ-
ual pairs, the procedure is not guaranteed to generate
a unifier but may leave some flexible-flexible pairs as
constraints. In case of simulating Prolog, we can imme-
diately obtain a unifier from the constraints.

5 Program Transformation
Let P be a Prolog program and ?7—A;,..., A, a Pro-

log query under P. As in the example in the previous
section, we construct contexts I', and A from P. Let

- be the sequence of variables declared in A. For each

variable X in ?—Aj, ..., Ap, we declare free variable X
of type MA.c, where c is the data type of X in P, and
for each atom A; in the query, we declare free variable
fi of type IIA. A}, where A} is the result of substituting
term X z for each X. These free variables comprise the
context I'y. Finally let

Uy = {(pA.Xz, AAXE) |

X is a variable in the query}
U {{AA.f;Z, AAfiE) [1<i< n}.

€7)

We define the following functions on a triple T' =
(U,0,T) that appears in higher-order unification:

goal(T) = {A|(MA.fZ, MA.fZ) €U,
AALfZ : proof, T'(f) = IA.A}
constraint(T) = {(M, N)| (AA.M, MA.N) €U,

AA.M :individual}
- subst(T) = Oy,

where V! = {f € V(T') | AA.f& : individual}. goal(T)
denotes the multiset of unsolved goals. constraint(T)
denotes the multiset of constraints between individual
terms. subst(T) denotes the substitution for individual
variables. We further define

ges(T) = (goal(T), constraint(T), subst(T)).

Starting with the triple 7o = (Uy,[],Ty), the uni-
fication procedure nondeterministically computes a se-
quence of triples

To=>Th = - 2T = -,
From the relation =, we want to derive a relation ~»
between triples ¢; = ges(T;) and show that ~» is an im-
plementation of SLD-resolution. In order to accomplish
our goal, however, we cannot use the relation = directly
but should define a new relation consisting of transfor-
mation rules that are results of chunking those of =.

The new relation is denoted by =t and consists of the
following two rules:

1. Apply (projection) on a flexible-flexible pair of
proof terms of the form (AA.fZ,AA.fZ). Apply
(head-B-reduction) successively on the pair. Fi-
nally apply (decomposition) on the pair.

2. Apply (imitation) on a flexible-rigid pair of indi-
vidual terms. Apply (head-g-reduction) succes-
sively on the pair. Finally apply (decomposition)
on the pair.

Using =1, we define ~ such that t ~» ¢ if and only if
t = gcs(T) V= gcs(T’) and T =1 T', where Ty =1
=TT

We formalize the derivation of ~» from =1 using the
framework of program transformation in Prolog. We
define = and ~» in Prolog and transform the definition
of ~» into a form that does not refer to =>.

In the following Prolog programs Z, 7, etc. denote a
list of variables and M, N, etc. a hst of terms. Con-
texts are represented by lists of expressions of the form
z:A. The Prolog programs contain some computable
functions. If T' is-a context, M a term and M a list
of terms then the expression AT'.M M denotes a term in
which M is applied to M and abstracted by I'. We use
1@l to denote the concatenation of lists I; and Iy, I[4]
the i-th element of list [and |I| the length of I. Multisets
of equations are represented by lists of pairs of the form
(M,N), where (M, N) = (N, M).

(8)

The relation =1, denoted by.predicate
transform(U,0,T,U’ 0", T"), is defined as follows:

transform(U, 6, T, U’, ¢', T') :—
U = U,@[(M, M)]@U,,
proof(M, T), M = AA.fz
project(M, T,
L, f, @, AT4.Ag, AT4.BY),
head_beta*([L/fIM, M'),
decompose(M' M, UM,
[L/f](Ul@Ug)@[(AI‘A Ag,Al"A BpYj@eu”,
=[L/flos,
T = I,@[f:F]@r;,
I’ = I,@%@[L/f]Ts.
transform(U, 6, T, U’, ¢, T') :—
U = U,@[(M, N)j@U,,
individual(M, T),
imitate(M, N, T,
L, f, ®, AT4.Aq, AT4.BY),
head beta™([L/flM, M'),
decompose(M', M', U"),
= [L/f)(U1@U,)@[(AT 4. Ao, AT 4. B @U",
o =[L/f]o0,
I = I, @[f:F]@r,,
I’ = I,@P@[L/f]Ts.
imitate(M, N, T, L, f, ® ATa.Ag, AT4.B}) -
M = ATpr.fM, T(f) = IIT 4. Ao,
N = AT'n.aN, T.(a) = Ul'p.By,
éontext_vars(PA, z),
z, T's, By, ®, B,
apply_context vars(®, z, L),
L =ATy.al.
project(M, T', L, f, ® AT 4.Ao, AT'4.Bp) :—
M = ATy .fM, T(f) = IIT 4.A,,
Tp = i‘[p], FA[p] =IT'p.By,
context vars(La, Z),

make new_free_vars(Ty4,

make_new._free.vars(T'y, &, T'p, By, ®, BY),
apply_context vars(®, %, L),
L=MTyz,L.
contextwars([], []).
context_vars([z:All 4], [2]Z]) :—
context vars(Ty, T).
make_new_freevars(T'y, Z, [], Bo, [], Bo).
make_new_free_vars(T4, Z,
[y:BIFB]y By,
[f:IIT4.B|®], B}) :—
get-new.free_var(f),

makenew_free_vars(Ta, Z,

[£3/4Ts, [f2/4lBs, ©, BY).
apply_conteztvars([], z, []).
apply_context_vars([f:F|®], z, [fz|L]) :—

apply.context vars(®, z, L).
head_beta* (AT 4.(A[1.M)[], AT4.M).
head.beta*(AT 4.(A[y:B[T'5).M)[N|N], M') :—

head_beta* (AT 4.(A[N/y|Tp [N/yIM)N, M').

decompose(ATpr.aM, ATy.aN, U) :—
a e V(T,),
decompose! (Tnr, M, Ty, N, U).
decompose(ATpr.aM, XTIy bN, U) :—
Tm[i] = a:A, Tn[s] = b:B,
decomposel (Tar, M, Ty, N, U).
decomposeT(I‘M, [, Tw, [, [D)-
decompose!(Tar, [M|M], Tn, [N|N],
[{(ALp .M, ADN . NWUD) :—
decompose! (T, M, Ty, N, U).

The relation ~+, denoted by predicate
simulate(G,C,0,G',C’,¢"), is defined as follows:

simulate(P, G, C, o, G, C', o') :—
program-context(P, A),
goal(A, T, U, G),
constraint(A, T, U, C),
subst(A, T, 0, o),
transform(U, 6, T, U’, ¢/, T),
goal(A, T, U', @),
constraint(A, TV, U', C'),
subst(A, TV, ¢, ¢').
program_contezt([], []).
program.context(Vy(Bo:—B)|P],
[xlﬂ(rvars@rbody)-BOIA]) =
vars_context(y, Lyars),
body-context(B, Thoay),
get_new_var(z),
program_context(P, A).
vars_contezt(]], [])-
vars_contexi({y|7], [y:c|Tvars]) :—
vars_context(y, Tvars),
body_context([], []).
body_context([B|B), [#:B|Tpoay]) :—
get new_var(z), body_context(B, Thoay)-
goal(a, T, [1, []) |
goal(A, T, [(AA.f2,AA.f2)|U], [A|G]) :—
contezt.vars(A, z), proof(AA.fZ, T),
I(f) = IA.4, goal(A, T, U, G).
goal(A, T, [(M,N)|U], G) :—

individual(M, T), goal(A, T, U, G).
constraint(A, T, [], []).
constraint(A, T, [(AA.M, A.N)|U],

(M, M)[C)) -~

individual(AA.M, T),

constraint(A, T, U, C).
constraint(A, T, (M, N)|U], C)) -

proof(M, T), constraint(A, T, U, C).

goal, constraint and subst are the predicates corre-
sponding to the functions of the same names defined
above. Clauses in P are represented by expressions of
the form V§(Bo:—B), where § denotes the sequence of
variables that appear in clause Bo:—B. For simplic-
ity, we assume that all the variables in clauses and
queries have the same type ¢. We further assume vari-
ous conditions on the triple 7' = {U,T',#) and hence on
t ={G,C, o) = ges(T). Those conditions are satisfied if
To=t...=2tT,

- Due to the limitation of space, we cannot completely
describe the transformation process. Following are some
important steps.

We first define the new predicate
make.new_freevarst, which is a generalization of
make_new_free_vars:

makenew_freevarst (T4, Z,

[]) T, BO> []a T, BO)‘

make.new_freevarst (T4, %,

[y:BII‘B]) F: BO,

[f:IT4.B|®], I, Bp) :—
get_new_free_var(f),
make_new_freevars'(T4, %,

[f2/4Ts, [f2/y]T, [fZ/4}Bo,

3, I, BY).

We then unfold transform in the body of simulate us-
ing the first clause of transform, which calls project.
We also unfold project, program_context, etc. Referring .
to the unfolded body of simulate and the definition of

make_new_free_varst, we define the following predicate
make-variant:

make_variant(A, T, z,, f,
¥ B, Bo, B', By) :—
vars_contezt(y, Lyars),
body_contea:t(];’, Thody),
make_new_free_vars"(A, Z, Tyarsy Tbody, Bo,
<I)vaf‘h Fiody’ BCIJ)v
makenew.-freevars(A, &, Ty,4, By,
Qbodyy Bé))
apply_context vars(®yqrs, I, f,ua,,),
apply_contezt vars(®voday; T, Liody),

(9)

L= 2Azp(Lyars@Lsoay).
head_beta*([L/ fI(AA.fZ), M'),
decompose(M’', M', U").
goal(A, ®yoay, U”, B').

Since § is a list, we can transform the above clause into
the following ones using folding and eliminating unused

parameters: :

makewariant(z, [], B, ‘B, B, Byp).
make_variant(z, [y|y], B, Bo, B', BY) :—
getnew_freevar(f),
make_variant(z, g, [f2/y)B, [fz/y]Bo,
B', By).

We can then derive the following clause for simulate:

simulate(P, G, C, 0, G', C', o) : —
G = G1@[40]@Gy,
Plp] = V§(Bo:~B),
program_vars(P, I),
make_variant(z, 3, B, Bo, B', B}),
G' = G1@G,QB’,
C' = CQ[(Aqo, By)]-
program-vars([], [])-
program_vars([-|P], [z]z]) :—
get_newwar(z), programwars(P, Z).

The derivation requires using various properties of
predicates and functions appearing in the programs. It is
also necessary to formalize substitutions and operations
on them, including subst. Since the programs contain
predicates with side-effects, i.e., gel.new_free.var and
get_new_var, the derivation also requires inferences on
those predicates and regard clauses as equivalent if their
results always coincide under renaming of new variables.

Using the other clause of transform, which calls
imitate, we can obtain the other clause for simulate.
In order to simulate first-order unification, however, we
must carry out one more transformation step: We should
replace each term of the form fZ in constraints with a
simple free variable f, and transform substitution ¢ into
o’ such that ¢'(f') = M' if and only if o(f) = AA.M,
where M’ is the result of replacing fz with f/ in M.

The details are omitted in this paper.

6 Conclusions

This paper showed that higher-order unification is pow-
erful enough to simulate SLD-resolution of Prolog. We
need no device to realize a prover for a higher-order type
system other than a higher-order unification procedure

for it.

In approaches such as [5], on the other hand, a reso-
lution theorem prover is used for constructing a closed
term for a given higher-order type. Such a procedure

(10)

works almost in the same way as a higher-order unifica-
tion procedure works as showed in this paper.

In order to implement higher-order unification under
resolution, it is necessary to cope with both of the nonde-
terminism of unification and that of resolution [8]. If we
use higher-order unification as a theorem proving proce-
dure, the unification procedure becomes the only source
of nondeterminism.

References

(1

2

—

[3

—

[4

[Laaer}

(5]
(6]

7]

(10]

t1]

[12]

Barendregt, H.: Introduction to generalized type
systems, Theoretical Computer Science — Proceed-
ings of the Third Italian Conference, World Scien-
tific (1989), pp.1-37.

Coquand, T., Huet, G..- The calculus of con-
structions, Information and Computation, Vol.76,
No.3/4 (1988), pp.95-120.

Elliott, C. M.: Higher-order unification with depen-
dent function types, Rewriting Technigues and Ap-
plications (Dershowitz, N. ed.), LNCS355 (1989),
pp-121-136.

Harper, R., Honsell, F., Plotkin, G.: A framework
for defining logics, Symposium on Logic in Com-
puter Science, 1987, pp.194-204.

Helmink, L.: Resolution and type theory, ESOP’90
(Jones, N. ed.), LNCS432 (1990), pp.197-211.

Howard, W. A.: The formulae-as-types notion of
construction, To H. B. Curry: FEssays on Com-
binatory Logic, Lambda Calculus and Formalism,
(Hindley, J. R., Seldin, J. P. eds.), Academic Press
(1980), pp.479-490. '

Huet, G. P.: A unification algorithm for typed

A-calculus, Theoretical - Compuier Science, Vol.l
(1975), pp.27-57.
Nadathur, G., Miller, D.: An overview of

APROLOG, Proceedings of the Fifth International
Conference and Symposium on Logic Programming,
1988, pp.810-827. :

Paulson, L. C.: Natural deduction as higher-order
resolution, Journal of Logic Programming, Vol.3
(1986), pp.237-258.

Pfenning, F.: EIf: A language for logic defini-
tion and verified metaprogramming, Symposium on
Logic in Computer Science, 1989, pp.313-322.

Snyder, W., Gallier, J.: Higher-order unification re-
visited: Complete sets of transformations, Journal
of Symbolic Computation, Vol.8, Nos 1&2 (1989),
pp.101-140.

Tamaki, H., Sato, T.: Unfold/fold transforma-
tion of logic programs, International Conference on
Logic Programming, Uppsala, 1984, pp.127-138.

