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A term rewriting system is said to be simply-terminating if there exists a
simplification ordering (on the set of terms) showing its termination. Let
Ry and R; be term rewriting systems which may share constructors but do
not share defined symbols. Here, a constructor is a function symbol which
cannot occur at the leftmost positions of the left-hand sides of rewrite rules;
the rest of the function symbols are defined symbols. In this paper, we prove
that Ry U R, is simply-terminating if and only if both Ry and Ry are so.
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1 Introduction

A term rewriting system (TRS) R is a computer program expressed as a set
of rewrite rules. A property P of TRSs is modular [9] if, RoU R; has the prop-
erty P if and only if both Ry and R; have the same property. Much eflort has
been made for finding modular properties in the direct sum case Ro®R; in
which Ry and R, are prohibited from sharing any function symbols. Toyama
proved the modularity of confluence [14], but refuted the modularity of ter-
mination [15]. Barendregt and Klop refuted the modularity of completeness
(i.e., termination plus confluence)[15]. These refutations inspired several
authors to find appropriate class of systems for which termination is modu-
lar. Rusinowitch [13] proved the modularity of termination of non-collapsing
systems and non-duplicant systems, respectively. His results were further
extended by Middeldorp [10]. Toyama, Klop and Barendregt [16] proved
the modularity of completeness of left-linear systems. -Kurihara and Kaji
[6] and Kurihara and Ohuchi [8] proved the modularity of rpo-termination
and the modularity of simple termination, respectively, where a TRS is rpo-
terminating (simply-terminating) if there exists a recursive path ordering (a
simplification ordering) [3] showing its termination.

There are at least three ways of extending the research. The first is the
extension to conditional TRSs, currently being pursued by Middeldorp [11].
The second is the extension to non-direct sums which allow sharing some
function symbols. The third is the new approach to the modularity, based
on modular rewriting [7] by the family (rather than the union) of TRSs.

In this paper, we pursue the second approach. When systems share some
function symbols, almost nothing has been known except the Dershowitz’s
pioneering work [2] based on commutation. The results were extended to
equational TRSs by Bachmair and Dershowitz [1], and to fair termination
by Porat and Francez [12]. Unfortunately, however, difficulty in establishing
commutation restricts its full use.

We prove in this paper that the modularity of simple termination, which
was proved for the direct sum case [8], remains true if the systems are allowed
to share constructors. Here, we define constructors to be function symbols
which are not allowed to occur at the leftmost (outermost) positions of the
left-hand sides of rewrite rules; the rest of the function symbols are defined
symbols. Although the improvement from the direct sum case might seemn
moderate, the proof provides careful and elegant generalization of the tech-
niques in [8], and the result has greatly enhanced its utility, as seen in the
following example.

Consider the following systems which share the constructors A and B:

Ry = { F(A,,0) = F(B,o, @) }
Ry ={g(B) —g(a)}
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Both systems can be shown to be simply-terminating by the recursive path
ordering (RPO) of Dershowitz or any other appropriate simplification order-
ings. Therefore, by our result, Ro U R; is simply-terminating. The point here
is that the direct application of RPO to Ry U R; fails, because the first rule
requires the precedence A>B, while the second requires B>A. (This implies
that rpo-termination, which is modular in the direct sum case, is not modu-
lar in the constructor-sharing case.) Note also that this example refuses the
application of the Dershowitz’s result? [2] for restricted systems, because the
first rule is nonlinear.

Unfortunately, the confluence, which is modular in the direct sum case
[14], is not modular in the constructor—shaung case:

Ro = {F(a,a) = A, F(a,n()) — B}

Ry = {g —H(g)} :
In this example,? Ry and R;, which share a constructar H, are confluent, but
Ry U R, is not, because F(g, g) has two normal forms A and B.

Of course, as we have already stated, the completeness is not modular
in the direct sum case. However, once our main result was established, it is
obvious that the simple comploteness (i.e., snnple termination plus conflu-
ence) is modular, because Ry, R; and Ry U R; are terminating and there is
no critical pair between Ry and R;. ‘

2 Formal Preliminaries

2.1 Terlh Rewriting Systems With Constructors

.Let V be a set of variables, and F be a set of function symbols. We assume
that F is partitioned into two disjoint sets D and C. The elements in D
are called defined symbols, and those in C are called constructors. Each
function symbol may have variable arity, or may be restricted to a fixed
arity. We denote the set of terms over D, C and ¥ by 7(D,C,V), and the set
of (ground) terms over D and C by T(D,C). We use T for T(D,C,V) if it
yields no ambiguity. The root of a term ¢, notation root(t), is f if t is of the
form f(ty,...,t,); otherwise, it is ¢ itsell. If f(...,#;,...) is a term, f is the
parent of the occurrence root(t;).

Let O be an extra constant called a hole. We assume that the hole is a
constructor. A term C over F U {0} and V is called a context on F. When
C is a context with n holes, C[t1,...,t,] denotes the result of replacing the
holes by the terms t;,...,¢, from left to right.

Let R and S be terminating TRS’s. If R is left-linear, S is right-linear, and there is no
overlap between left-hand sides of R and right-hand sides of §, then RU S also terminates.

2This example was borrowed from Huet [5].
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A term rewriling system IR on T is a sel of rewrite rules of the form
¢ — r, where root(€) must be a defined symbol and every variable occurring
in 7 must also occur in £. Note that this definition coincides with the ordinary
one if C = (. The single-step rewriting relation by R is'denoted by —g. The
transitive closure of a relation, say, —p is denoted by  —}. In this paper,
we restrict the relation —p to be defined only on the ground terms 7(D,C).
This is just for clarifying the discussions, and our major results. are easily
shown to hold for the more general case. ’ B S

2.2 Combined Systems With Sllqred Coinstt"u_ctors

Let Dy and D; be two sets of defined symbols, and C be a set of constructors.
We assume that Dy, D1, and C are pairwise disjoint. The union of the systems
Ry on T(Do,C,V) and R; on T(D,,C,V), which is a term rewriting system
on T(DyU D1,C, V), is called the combined system with shared constructors
C. In particular, if C = @, then it is called the direct sum system [14]. In the
rest of this paper, we assume that R = RoUR;. For mnemotechnical reasons
we will paint the function symbols: the defined symbols Do in black, and .
D, in white. Each occurrence of the constructors C is painted dopcndlng on
the surrounding context: if the occurrence has no parent, it is transparent;

otherwise, its color is the same as that of its parent. (The definition applies
recursively if the parent is a constructor.) A term is root-black (resp. root-
white, root-transparent) if its root symbol is black (resp. white, transparent).
A term is black (resp. white, transparent) if every function symbol in it is
black (resp. white, transparent); otherwise, it is mized. To distinguish in
print among them, defined symbols are printed in upper case F,A,... if
they are black, and in lower case g, b, ... if they are white. Constructors are
printed ‘in c.mall capltal case I, C,.... Variables are written in Greek letters
a,p,.. ‘

D(,ﬁnltlon 2.1 An alien in a term ¢ is a nonvariable proper subterm u of
t which is maximal with respect to the ‘subterm’ relation, such that root(t)
and root(u) are in distinct colors.

We write t = C[ty,...,t,] if t1,...,1, are all the aliens'in ¢ (from lefl. to
right) and C is the context obtained by replacing each alien by a hole. For ex-
ample, the term ¢t = F(F (b, A), 1(F(g(11(A),b),c))) has the two aliens b and
g(u(A),b); thus t = C[b,g(u(A),d)], where C = F(F(O, A),n(F (0, c))).
Note that the two occurrences of the constructors H and ¢ in C are painted
in black, while a single occurrence H in the second alien is painted in white.

Since each alien ¢; in t may have aliens in itself, we can identify a hierarchy
of aliens: : ,

Definition 2.2 The alien tree AT(t) of a root-black or root-white term ¢ is
the tree defined below. Note that each node is either a black context or a
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wlute context:

. if ¢t has no alien, then AT(t) consists of a single node t, the root of the
tree;
2. ift = C[tq,...,t,] (n > 0), then AT(t) consists of the root o and the
- subtrees AT(t ) 1<i<n. ,
Definition 2.3 The alien forest AF(t) of a term ¢ is the smgleton set
{AT(t)},if ¢t is either root-black or root-white; otherwise (if ¢ is root- trampalent),
it is the set {AT'(t;)|]1 < i < n} of the alien trees of the aliens t1,...,1%, in t.
The rank of a term ¢, notation rank(t), is 1 + the height of tlle hlghest
alien tree in AF(t). If AF(t) = @, then we define rank(t) = 0.
For example, the alien forest of a root-transparent term¢ = u(F(b,b), g(F (b, ¢), b))
with rank 3 is depicted below:

AR(t) = { F(T,fln), g(T,b) }
b b F(O,c)

5

The rank of a term is never increased by rewriting:
Lemma 2.4 If s —pt then rank(s) > rank(t).
Proof. Routine, using the induction on rank(s). O

For example, consider the two systems:

Ro = {F(u(a)) — n(F(a))}

Ry = {g(a) — o}
Then we have

= F(u(g(A))) —r t =H(F(g(A))) —r u=H(F(A))
and rank(s) = rank(t) = 3 > 1 = rank(u). Note that it is essential for
Lemma 2.4 that the outermost transparent context make no contribution
to the calculation of the rank; it is invisible; otherwise, we might have had
rank(t) = 4 in this example.
Definition 2.5 A subterm u of s is an inner subterm if it is a subterm of
some alien in s; otherwise, u is an outer subterm. A reduction s — gt is an

inner reduction if the redex is an inner subterm of s; otherwise, it is an outer
reduction. / '
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3 Modularity of Simple Termination

3.1 Simple Termination

A partial ordering > on 7T is monotonic if it possesses the replacement prop-

erty: s>t implies f(... ..)>f(...,t,...). A monotonic partial order-
ing >— is a szmplzﬁcatzon o1dermq [3] 1f lt poqseqses the subterm pmperty,
f(.. ..)>t, and the deletion property, f(.. C)=fl,.).

A term rewriting system R on 7T is simply- t_ermmatzng 1f there exists a
simplification ordering > on 7 such that —5 C >. A term rewriting system -

R is terminating if there is no infinite rewrite sequence to—pg t; —p ---. It
is known that every simplification ordering > is well-founded [3], so there is
no infinite reduction sequence #o>t,> - - -. Therefore:

Theorem 3.1 (Dershowitz) A simply-terminating system is terminating.
Recall that the purpose of this paper is to prove that the combined system
Ro U Ry with shared constructors is simply-terminating if and only if both
Ry and R; are so. .
Definition 3.2 The relations —,,, and —4,; on T are defined below:
s—ap t iff s=C[f(...,u,...)] and t = C[u],
s—qa t it s=C[f(...,u,..)]and t = C[f(... ,.. )],
for some C, f, and u; In both definitions, the occurrence f(...,u,...) in s
is called a redez, and we use the terminology ‘inner’ and ‘outer’ in the same
manner as in Definition 2.5. - . o
The following lemma, in which R can be any TRS (not restricted to a -
combined system), characterizes the simple termination:
Lemma 3.3 A system R is simply-terminating if and only if (—p U — 4 U
—ge1 )t 1s irreflexive. .
The proof is easy, and given in [8]. To prove the if part, verify that (—5 U
— b U =4 )t is a simplification ordering including —pg. To prove the
only-if part, let > be a simplification ordering including —, and show that
=R U = U —4q C >
We use the following notations:
—0sd = =Ry U —gup U —aal

—o1sd = —Ry U —p, U —u U —4a

3.2 Alien Replacement

The following definition was introduced just for technical reasons. The idea
comes from the intention that, when there is a cyclic sequence '

S —01sd " —01sd S
of root-black mized-color terms, we want to construct a cyclic sequence
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P(S) “0sd **° T0sd p(S)
of black terms, thus uncovering the contradiction to the irreflexivity of —¢,q*
Definition 3.4 Let E € C be the distinguished, variable-arity constructor,
not used in the rules of Ry U R;. Consider a root-black finite sequence
S0 ~701sd S1 ~?01sd " ~01sd Sy
root(s;) € Dy (0 <1< m),

and let A and O be the finite sets of the aliens and the outer subterms,
respectively, occurring in the sequence. We assume that rank(sy) is the
minimal rank of the terms that may initiate cyclic sequences, so that there
is no cyclic sequence t — 1,4 - - - —01,4 ¢ starting from ¢ if rank(t) < rank(so).
Then the alien replacement p for this sequence is defined to be the mapping
from A U O to T(D,y,C) determined inductively as follows:

1. p(t) = E(p(t’l), o p(th))ift € A (ie., root(t) € Dy),

where {¢},...,1,} is the finite set of the terms ¢’ such that for some &
(0<k< m) the reduction ;
Sk-—Cl[-‘-, s ]I—‘oxsdc[ t, ]:3k+1
is inner and t—»ondt " (In other w01ds t" is an occurrence of a direct
‘descendant’ of the alien ¢.)
2. p(t) = F(p(t 1),...,p(t,,)) ift € O (i.e., root(t) € Do UC),
where t = F(t1,...,tn).

Remark: Since this definition is recursive, readers might wonder if the re-
cursion eventually terminates. To answer the question, first note that when
- the first branch of the definition applies, ¢t —¢;,4t, € A UO is true. When
the second branch applies, ¢t —¢1,at; € AUO is true because t —,,,¢;. Thus,
the recursion starting from p(t) will terminate, because there is no infinite
decreasing sequence ¢t —pg --- of the arguments of p. This can be easily ver-
ified in two stages; firstly, the case rank(t) < rank(so) is trivial from the
assumption and-the finiteness of A U O; then the case rank(t) = rank(so)
should be obvious, noting that in this case, ¢t € O.

Lemma 3.5 Let t = C[ty,...,t,], C being a context on Dy UC. Then
p(t) = C[p(tl)) s ’p(tn)]'
Proof. Obvious. O

Lemma 3.6 Let p be the alien replacement for the root-black sequence
S0 —01sd * ** ~*01sd Sm-
Then

P(So) —*0sd ' T0sd P(Sm)-
Proof. We show that p(sx) —o.a p(sk41), 0 < k < m.
CASE 1: sg —01.4 Sk41 is an outer reduction.
Since s, is root-black, we have sy —o,4 sk4+1; and since sp4 is also root-black,
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o if s — p, Sk+1 then p(sg) =gy P(Sk41). (Apply to p(si) the same rewrite
rule that has reduced sx. This is possible even if the rule is non-left-

linear, because if s, =C|...,¢,...,t,...] then p(sx)=C[..., p(t),...,p(t),- .-

where ¢ and p(t), respectively, are completely ‘covered’ by some vari-
ables in the left-hand side of the rule.)

o if Sk Fsub Sk+1 then p(sk) —sub P(Sk+1)-

o if s) — e Sk41 then p(si) —ae P(Sk41)-

Therefore, p(sk) —0sa P(Sk+1)-
CASE 2: Sk —01:d Sk+1 18 an inner reduction.
Assume, without loss of generality, that the first alien was reduced:

Sk = C[tl,tg, - .,tn],
spe1 = Clth, 12, -, tn),
p(sk) = C[p(t1)$ p(t2), .-, p(tn)]’
p(ske1) = Clp(t1), p(t2), - - -, p(tn)],
t1 —01sd t'l-
Since, by definition, p is constructed such that p(¢;) contains p(t}) as an
argument, we have that p(t;) — s p(t}). Therefore, p(sx) = sub p(Sk+1)-

Example 3.7 Let Do, = {F, A}, Dy = {g,0}, C = {i,E}, and consider the
following systems sliaring the constructor H:

Ry = { F(a(®), F(a, B)) = F(B,2) },

Ry = { g(a) = H(a) }.

Consider a root-black sequence

So = F(g(b)vF(baA))
R, s = F(H(b))F(byA))
—r 52 = F(AD) |

where the first reduction is inner and the second outer. The set of the aliens is

A = {g(b), b}, and the set of the outer subterms is O = {so, s1, 52, 4, F(b, A), u( b)}
Since g(b) — 01,4 H(D) is inner and there is no descendant of b occurlmg in the
sequence, we see that :

p(b) =E,
p(g(b)) = E(1(E)).
Verify that

p(s0) = F(e(u(E)), F(E, A))
—u p(s1) = F(u(e), F(g, A))
—r, pls2) = F(A,E).

Note that the first occurrence of E intr oduced in p(so) was removed by — .,
makmg p(s1) reducible by —g, .
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3.3  Modularity of Simple Termination

The following lemma is essentially the proof of our main result:

Lemma 3.8 If Ry and Ry are simply terminating, then Ro U Ry is simply
terminating. ‘ " _

Proof. Since Ry is simply-terminating, —o,4 % is irreflexive (from Lemma
3.3). Since —gyur,= —Rr, U —r, , we have to show that —¢;,4 7 is irreflex-
ive. Assume that —g;,4* is not irreflexive. Then there is a cyclic sequence
8 = So —01sd - —01sd Sn = 8, where we can assume without loss of general-
ity that s is root-black, and rank(s) is the minimal rank of the terms that
initiate cyclic sequences. Thus, since the assumptions in Definition 3.4 are
fulfilled, we can define the alien replacement p for this cyclic sequence. Then,
from Lemma 3.6, we have that p(s) —o.a - -+ —0sa p(s). This contradicts the
irreflexivity of —¢,q%. O

Now, our main result, the modularity of simple termination, is estab-
lished: ‘

Theorem 3.9 Ro U R, is simply-terminating if and only if both Ry and R,
are so.

Proof. The only-if part is trivial. The if part is direct from Lemma 3.8. O

As seen in Section 1, confluence is not modular when constructors are
shared, and completeness is not modular even when no function symbols are
shared. However, simple completeness (i.e., simple termination plus conflu-
ence) is modular even if constructors are shared:

Corollary 3.10 Ry U R, is simply-complete if and only if both Ry and R,
are so. .
Proof. Obvious from the remark in Section 1 and the fact that a terminating
system is confluent iff every critical pair is convergent. O
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