VI TEERR 3712
TaurlsI U ERE 21-12
(1990. 12. 13)

RS HI~X 7 + MR

A G AR —iE
FUHRZETEAES

RS #~< 7 AR (RS-VM) i, <7 M ERO—BHEBORR: L LTHAE N, TWIE. repeat, stretch ©
QIHE A EA LT BN FABBTH B, HARI(m) = 20 L E, repeat 37 W (ay, a9, ,) ¥ (a1, a2, -+,
U, 1, g, G} 1oy Stretch i (a1, a1, aa, a2,y Gy G) IKHERT B3FECTH 2. COBBIT, d(m) =20 ELH
KRBT SERNSERC, d(m) = m © & FiEEEE, SEISRE: SERRERCIET 288755 5 C & 50D
nCTwnb, :
AR CRRDOC L %RT ()d(m) = k(ﬁ;‘ﬁ) DRS-VM it d(m) = 2 LALCEENTH B, (i) Bx AkK

=~
2

S BRI d(m) = m, m?,) omb, 27 /m, -, 22 [m, - e DB &b d(m) = m EFICAENERD. (ii)d(m)
2 m OBEROBE TR, dim) = m ORENEBA R e E e, BB (F72B. TREVKEV) d(m) D RS-
VM i3, ZER d(m) O W EENDERD 508 5 12 EHET b,

RS-Vector Machine

Chuzo Iwamoto and Kazuo Iwama

Department of Information Science and Communication Engineering
Kyushu University

Fukuoka 812, Japan

RS-vector machines(RS-VMs) were introduced as a canonical form of vector machines. They based on the
vector operations called repeat and stretch. Repeat enlarges a vector (a1, az, -, Gm) to (a1, G2, -, G, ay, Gg, - - -,
a,,) and stretch enlarges to (ay, a1, ds, s, , Gm, Gm), When the operation factor d(m) = 2. It is already known that
when d(m) = 2, RS-VMs can simulate sequential poly-space by poly-time, and when d(m) = m, they can simulate
exp-time poly-alternation TMs by poly-time.

In this paper, we show that (i)RS-VMs of d(m) = k(k is constant) have the same power as those of d(m) = 2,

~~—
2

(i))RS-VMs of wide variety of d(m) like d(m) = m, m?, -+, em¥, 2™/m, -, 22’ /m, --- have at least the same
power as d(m) = m, and (iii)VMs of d(m) = polynomial of m cannot surpass the power when d(m) = m. We shall
also give an informal observation on if VMs of exponential (or even faster growing) d(m) are strictly more powerful

Y

than those of polynomial d(m).

1 Introduction

Vector machines are one of the simplest and the most abstracted par-
allel computation models. They are completely uniform, their local
computation and communication between processors are clearly dis-
tinguished, and their communication facilities are usually much sim-
pler (and weaker) than more algorithm-oriented models liké PRAMs.
Vector machines could therefore be the best for discussing theoreti-
cal or structural aspects of parallel computation.

Vector machines(VMs) are first introduced in [6], which shows
that the instruction set of shift operations(communication) and bit-
wise Boolean operations(local computation) is as powerful as par-
allel computers of the second class(which can simulate sequential
polynomial space by polynomial time), Since then, we have a fairly
Jarge literature discussing what kind of operation set is how power-
ful. For example, each of multiplication(by regarding a vector as an
integer), concatenation and so on can replace the shift operations
above[3]. Multiplication and integer division without bit-wise oper-
ations(we do not need local computation!), are also equivalent to the
second class[1]. Shift operations, division and boolean operations{7]

ks n
-

are much more powerful; they can speed up 2% sequential time to
polynomial time. Thus this line of research gives us a lot of interest-
ing and surprising knowledge on the true power of several operations
on the vector machines. Unfortunately, however, that knowledge
was often given in ad hoc manners and with tricky proofs, which
less describes more elementary structure on what kind of (single-
step) vector operations are how powerful and on how related they
are to the parallel architecture of physical machines. .

[4] is the first paper which tried to introduce a “canonical
form” to those vector machines. Also it tries to separate, more
clearly, the operations of parallel model, into local operations and
communications. As local operations it has the element-wise addi-
tion and subtraction. As vector operations corresponding to com-
munications, it includes four operations called repeat, stretch, fold
and contract. We call this vector machine RS- Vector Machine(RS-
VM in short). Repeat enlarges a vector (a1,as,- -, @) to (ay,a9," -
L @m, 81,0z, ,am), stretch enlarges to (a1, a1, 2,82, -, Gm; Gm)-
Fold and contract are the inverse operations of repeat and stretch,
respectively. Those operations are defined with a parameter d(m),
called the ezpansion factor. Above description of repeat and streich
is for d(m) = 2. If we take d(m) = m, then repeat and sireich
generate vectors of length m? in the similar manner.

In [4], it is shown that if d(m) = 2 then RS-VMs are as
powerful as the second class and if d(m) = m, then it is much higher,
as powerful as exponential-time polynomial-alternation TMs. Thus
the instruction set exhibits different powers by only changing the
expansion factor. That is the reason why [4] claims that RS-VMs

can be a canonical form of VMs. L
t would be true that [4] made a significant step toward

our goal, i.e.investigating the fundamental structure of parallelism
through generalized vector machines. It is also true, however, that
[4] investigated only two particular cases that d(m) = 2 and d(m) =
m. There is seemingly a large gap between d(m) = 2 and d(m) = m,
and also a large parameter space after d(m) = m. In this paper, we
show that (i)RS-VMs of d(m) = k(k > 2 is constant) have the same
power as those of d(m) = 2, (i{)RS-VMs of wide variety of d(m) like

2

d(m)=m, m?,---, cm¥, 2™ /m, -, 22" /m, --- have at least the
same power as d(m) = m, and (iii)VMs of d(m) = polynomial of
m cannot surpass the power when d(m) = m. We shall also give
an informal observation on if VM’s of exponential (or even faster
growing) d(m) are strictly more powerful than those of polynomial
d(m).

2 Models, Results and Future researches

A wvector of length m is denoted by A = (a1,a2, " -,am). Each
a;(denoted by Al4]) is a nonnegative integer called a scalar. Let A =
(a1,az2,---,a:), B=(b1,ba,---,b;) andlet obe a binary operator for
scalars. Then AoB = (ajoby,az0by, - -,a;0by) where k = min(i, j).
The concatenation of vectors A and B, denoted by A - B or simply
AB, is (a1,ag, -+, ai,b1,b2,- -, b;). A%is (), i.e,the empty vector.
For I > 1,A' = AI-'A. In this paper, we commonly use upper-case
letters, A, B, - -, for vectors and lower-case a,b, - -, for scalars.
The vector operations are called repeat, stretch, fold and
contract, and are denoted by | ,— ,1 ,~, respectively. d(m) always
denotes the expansion factor. Let f be a function from vectors to
scalars defined by the following (exactly speaking, f(a1,az, *,@m)

should be written as f((a1,az, -, am))):

1] ifay=as=-=am=0
a if all a;’s are 0 or @ and at least
flar,as,--- am)= one of a;’s is a
undefined if a;’s includes two or more
different positives.
For A = (a1,0az2, - -,am) and B = (a1,a2, -, 4d(m)m), {,—, T and
«— are defined as follows:
1A = Adlm)
A = (ad™) gdtmy
1B = (f(a1,0ms1, @Bme1s " Ad(m)=1)m+1)s
F(a2,amy'2, Gam42; -+ -5 Ad(m)-1)m+2)s
f(am) A2m, A3m,y """ »ad(m)m))

—B = (f(a1,02,," ", 2a(m))s
F(@a(m)+1, Fa(my425 -+ B2d(m))s

F(a(m=-1)d(m)+1, "+ Gmd(m)))

Now we are ready to introduce an RS-VM formally. It is defined as
a program M accepting a language over {0,1}*. M can use:

1. A finite number of scalar variables, z,y, 2,
2. A finite number of scalar constants, a,b,¢,---.
3. Scalar instructions:
ri=y+z, a:=y—2(=0 if z>y),
if (z > 0) goto label, accept, reject.
4. A finite number of vector variables, X,Y,Z,---
5. A finite number of vector constants, A4, B,C,---

6. A special constant vector @ = (0,1,2,3,---). (None of |, —,T
and «— can be applied to © and € is assumed to have infinite
number of elements.) A special vector valuable IN. When the
input string is 4145 - - i, € {0,1}*, IN{1] holds iy, IN[2] holds
iz, and so on. We assume IN[n + 1},IN[n + 2],--- holds a
large number (> 2).

7. Vector instructions:
X =Y4Z2,X=Y-2,X =Y, X =-Y, X =Y, X =Y

8. z:= X[1]

Let VM(d(m)) denote an RS-VM whose expansion factor
is d(m). VM(d(m), T(n)) denote the class of languages that are ac-
cepted by VM(d(m))s within T(n) steps and ATIMALT(T'(n), A(n))
by alternating TMs within T(n) steps and A(n) changes between
the universal and existential states. We introduce r(m) as m-d(m).
One can see that r(m) denotes the length of the vector obtained by
repeating(stretching) a vector of length m.

Here are our main results:

Theorem 1 VM(k, poly)=DSPACE(poly).

Theorem 2 For an expansion factor d(m), let d<% = 2 and d<"> =
r(d<"1>). Suppose that ds(mn) denotes any ezpansion factor that
(dS¥>)? divides dS*+*>. Then

VM(d, (1), poly) DATIMALT(2r°, poly).

Theorem 3 VM(polynomial of m, poly) CATIMALT(2°°', poly).
Corollary 1 VM(emF, poly)=ATIMALT(2P°Y, poly).

[4] only showed the case for k = 2 of Theorem 1 and the case for
¢=1, k=1 of Corollary 1. As the function d,(m) described in
Theorem 2, there are, for example, dy(m) = m, m?, .-+, em*, 2™ /m,
~
)
ceey 22 /m, - --. Theorem 3 shows that the power of RS-VMs does
not increase if the expansion factor stays within polynomial. One
would say that RS-VMs of larger expansion factors can simulate
obviously those of smaller expansion factors. This is not true at
all. What is obvious is that VM(2)(smaller expansion factors) can

simulate VM(4)(larger expansion factors) with a little sacrificer of
time. To prove Theorem 2 is far more difficult than the case for
ds(m) = m.

Let us observe intuitively why RS-VMs have such computa-
tion powers: If a vector, say V/, of length m is stretched(repeated),
then it becomes of length m2. We can regard the vector of length
m? as a square matrix of m columns and m rows. Note that each
column is equal to the original V in — V and each row the same
as Vin | V. Then it is easy to take a direct product of — V and
| V by, intuitively, placing one over the other. Thus we can increase
the “complexity” of vectors from m to m?. To construct a more
powerful vector machine, we could set d(m) = m?. When a vector
of length m is stretched(repeated), then it becomes of length m3. We
regard this vector as a cube vector. What about extending naturally
the direct product mentioned above to get a vector of complexity
m3? The answer is negative. Because RS-VMs have only two vector
operations, they can still make a direct-product of only two objects.
Thus the similar direct product of | V and —V on a VM(m?) gives
us only m? different elements, which means that the complexity of
the vector increases from m to m?, the same as before. Of course this
direct product generates much more elements than m?. The same
element, appears repeatedly in a complicated form, which is very un-
desirable for proceeding computation. This fact makes the proof of
Theorem 2 much harder than it looks. We have a strong conjecture
that the power of Theorem 2 is the best possible for RS-VMs of any
expansion factor.

Tuture researches would be as follows:

o Is the conjecture above true? A significant difficulty for prov-
ing it is the existence of the special constant vector Q =
(0,1,2,--+). In this paper, we use, in a sense, it for picking
out of diagonal elements. We never use “actual” values of this
vector. If we could remove this Q from the program, it would
be a nice improvement by itself and would contribute a lot to
the goal.

Supposing that the conjecture is correct, is there any (different
kind of) vector operation set whose power increases unlimit-
edly with the expansion factor?

Is there any expansion factor characterizing a natural com-
plexity class between those of Theorem 1 and Corollary 1.

In what follows, we can only give the proof of Theorem 2, for the
space reason.

3 Proof of Theorem 2

3.1 An important idea

Before describing a formal proof for the general d,(m), we shall
sketch how the proof proceeds using a simplest particular case,
i.e.the case for d,(m) = m. In the rest of the paper, we simply
use d(m) for the expansion factor ds(m). Recall that this expan-
sion factor enlarges a vector of length m to a vector of length m?
by repeat or streich. Among several techniques used in simulating
alternating TMs by VMs, the most fundamental one could be to
construct a vector of length (22)? quickly, in which all the different
0/1 subvectors of length 2" appear as follows.

section of length 22" 22" Lot
C(n)=(00---00 222 Q001 222 -oee- T 1122.-.2)
P 2n 2n

27" sections(length (22")?)
1)
Thus the vector consists of 22" sections. Each section begins with
a 0/1 vector of length 2" (one of the different 22" patterns) followed
by 22" — 2" 2s.

C(n) is constructed step by step. To do so, we introduce
five vectors, A(k), B(h), C(h), D and E(h), where the parameter
h means that the vector contains all the 0/1 patterns of length 2h.
Note that the length of all the five vectors is (22")? that does not
depend on h. C(k) plays a key role. Fig.1 shows how to construct
C(h + 1) from C(h). Like C(n) above, C(h) also consists of 2%
sections of length 22"

section of length 22" section of length 22"

2" 2"

2’"
C(h):(@~~00~~-0~-002---2)(0~'01~~0-~~012~-2) Y
2h 2h 2h 2t
division of 22" sections
(2

As one can see, we have already constructed all different vectors of
length 2"(h < n), which means that the number of all the different

sections is 22°. We call such a sequence of the 22* sections division.
Before describing how to construct C(h + 1), we introduce,
for easier understanding, a two-dimensional way of representing vec-
tors. For example, let X = (a,b,¢,d). We can write | X(h) and
— X (h) as ’
1 X =(a,b,c,4,
a,b,¢,d,
abc,d, ®)
a,b,c,d)

and
— X = (a,a,a,a,
b, b, b, b,
€, 6 6, €y (4)
d,d,d,d).

We will often regard those as matrices, where all the elements in
a single column of | X are the same and all the elements in a sin-
gle row of — X are the same, or the original X corresponds with
each column of — X and with each row of | X. Now we construct
C(h+ 1) from — C(h) and | C(h). Fig.1 shows left upper part of
the two vectors — C(h) and | C(h) assuming that one is placed
over the other. si(i) denotes the ith section of (2), for example,

section of length 22"

o

P S—
sn(1)=(0---01---0---0L 2.--22). We also introduce anew.vector .
h

2 2

denoted by Z of the same length as | C(k), which is also regarded
as being placed at the same position in Fig.l. Z has some bozes
and diagonal elements. Each shaded rectangle in Fig.1 of 22" rows
x 22" . 22" columns is called a boz. Each box is divided into 22
squares consisting.of 92" rows x 22" columns. Each square contains
22" diagonal elements (shown by a broken line in Fig.1). Only those
diagonal elements are significant in Z. As shown in Fig.2, they have
2" 1/2 elements followed by 22" — 9" 2’s. The 1/2 portion begins
with, from left-top to right-bottom, 9% 1’s, then 2* 2s, again 2% 1’s,
2h 9%s and so on. All the other elements of Z are 0. Fig.2 is the
case h = 2. Using this vector Z for a masking purpose, we can get
C(h+1) as a direct product of all the different patterns of = C(h)
and | C(h). One can see that a single box of Fig.1 corresponds to all
the 22" different patterns of | C(h) and a single pattern of —C(h).
We now construct a vector of length (22" }¥(=the length of — C(h)),
say C(h+1). G(h+1)[i] is the same as —C(h)[i] if Z[i] = 1 and the
same as | C(R)[i] if Z[s] = 2. All the other (nondiagonal) positions
are set to 0. By folding é(h + 1), each column is compressed to a
single element, which is C(h+1). C(h+ 1) contains all the different
0/1 subvectors of length 2841 je. the length of each 0/1 subvectors
are doubled.) .

Now the problem is reduced to how to construct the vector
Z, for which we need the vectors 4, B, D and E. Recall that all of
them are of the same length as C.

A(RY = (00---011+::122. -2 -~ @ 1)@ —1))F
23" 2" 22" 92
ﬁn(?)
B(h)=(00------ 011 +eee-- Toeeeen (2= 1) oo (@*- 1))@ 7
gan.geb gan.gah gan g2k
) (8)
D=(0,1,2,,2" - 1) Q)
-
ER) =L 122 1. 122,022+ 27" (8)
oh 2h 2k P
22"
Note that the length of (00--.--- 0) in B(h) coincides with the
23n .20
length of (00-+-Q11---1.----- (2 —1)---(22 - 1)) in A(h). We
22" 22" 2n

first make a matrix called Zpox which has 1’s inside the boxes of
Fig.1 and 0’s outside. To do so, we construct — A(h) and | B(h).
Zgpox is obtained as a vector which has value 1in the position where
— A(h) and | B(h) coincide. We next make a matrix called Zpra
which has 1’s on the diagonal lines(not only inside the boxes but

every where) in Fig.1. To do so, we construct — D and | D. Zpra
is a vector which has value 1 in the position where — D and | D
coincide. We compute Z := Zgox A Zpra, where A is element-wise
and operation, and this operation is easily realized by + and —. We
need | E(h) to place the correct values of the diagonal elements of
Z. One can see that Z is finally obtained by changing the elements
of | E{(h) into 0 in the positions where Z has 0. This kind of “mask-
ing” operation is frequently used in this proof and will be described
in detail later.

3.2 Sketch of the proof

Now we begin the proof for the general case, i.e.,the case for an ar-
bitrary d(m) such that (d<*>)? divides d<*+!'>. The basic idea is
similar as above, but the entire structure is much more complicated.
For simplicity, we first prove VM(d,(m), poly)2DTIME(2P°"¥) and
extend it to VM(ds(m), poly)DATIMALT(27°, poly) later. Let M
be a 21" time-bounded, deterministic, single read-write tape TM
with only 0 and 1 as its tape symbols. We construct a vector ma-
chine V of O((t(n))¥) steps (constant k is not large) which simulates
Mof 24(") steps. Since M finishes its operation within 2(") steps, it
uses at most 2'(™) tape cells. Generally speaking, we can determine
whether M accepts its input by creating M’s computation sequence
S of length 247) However, V does not try to make the particular
sequence S but makes all possible sequences first and then find if
S exists in the set, which is the standard approach in the parallel
environment. The vector machine V first constructs a vector repre-
senting all possible tapes and then a vector representing all states
and head-positions of TM M. All possible sequences of those config-
urations are now obtained by combining both vectors. We represent
a single configuration by 2:(") elements and a single sequence consists
of 2™ such configurations. Hence the sequence of configurations is
of length 24" x 24",

Roughly speaking, the vector machine V operates as follows:
(i)To generate all possible tapes of length 24" V makes a “very
long” vector in which all different 0/1 vectors of length 24(") appear
as subvectors. (ii)Let k be the number of TM M’s states. We
use a single integer from 1 to k - 24" to denote both M’s state
and head position at some moment. For example, value (j — 1) -
24(n) 4 § represents the jth state and head-position i(M is now in
state j and places its head on the ith cell from the left end of the
tape). Vector machine V makes a vector which contains all numbers
from 1 to k- 2'™. (iii) V then generate all the configurations of
TM M by taking, in a sense, a direct product of all the tapes (i)
above and all the state/head-positions (ii). (iv)Now V has all the
configurations of M. By concatenating two of them, we can generate
all the sequences of M’s configurations for two steps, then all the
sequences for four steps, and so on, up to for 2(") steps. (v)V then
“shifts” each sequence of configurations 2(") bits(corresponding to
a single step) to the right. We can check whether the sequence of
configurations is proper or not by comparing that sequence with its
shifted counterpart.

‘We should mengi'on what d<*> comes from and what it means.
As one can see later, all constant vectors we use in this proof are

of length 2. When we stretch(repeat) a vector of length m, we get a
vector of length 7(m) = m-d(m). Then one can see that d<*> shows
the length of the vector which is stretched(repeated) i times begin-
ning with a constant vector of length 2. We use several vectors as
before(Section 3.1); including A(k), B(h), Cr(h), Crs(h), Cu(h),
Cus(h), D, E(R). Let 2t(n) = T(n), namely 27(") = 21(n) x 2t(n),
Then all vectors are of length d<T(")+2> which is independent of h.
T, H and S represents Tape, state/Head-position and Shift, respec-
tively. Parameter h also plays the same role as before.

3.8 Constructing all tapes
3.3.1 Structure of Cr(h)

We first construct Cr(0), and then Cr(1) from Cr(0), Cr(2) from
Cr(1) and so on, until Cr(i(n)). Cr(h) looks like:

<T(mp1>
Cr(h) = (Sh(0),Sh(1), v YGRS, (9)
subdivision of d<*> sections
section of length :—:;{%
S<T(n)+2>

where S, (i) denotes ((BNa (@)™ "7",2,2,--+,2 Y@ETWI>N and

subsection of length d<T(™+1>
BN;(i) denotes the binary representation of the integer i using j

bits. Although Cr(h) seems much more complicated, it essentially
has the same structure as C(h) in Section 3.1. Recall that the length
of Cr(h) is d<T(M+2> not depending on k. Each Cp(h) is divided
into d<T(M+1> sections of length %:—;—g%. Each section is divided
into (d—“:;((;)z,% subsections of length d<T("+1>__All subsections
in a particular section has the same bit-pattern. d<*> consecu-
tive sections are called a subdz’vi.shifp} which contains all the different
0/1 subvectors of length 2". i‘,17,.>—(> d<*>) consecutive sections
are called a division. First 27(") bits of each subsection contains
2T(n)=} repetitions of the same subvectors of length 2% which is one
h gl .

of 0 ~ 22" — 1 if it is regarded as a binary number, and the rest of
the subsection hold 2’s everywhere. This value “2” is not important,
sometimes called a dummy element. Note that a single subdivision
of (9) has d<*> sections and that we need only 22" (< d<">) sec-
tions to cover all the different bit-patterns of length 2*. In reality,
a subdivision contains a lot of the same sections that appear in a
complicated fashion. For example, when d(m) = m?,

Cr(h)=(Sn0,54),54 0,541,540, 540,540,546, - "%%)

Structure of such a repetition of S,(i) depends on d(m).

3.3.2 Constructing Cp(i(n))

Constructing C7(0): We first construct Cp(0). We will
not mention so frequently on the time complexity, but one can verify
easily that we do not spend more than a polynomial time supposing
that ¢(n) (and T(n)) is a polynomial. A constant vector (0,1) is
repeated T(n) + 1 times, which gives

(0,1,0,1,--,0,1). (11)
N i’

d<T(n)41>

Stretching this vector, we get

G<T(m)+2>
4<T()+1>
(0,0, vvne- L0, 1, T e)T (12)
a<T{n)+2> a<T(n)+2>
a<T(+1> GTHFTS

By repeating constant vector (0,0) T(n) + 1 times, we get
(0,0,---,0). (13)
A<T (41>
By adding Q to (13), we get
(0,1,2,3, -+, (d<TEIH> _ qy), (14)

(Recall that £ is a vector of infinite length. Vector (13) is used only
for “cutting” © at the desired position.)

Beginning with constant vector (1,1), we get (2, 2) by adding
two (1,1)’, (4,4) by adding two (2,2)’s, finally (27("),2T() in
roughly T(n) steps. Subtracting (1,1) from (27("),27(™), we get
(2T —1,97(") — 1), Repeating this vector T(n) + 1 times, we get

(@@ -10,@@ -1, @®-1). 1)

d<T(n)41>

Subtracting (15) from (14) implies

G<T()+1>
(0,0,---,0,1,2,3,4,------ . (16)

2T (n)

By repeating constant vector (1,1) T(n) + 1 times, we get

(L151). " ()
A<T () 41>
(17) — (16) gives us
G<T(n)41>
———
(1’1’.,-,1,0,0,0,0,-~g~)‘ : (18)
2T (n)

—98 —

(17) — (18) switches 0’s and 1’s of (18) like

J<T 41>
e e,
(9,0,---,0,1,1,1,1,-- (19)
N i
27(n)
Adding (19) twice, we get
d<T)+1>
(0,0,:--,0,2,2,000vne ,2). (20)
27(n)
By Repeating this vector, we obtain
<T+1>
4<T(m+2>
(0,0,--,0,2,2, - |2) TGS (21)
——
2T(n)
d<T()+2>
Note that vector (12) also can be written as follows:
g<T(m)+1> 4<T(m)+1>
<T(n)+2> <T(n)42> -
(30 000-0) ?f?’rﬁﬁ‘ﬁ?j?(_u 1. \)W)’w
N
9T (n) zT(n)
d<T(r)$2>
(22)
By {(22) — (21)} + (21), we get C7(0) as follows:
<T(n)+1>
Cr(0) = (S0(0), So(1)) 2 (23)
section of length g:ﬁ:(%% section of length g—:—:("—{;)y:;;
subsection Tz subsection <>
il il <T(n)+1
= (0002 3) Gy (17129 yucrmrsy L
S——— \q/—’
2T(=) 2T ()
A<T(n)41> 4<T()+1>
)
Constructing Cr(#(n)): Suppose that we have constructed
Cr(h) up to some h < t(n):
2<T(n)+1>
Co(h) = (Sh(O,Sn(1)y oo T (29)

subsection of d<*> sections

We construct Cr(h -+ 1) with keeping the following feature of Cr(h)
in our mind: When we divide Cp(h) into subdivisions, one sub-
division contains d<"> sections and every subdivision has all the
different 0/1 subvectors of length 2”. Since a division is a collection
of subdivisions, each division contains all different 0/1 subvectors of
length 2" also(one division contains i;{-;’;’- sections). Intuitively we
make a direct product of d<*> sections(=a subdivision) and 1’7}:%;—)—
sections(=a division) of Cr(h). (This is much easier in our cur-
rent environment than taking a direct product of two subdivisions.
One can see the reason in a moment: A key point is that our cur-
rent matrix is not square as in 3.1 but very narrow.) As a result,
d<h> x 4;2—;;: = d<M*1> gections will become a new subdivision,
which contains all different'0/1 subvectors of length 241,

We first make — Cr(h) and | Cp(h). Fig.3 shows left upper
part of the two vectors assuming that one placed over the other.
Note that the length of both — Cy(h) and | Cp(h) is d<T()+3>,

. T(n)+
We regard each of them as a matrix composed of % rows

and d<T(m)+2> columns(% > d<T(™+2>). Namely, when
we repeat Cp(h), a single element of Cr(h) naturally corresponds to
a single column of | Cy(h) in its matrix representation. If Cr(h)
is stretched, however, a single element of Cr(h) is “stretched”. to
4<T(n)+3> A<T{(n)+3>

S=rm¥ss elements which occupy not a single row but W

d<T{(n)+3>
rows. Thus all the elements of consecutive m Tows are

completely the same. Since the length of one section of Cr(h) is

<T(n)+2> <T(n)+3> <T(n)+2> <T(n)43>
4 4 X s = serd rows’ of
4TS) (d<T(m+35)7 d<T (> = GIT(mA2> T (>

— Cr(h) correspond to a single section of CT(h) As for | Cp(h),
4<T()+
the entire ‘<‘T‘FT+2_> elements on a single column are the same and

3—:%:;:——;:— columns constitute to one section. We again introduce
a vector Z of the same length as | Cp(h), which is also regarded

as the same-styled matrix as in Fig.3. Z has bozes and diagonal
. I . <T(n)+3>
sticks. Each shaded portion in Fig.3 consists of W;”W(;m;
A<T(2)+2> g<h41> . .
rows and Joryrrs “gers— columns which we again call a boz. The
ALk d t ion of Cr(h

T g<rmyars Tows correspond to a section of Cr(h) as men-
(T(n)+7> d<h+l> ht1>

tioned above, and the 4 raTs Sgens— columms to a d1v1smn(-7y.>—

sections). As a result, each box includes a single section of —Cr(h)
d<h+l> -
and é5z5— sections of | Cr(h).

. P . <h+1> .
FEach b?x is divided into id?;g- smallbozes which are com-
<T(n)+2> <T(n)+3>
posed of %ﬂm—,; columns and the Fﬁmﬁﬁw rows(the
same as the box). Thus a smallbox corresponds to one section of

1 Cp(h). Fig.4 shows magnification of this smallbox. It is further di-
vided into tinybozes each of which consists of rﬁ%{;};ﬁd@("ﬂb
rows x d<T(")+1> columns. Each tinybox corresponds to a subsec-
tion of both | Cr(h) and — Cr(k) and contains a repetition of a
single bit-pattern among 00---0 to 11---1.

2n o* .
Fig.5 shows magnification of the tinybox. All elements ex-
cept the left upper part of % 2T(n) yows x 27(™) columns

are 2’s. Recall that only first 27(") bits of each subsection are impor-
tant for us. In this figure are also shown 27(®) “sticks” of %@—%};
rows X 1 column. We shall call them “diagonal elements” or “di-
agonal sticks”. The length :%TT%—?:—;))—(_ the height of a stick) -
should be associated with the fact that a single element of Cr(h)
is “stretched” to (;7(:((;’;% rows. Only those diagonal sticks are
significant in Z. Similarly as in Fig.2 there are 27(") sticks whose

elements are 1 or 2 followed by d<T(")+1> _ 9T(n) gticks whose ele-
ments are all 2’s. In the left upper part(d—:;((;'%r% 27(") rows x
27 columns), first 2" sticks are value 1’s, next 2* are value 2’s,
next 2% are value 1’s, next 2" are value 2%, and so on. We use each
2% sticks whose values are 1’s(2’s, respectively) for picking out 0/1
subvectors of length 2* in — Cp(h)(] Cr(h), respectively). More
precisely, we construct a vector of length d<T(")+3> (=the length of
—Cr(h)), say Cr(h +1). Cr(h + 1)[i] is the same as —Cr (h)[i]
Z[i] = 1 and the same as | Cp(h)[3] if Z[i] = 2. All the other posx-
tions are set to 0. Note that all non-zero elements in each column are
the same. (Those correspond to a single “element” of Cr(h).) By
folding CT(h+1) all elements of a single column of Fig.3 compressed
to a single element, which is Cr(h +1). Cp(h+ 1) contains all the
different 0/1 subvectors of length 2**1 in a new single subdivision
of d<h> x €54 = d<P+1> gections. The new subsection contains

2T(n)=(4+1) subvectors of length 25+, i.e. the length of each 0/1
subvectors are doubled.

ow the problem is reduced to how to construct Z in poly-
nomial time. We again introduce four vectors A, B,D,E. Recall
that all of them are of the same length as Cr(h).

T(n)+ (n) "
A(h) = (05T (5T L. (a<h>_1) Sertre) SRR

d<T(n)+2>
(26)
<T(n)42> g<h+1> <T(n)+1>"

)+2> g<h+
L(d<h>— 1),<m)+x> o>) s

B(k) = (07}:)-#_»'7{5'“

d<T(n)+2>
<T(n)+2> (27)
D=(0,1,2,...,(d<T®H1> _ 1)) (28)
d<T(n)+2>
g<T(m+1>
(2,22)OO g o)RS | for h < 1(n)

o <T(n)t3>
(12127070 9 9 L 9)ETORT | for h = #(n)

_ <T(n)+2>
(a¥,2 - 2T for h > t(n)

27(n)

E(h)=
() 2;‘_1)21(,.)-",212 .

A<T(n) 42>
(20)
Note that E(h) makes a slightly incontinuous change at h = t(n).
The purpose of E(t(n)) is different from the others. E(i(n)) is used
when we construct all configurations by combining all the tape vec-
tors with all the state/head-position vectors. These (26), (27), (28)

andl(29) are based on the same idea as (5), (6), (7) and (8), respec-
tively.

We again make a matrix called Zgox which has 1’s inside
the boxes of Fig.2 and 0’s outside. To do so, we construct — A(k)
and | B(h), and make a vector which has value 1 in the position
where — A(h) and | B(h) coincide. We next construct a matrix
called Zpra which has 1’s on the diagonal sticks(not only inside
the boxes but every where) in Fig.3. We make a vector which has
value 1 in the position where — D and | D coincide. We compute
Z := Zpox A Zpra. We need | E(h) to place the correct value(1
or 2) on diagonal sticks of Z. Note that Z has non-zero elements
in the positions where Z has 1, which we can get by changing the
elements of | E(h) into 0’s where Z has 0.

Now we construct A(h), B(h), D, E(h). We first make the
following vector just as (14)

(0,1,2,3,--+,(d<*> - 1)) (30)

By repeating this vector (T(n) — h + 1) times, we get

<T(n)+1>
(0,1,2,3,-,(d*> — 1)) "> (1)

d<T(n)41>

A(h) is obtained by stretching this vector. By siretching vector (30),
we get

<h41> <h41> <h41>’ <h1>
O 15 25 @) Ss). (3)
d<h+1>

By repeating this vector (T'(n) — h) times, we get

<h 41> <h+41> <h41> <h41> <T(n)+1>
(0’.777,11’?1.?,2~r—‘,< S (A< — 1) aREs Y s
A<T (M) 41>
(33)

B(h) is obtained by stretching this vector. We obtain D simply by
repeating (14).

Before describing how to construct E(h), we introduce an-
other subtraction operation —* as follows:

w, [z-y, forz>y,
z y—-{ z, forz < y.

It is not hard to see that X —* Y can be computed using the nor-
mal subtraction as follows. (i)Z =Y — X. (ii)Z := (1,1,---,1) —
Z(Namely, Z[i] = 1iff X[} > Y[i].) (iii)Repeat! {Z := Z+ 2} until
each element of Z become sufficiently large. (iv)(X —Y)+ (X — Z)

is the answer. .
® Now we will show how to make the vector E(h)(h < #(n)):

Let X denote (20). We repeat {X := X + X} T(n) times. Then
{(14) — (16) — X} implies
(9,1,2,3,--,("™ -1),0,0,---,0). (34)

d<T(n)+1>

Tn a similar way as (15), we can make { 27"~

d<T(n)+1>
Subtracting this vector from (34) by —* operation, we obtain

(0,1,--,(27™"1 _1),0,1,--+,(27™=1 - 1),0,0,.--,0), (35)

A<T(n)41>

We again subtract (oT(m)=2 oT()-2 .. 9T(")~2 y by —* operation,

d<T(n)+1>
.., and finally subtract (2*+1,20+1 ... 2+l) by —* operation.
[y A
4<T(n)+1>
The result is
9T(m)

)y (n)~(h+1)
((0,1,2,3,---,@* =177 0,0,---,0). (36)

subsection of length d<T(m)+1>

tDo not confuse with the vector operation repeat.

L gTm-1 . o)1),

We subtract (2% —1,2% —1,...,2" — 1) from (36) and repeat it
[Nl S S A—

4T (241>
once more. Then we get

2T(m)
o <T(n}+2>
((0,0,0,::+,0,1,2,3,+,28 = 1) 0,0, 0)icTws,
(NS A S—
I P
subsection of length d<7("+1>
(37)

By stretching (17), we call the resulting vector as Y. Executing
Y —{Y —(37)}, we can change all non-zero elements to 1. By adding
this vector to (21), we get E(h) for h < t(n). E(h) for h > t(n) is
similar.

3.4 Constructing all state/head-positions

Next we construct all state/head-position vector. Suppose that the
given TM M has states s1,52,-+s;. Then a pair (s;,7) of state
and head-position(1 < i < 2'(™) is represented by a single integer
(7 — 1) x 25" 4 i, which is between 1 and k- 2"). In a similar way
as with (34), we construct

- <T(n)+1>
(1,2,3,+,k-24",0,0,...,0) 35T (38)

d<in)>

Value 0’s in this vector are just for adjusting the length. By stretch-
ing this vector, we get

a ¢
(1’-—Tr—4§:(..)t:§ vy (k- 2'("))’—Trn—4:n:)+z ,OL‘NTS‘:T s ,.‘.)4—<—r225"2*>" (39)

subdivision of d<!®)> sections

We can enlarge each element of vector (21) at least k - 2%*) by
the repeated addition previously mentioned. We then subtract this
vector from vector (39), which implies Cy(t(n)) as follows.

. d(T(n5+1)
Cr(t(n)) = (Hym)(1), -, Hymy (k - 25, Hyny(0), - -) 530>
(40)
subsection of length d<T(*)+1>
2T (n)

. ——— Pt
In (40), Hy(n)(7) denotes (i - -igi---4---§i---300.-.0)@<TF)32

2t(n) 2¥(n) 2t(n)

and Hy(,)(0) is called a dummy section.

More natural way of expressing the head position is, as in
[6], to use a 0/1 vector with holding exactly one 1 at the position the
head is placed. Our current approach is quite different; we explicitly
write the head position in integer and that integer is repeated a lot
of times to be adjusted to tape vectors. The major reason is that
our vector machine lacks the ability of “shifting operation”. One
can feel that if we use the conventional approach then we have to
“shift” the position of 1 to the left or to the right according to the
motion of M’s head. However, it is quite unlike%y for our RS-VM to
be able to “shift” something, even by one position.

3.5 Constructing all configurations

‘We have already completed the construction of Cr(¢(n)) which have
all state/head-positions and Cr (t(n)) which have all tapes of length
24). At stage t(n) we combine those two vectors to get all configu-
rations. It should be noted that both are of very similar forms. For
example, all divisions in each vector are completely the same. So,
the idea is to make a direct product of d<4™> sections of Cyr((n))
and % sections of Cr(t(n)) to generate all combinations of
tapes and state/head-positions. In more detail, we first make the

following vector of length d<T(")+2>_

<t(n)41> <i(n)+1> a<T(n)+2>
C(t(n)+1) = (Hyny(1) 05, Hyioy(2) 05 ..) GTTE
(41)

Now let us take a look at Cy(t(n)+ 1) and Cr(¢(n) +1) = Cr(t(n))
(thus the tape vector does not change from the proceeding stage)
written in line-up as follows.

Cy(t(n) + 1) =Hyn)(1) Hyny(1) -+ Ht(r:)(sl) Hym)(2) -+
Cr(t(n) + 1)= Sym)(0) Syim)(1) -+ Segmy(22™ = 1) Sygmy(0) - ~(;~

—100—

One can see all the configurations appearing in these two vectors.
To construct vector (41), we can make use of the technique
described in 3.3.2. We make — Cy(t(n)) and | C(t(n)) and we
4<T(»)

. s
regard them as matrix of d<T()+2> columns X Szrmgss TOWS.

We again make the vector Z having non-zero value on the diago-
nal sticks. Note that E(t(rn)) in (29) has only 1’s in its important
portion. Exactly as we did in 3.3.2, we make Cy(t(n) +1) of length
d<T()+3> (=length of —Cp(t(n)). One can verify that Cp (¢(n)+1)
is obtained by folding Ci(t(n) +1). Again note that sequences of
configurations are represented not by a single vector but by two vec-
tors Cr(h) and Cgr(h) for h > t(n) with the assumption that those
two vectors have a natural one-to-one correspondence between their
sections(the first section of Cr(h) and the first of Cpr(h), the second
one of Cr(k) and the second one of Cg(h), and so on).

3.6 Constructing sequences of configurations

Beginning with the vector which have all the configurations of TM
M (actually the “two vectors”, but we sometimes regard them as
if a single vector), we construct all the sequences of configurations
for 2steps, 4steps, and so on, until 2t(") gteps. Suppose that stage
(> t(n)) has been just finished. The vectors Cr(h) and C(h) for
h > t{n) have exactly the same structure as Cr(h) and Cg(h) for
h < t(n). Hence we do not have to change our procedure given in
3.3.2 to construct Cr(t(n)+2), Cr(t(n)+2), Cr(i(n)+3), Ca(t(n)+
3),- -, Cr(2t(n)), Cg(2¢(n)) which contain all the desired sequences
of configurations.

3.7 Constructing shifted sequences

Recall that what the vector machine V is now doing is to find (if
exists) an accepting configuration sequence of TM M. In order
for the sequence coe; -+~ €oemy Of configurations to be an accepting
sequence, first of all, ¢; must be a proper successor of ¢;—y for all 7.
To make this test possible, we introduce vectors T'S and HS those
are the same as T and H, respectively, but the first 27(8) bits in each
subsection are shifted 2:(*) bits(the length of a single configuration)
cyclically to the right. We start with Crs(t(n) +1) := Cr(t(n) +1)
and Cy5(¢(n)+ 1) := Cg(t(n) +1). Then, we construct Crs(t(n) +
2), Cus(t(n) + 2), ---,Crs(2t(n)), Cus(2t(n)) using essentially the
same technique previously mentioned. We again need four vectors
A, B, Dand E. A, B and D are completely the same as before. £
is slightly different as follows, which we denote by Es.

g<T(41>
1(n) _oh—1 oh— A-1 _oh-1_ot(n) aST(n)+3>
Bs(hy= (2122 T 0,2, 2) O
2T (n)
(43)

Es(h) is E(h) whose first 2T(") bits in each subsection is shifted
24") bits cyclically to the right. One can see that Es(t(n) + 1) is
obtained from E(t(n) + 1) by switching 0’s and 1’s in first 2T(™) bits
of each subsection. In general, Es(h) for h > t(n)+ 1 is obtained as
follows. Like (36), we obtain

2T (™)

o) <T(n)+2>
((1,2,3,--,2°M, .., 27 0,0,...,0)RTER> . (44)

A<T(n)+1>

As in (18), we change all elements larger than 2!(™) into 0. Then,
by adding (21), we get the following vector, which we call F' (h).

4<T(R)41>

Zl
e e,)— <T{n)}+2>
Fy= (DL 500,0,,0)7 ™ ,2,2,..,2) ST (45)

2¢(n)

9T (n)

We want to change E(h), 1into 2 and 2 into 1 only where the element
of F'(h) is 1. This can be done as follows: Let 2F(h) := F(R)+F(h),
G1(h) := 2F(h) — E(h) and Gy(k) := F(h) — G1(h),

Es(h) := E(h) + Gy(k) — G2(h) (48)

is the answer. As an elementary example, if 2%r) = 2 and 2" = 8
then those vectors look like:

E(h) = ---11111111222 1111111122 fe(47)
F(k) = ---11000000110000001100000011000000--- (48)
Es(h) = ---22111111112222222211111111222222--- (49)

3.8 Choosing proper sequences

Now we have all sequences of configurations Cr(2t(n)) and Cgr(2t(n))

and their shifted version Cpg(2t(n)) and Cys(2t(n)), which are in
short denoted by T', H, T'S and H S, respectively. What we are going
to do is to test whether or not an accepting sequence exists. The ac-
cepting sequence requires, for example, (i)that its first configuration
correctly contains M’s input, (ii)that all changes of configurations
in the sequence are proper and (iii)that the final configuration of
sequence includes an accepting state. We introduce vectors INIT,
SUC, FIN of length d<T(*)*¥2>_ In the rest of the proof, we re-

gard a vectors of length d<7("*+2> as a matrix of d<T)H> rows x
T(n)+2.
3—:—?—((;;% columns, i.e.,horizontally long matrix; instead of the ver-
tically long ones so far. A single row corresponds to a single section.
Note that if we contract this matrix, then a single row, composed of
LT (n)+2: . B
Z—@é;;},; elements, is compressed to a single element. Thus we get
a column vector of length d<T(*)*1> whose element has a non-zero
element of each row of the original matrix.

INIT: First we construct a (column) vector INIT of length

d<T(n)+1> This vector represents whether each row of T' has a
proper input string. As with (34), we get

<T(n)+2>
(1,2,3,-,211,0,0,- -0) 5=T#7> (50)
e
A<T(n)+1>

By turning all non-zero elements to 1 (see (19) for how to do so),
we get vector

<T(m+1>
A e g <T (1) 42>
(1,1,---,1,0,0,---,0) eTTF>, (51)
2t(n)

We regard this vector, say Tinrr, as having the following structure:

subsection of length d<7(r)+1>

T (n)
,..._2/_———\ 2<T(n)42>
Tynrr = (31---100---0---00---0 00 -0)<THF> (52)
21(n) 2t(n) 21(n)

By placing Trnir over T and H, one can see that the portion of
Tinrr having value 1 corresponds to the initial configuration of T'
and H. Recall that we have a special vector IN. When the input
string is 4142 - -+ in € {0,1}*, IN[1] holds iy, IN[2] holds iz, and so
on. IN[n+1],IN[n+2],--- hold a large number (> 2). We add
(18) to IN to cut it at the (d<T(+1>)th element. Changing all
elements larger than 1 into 0, we obtain

2t(m) .
/_A——\
(%1iz--1s00---000---0) (53)
N et
A<T(R)+1>

Repeating this vector implies

subsection of length d<T("+1>

2T (n) .

<T(n)+2>
(Griz--8q0---000-0---00

) 00..40)¢<T(n+1> (54)
9t(n) 2t(n) 2t(»)

We make the vector which has value 1 at the position where (i)(52)
has value 1 and (ii)7T and (54) does not coincide. INIT is obtained
by contracting it. Verify that INIT[i] = 1 iff the sequence of Ts
ith row contains incorrect input symbols.

FIN: Next we construct a column vector FIN of length d<T("+1>
This vector represents which sequence ends in an accepting config-
uration. We first make (oT(m) 1,97 _1,... ,2T(™ _1) and

d<T(n)+2>
(9tn) 9t(n) ... 9Kn)) Jike (15), and subtract the latter from the
— e —

d<T(n)+2>
former. The result is

((2T(ﬂ) — 2t 1), (27'(") —gHm) 1), 7(2T(n) — 2™ 1)),

d<T(n)42>

(55)

—101—

Subtracting (55) from (34), and turning all non-zero elements to 1,
we get

2T(n)
e rra— <T(n)+3>
(0,0,---,0,1,1,---,1,0,0,--+,0)o<TCH>, (56)
2t(n)
d<T(n)+1>

One can see that the portion having value 1 corresponds to the final
(29Mth) configuration of both T' and H. We test if elements of H in
the above portion represent an accepting state. It may be omitted
how to construct the vector of the same length as (56) which has
vFallv;; 1 only where this test fails. Coniracting this vector we get

SUC: Now we check if each sequence of configurations by T and H
is proper, i.e.,if all changes from every configurations to their right-
door ones in the sequence follow the state transition function of TM
M. To do so, we change every configuration sequence cat(n)._q o €1
-+ Cat(my—2 in T'S and HS into ¢yuay_, €4 €} - - Chueny_,, Where ¢} is the
one-step-after configuration of ¢; determined by the transition func-
tion. We compare Chyay_; € €] * - Chetny_o With coc162 - Coemr_g-
If ch=ca, €y = ca, **+, Chamy_y = Cat(my_1 then we can decide that
the sequence cg €1 Cg -+ Caun)_y Of configurations is proper. It is
not trivial, however, how to carry out this modification in parallel.
The idea is this: We first extract all ¢;’s that are associated with
state 1 and symbol 0 under the head and modify them in parallel
according to the state transition function. Then the same procedure

isnrepeated for state 1 and symbol 1, state 2 and symbol 0 and so
on.
The following procedure is repeated for state 1, then for state

2 and so on. Suppose that we are now carrying out the procedure
for state j. Recall that state j is represented by one of the values
from (j—1)-2!0) 41 to j-24"). We first change all elements having
values outside this range into 0. Then the same value (j — 1) - 21"
is subtracted from each element of this vector. We call the resulting
vector HS(j). Note that HS(j) now contains only the information
of head-positions (a value from 1 to 2!(")) only where M’s state is j.
Now we want to compute the next head-position and the next state,
for which this HS(j) still does not seem enough. Note that the head
position is represented by like - --(33333333) - - - in HS(j) (the head
is on the third cell), but what we really want is ---(00100000)-- -,
merely by which we can, for example, pick out a tape symbol under
the head. Let P(j) be a vector of the latter style, which is obtained
as follows. We first make the vector like (44).

2T(n)

’——A‘_T <T(n)+3>
((1,2,3,4,---, 277 1,1, 1) <TOF> (57)

subsection of d<T(")+1>

One can see that P(i) is the vector which has value 1 in the positions
where the value of vector (57) and that of vector HS(j) coincide,
i.e.,in the positions where the head exists. We also need 0/1 vectors
P(3,0) and P(j,1) such that P(j,0){]] = 1(P(4,1)[f] = 1, respec-
tively) iff ()P(j)[i] = 1, i.e.the head exists at that position and
(ii)T'S(j)[s] = 1, i.e.,the tape symbol under the head is 0(1, respec-
tively). Clearly P(j) = P(4,0) + P(j,1).

We then introduce NT'S(j). NT'S(j) is exactly as T'S(j) but
is constructed for the “one-step-after” sequences of configurations.
All we have to do is to change only one position of T'S(j) where
M’s head exists(P(7) = 1). For example, if some portion of P(j) is
.-+ (00100000) - - - and the same portion of T'S(j) is - - - (10010101) - - -,
then NT'S(j) should be - -- (10z010101) - - -, where 2 is the symbol
written by M on state j reading 0. Also let z; be the symbol written
by M reading 1. Then

TSl i P(Hl] =0
NTS(§)i]=4 o if P(j,0)(i] = 1
@ it PG, 1)l = 1.

How to construct it may be omitted.

‘We need one more vector NHS(j). N HS(j)is again similar
to HS(j). Suppose that M moves its head by yo(y1, respectively)
to the right and M’s next state is m when it reads tape symbol
0(1,respectively). (yo and y; are +1 or —1).

HS()li] +yo +m- 21 if P(j,0)fi] = 1"
NHS()l=4 HS(+y+m 2™ if P(j,)li] =1
0 otherwise

(Note that NHS(j) has a non-zero value in a single position of each
configuration, i.e., where the head exists. That is different from
HS(5) but does not cause any problem as shown in a moment.)

After completing above procedure for all k states, we sum
the vectors up as follows.

NTS = NTS(1) + NTS(2) + - -- + NTS(k). (58)

NHS = NHS(1) + NHS(2) + - -- + NHS(k). (59)
Now we have NT'S and NHS as the vectors containing the con-
figuration of “one-step-after”. They are compared with T and H,
respectively. We make a 0/1 vector, SUCT, of length d<7(n)+2>,
SUCT has value 1 in the positions where NT'S and T does not
coincide except the first 2:(*) bits of each sequence.(Recall that
these positions have been already checked by INIT.) Formally,
SUCy[i] is set to 1 iff (I)NT'S[i] # T{i] and (ii) Tyns7[i] = O(see
(52)) and (iii)T[é] # 2(dummy elements). Similarly, we also make
a 0/1 vector, SUCH, of length d<T(™+2> such that SUCK[i] = 1
iff (i)NHSIi] # 0 (we should pay attention only to the positions
the head exists) and (i) NHS[i] # H[i] and (iii)T;ns7[i] = 0. Let
SUC = SUCr + SUCy. If SUC holds a 1 in some row, then the
row does not proper as a sequence of configurations. Contracting
SUC, we get the column vector SUC of length d<7T(™)+1>
We add INIT, SUC, FIN into a single vector and change

all 0 into 1 and all 1 into 0. We call this vector ACC. The element of
ACC is 1 1ff (i)the beginning of the sequence coincides with the input
string (INIT) and (ii)changes of configurations are proper(SUC)
and (iii)the sequence ends with an accepting state(FIN). Thus M
accepts the input string if this ACC contains at least one 1. To
figure this out, we contract this vector until it become of length 2.
We finally get one of (0,0), (0,1), (1,0), (1,1). The last three vectors
can be modified to (1,1) by repeating followed by contracting. (The
first one is still (0,0).) Thus VM knows whether M accept the input
string by checking if the first element of the vector is 1.

3.9 Extension to alternating TMs

So far we have only shown that VM(d,(m), poly)2DTIME(2P?).
Our final goal is to show that

VM(d, (m), poly)DATIMALT(27°"¥, poly). We have constructed the
configuration sequences of 21*) steps, which are extend to of
2(")+A(") steps, where A(n) is the number of alternations. Namely,
we make all configuration sequences of 28(")*4(") steps and each con-
figuration is represented by 2!() bits as before. (The total number
of elements for such a sequence is 24(7) x 21(M+A(n) = gT(n)+A(n)
We make four vectors T, TS, H, HS of length d<T(")+A(n)+2> based
on the same idea as before. Note that 2T()+A(") can be written as

9T(n) .94(n) = 9T(n) 4 9T(n) 4 9T(n) 94 9T(n) .44 ... 4 9T (n) gA(n)~1

1t should be noted that we are still assuming, as before, that the al-
ternating TM M simulated by the VM stops within {(n) steps. Such
a TM begins its operation in, without loss of generality, an 3-state,
then switches its state from an 3-state to a V-state, then from a V-
state to an -state and so on. M can, of course, spend different num-
ber of steps(probably much less than 2")) in the first 3-states, in the
second V-states and so on. However, when we consider the sequence
of configurations for that kind of M’s operation, it is enough to con-
sider such sequences that the state changes from 3-states to V-states
(or vice versa) only at fixed points. Above (60) shows those fixed
points, i.e.,they are at (27(™)th step, (270" 4 2T(") = oT(M)+1)ih
step, (27(") 4 2T(®) 4 9T(n) . 2 = 2T(")+2)th step, and so on. (The
reason: We allow each configuration to appear repeatedly. Namely,
the “proper change” now includes “does not change”.) One can see
later how those fixed points are adopted.

Similarly as before, we construct Cp(T(n)+ A(n)), Cy(T(n)
+A(n)), Crs(T(n) + A(n)), Cus(T(n) + A(n)) of length
d<T(m)+A(m)+2> which are denoted by T, H, TS and HS, respec-
tively. We again construct three vectors INIT, SUC and FIN of
length d<T(")+AM+1> INIT is'a 0/2 vector; INIT(i] = 2 shows
that the first configuration of the ith row (of T' and H) does not
coincide with the input string. SUC is a 0/2 vector; SUC[i] = 2
shows that the configuration sequence of the ith row include im-
proper changes. FIN is a 0/1 vector and FIN[i] = 1 shows that
the final configuration of the sequence is accepting. (One can see
later why we introduce the new value 2 other than 0 and 1.)

How to contract INIT and FIN may be omitted since they
are almost the same as in 3.8. As for SUC, we should be careful
since the TM M is now nondeterministic. Suppose that { is the
maximum number of nondeterministic choices for each combination
of state and _tape symbol. Instead of the single SUC in 3.8, we
construct SUCy, SUCy, -+ ,SUCH where SUC; is obtained exactly
as SUC by assuming that M “always” choose the ith move among
its nondeterministic choices. Each vector has value 1 in the posi-
tion where changes of configuration is not proper. We also need

—102—

SUC that corresponds to the repetition of the same configuration
mentioned above. Furthermore we have to consider whether the se-
quence changes the tape of its state at the fixed points. Although

details are omitted, it is not hard to construct another vector SUC,
which has. value 1 in the position where H holds a different type of
state from what is supposed to be. Now we compute SUC’ as

SUC! = (SUCy A--- ASUC; A SUCE) v SUC4, (81)

where A(V) is an element-wise logical-and(logical-or) operation. SUC’

holds value 1 iff the sequence contains improper changes or improper
states. Changing all 1 into 2 of SUC’, we get SUC.

We compute (FIN —INIT—SUC)+INIT+SUC, denoted
by ACC(d<T(M+Am)+1>) which is regarded as a column vector of
length d<T(M+AM+I> - ACC(<TMHAMFI>)[3] = | means that
the sz}uence in the ith row starts with the correct input string and
that all the changes are proper and that the sequence is ended in
some accepting state. ACC(d<TM+AM+I>)L = 0 means that the
sequence in the ith row starts with the given input string and that
all the changes are proper but that the sequence is ended in some
rejecting state. ACC(d<T()+A(M+1>)[] = 2 shows the other cases,
i.e.,changes of configurations in the sequence do not follow the tran-
sition function or the input is not correct or the type of state changes
at other than the fixed points.

We again change the form of matrix; we regard vectors of
length d<T(M+A(+2> (T [etc.) as a matrix of d<T(r)+A4(n)+1>

d(T(n)+A(n)+))

rows and Jzrrrarmrs columns. It will be beneficial to make the
following observation on this matrix: Recall that a single row of this
matrix corresponds to a single sequence of configurations, which
appears repeatedly along the row. Fig.6 shows the left most occur-
rence (the left most 27()*+A() columns) of this sequence. These
27()+A(M) columns are divided into A(n) + 1 portions following
(60), i.e.into portions of 2T() 9T(n) 9T(n)+1 9T(n)+2 ... apd
27()+A()=1 columns. Those are denoted by PT(0), PT(1), PT(2),
-+, PI'(A(n)) in Fig.5. Recall that TM M is in F-states in PT(0),
V-states in PT(1), - -, V-states in PT(A(n)). One can see that our

construction of T' and H guarantees the following structure on this.

matrix.

1. In PT(A(n))(consisting of 2T(")+A(")~1 columns), consecutive
% rows contains all the different configuration se-

quences represented by 27(M+A)~1 bits (with a repetition).
2. In PT(A(n) — 1), consecutive % rows are com-

pletely the same, which we put together as a group. Consecu-
s A<T(R)+A(n)>
tive g&rmyrammy=1s groups cover all the sequences represented

by 2T(M)+A(®)=2 bis,
3. In PT(A(n) — 2), consecutive dz—;g;ﬂ—;?,—f% groups(defined

above) are completely the same, which we put together as a
new group. Again consecutive 5—:%—; new groups cover
all the sequences represented by 2T(")+A(n)-3 bits. Note that
single new group contains all the different (old) groups. All
other portions are similar.

We can associate this matrix with a computation tree of alternat-
ing TMs by regarding each group as a node. One should recall the
following basic rules on the computation tree of alternating TMs.
For M to accept the input, “all” V-branches from a particular node
must lead to accepting nodes, and “at least one” of 3-branches from
a particular node must lead to an accepting node. We can decide
if M actually does so by decreasing the height of the tree one by
one. First, all leaves emitted from each single node, say v, on the
next level from the bottom are put together and we can decide if v
is accepting or not by the rule above. Note that the leaves them-
selves are accepting iff the corresponding sequence of configurations
is accepting.

A crucial point is that this process of lowering the tree one
by one can be simulated simply by contracting vector ACC. We first
consider ACC(dT(M+A(n)+1>) which corresponds to, in a sense, all
leaves mentioned above. If we contract it, then we can put together
all the consecutive % rows(leaves of PT(A(n))) into one.
Then if we contract the resulting vector then we can put together all
the consecutive d<T(M+A4(")> groups of PT(A(n) — 1), and so on.
One can now see how we determined the fixed points only where TM
M can change 3-states from V-states(or vice versa). More formally,
we get ACC(d<T("+i=1>) from ACC(d<T(M+i>) as follows. Sup-
pose that PT(j — 1) consists of I-states. As mentioned above, we

put every d%ﬁ% consecutive elements of ACC(d<T(")+i-1>)

together into a single element. Let G denotes a single set of these

d—ﬂ}g% consecutive elements. Following the rule of alternating
Ms:

1. If all elements of G are 2 then we compress G to a single
element 2(the sequence is not proper).

2. If G includes at least one 1 then we compress G to 1(accepting
sequence).

3. If all elements of G are 2 or 0 and at least one element is 0
then we compress G to O(rejecting sequence),

We call above operation 3-contract, which is realized as follows.

I-contract: We change all 2 of ACC(d<T(")+/>) into 0, which gives,
say, ACCy. Contracting ACC,, we get ACC (d<T™+i=1>),
We change all 0/1 elements of ACC(d<T(")+i>) into 0, which
gives us, say, ACC3. We then switch 0 and 2 of ACCy, and
contract the resulting vector, which gives AC:C;. We finally
switch 2 and 0 of ACCj, Which implies ACCy(d<T(W+i=1>),
Now

ACC(dSTWH>Y 1= ACC (dSTMHI>) 4 ACC,(d<TMH+>)
' ‘ (62)

We should mention why ACC includes value 2 other than 0 and 1.
‘We regard the matrix as a computation tree but the matrix contains
many improper sequences. We should carry out the contraction
above so that such improper sequences will not give any effect on
the decision of accepting or rejecting. It should be noticed that how

to maintain the value 2 is different between the 3-contract and the
following V-contract.

V-contract, is given as follows:

1. If all elements of G are 2 then we compress G to a single
element 2(the sequence is not proper).

2. If all elements of G are 2 or 1 and at least one element is 1
then we compress G to 1{accepting sequence).

3. If G includes at least one 0, then we compress G to 0(rejecting
sequence),

We omit its realization because it is similar to 3-contract.

Beginning with ACC(d<T(")+A()+1>Y) we apply V-contract,
3-contract, V-coniract, 3-contract, and so on ,until ACC(d<T(M)+1>),
Then we change all elements of value 2 in ACC(d<T("+1>) into 0.
Our procedure after that is completely the same as 3.8.

References

{1] A. Bertoni, G. Mauri, and N. Sabadini,“A characterization of
the class of functions computable in polynomial time on ran-
dom access machines,” Proc. 13th ACM Symp. on Theory of
Computing,pp.168-176, 1981.

2

A. Chandra, D. Kozen, and L. Stockmeyer,“Alternation,” J.
Assoc. Comput. Mach., vol.28, pp.114-133, 1981.

[3] J. Hartmanis and J. Simon, “On the power of multiplication in
random access machines,” Proc. IEEE Symp. on Switching and
Automata Theory, pp.13-23, 1974. .

[4] K. Iwama, “A canonical form of vector machines,” Technical
Report COMP88-22,Institute of Electronics and Communica:
tion Engineers of Japan, 1988

[5

K. Iwama, “Exponential Speedup by Vector Operations,” Bul-
letin of the Institute of Computer Sciences, Kyoto Sangyou
Univ., vol. 5, 1988.

[6

&2

V. Pratt and L. Stockmeyer, “A characterization of the power
of vector machines,” J. Comput. Syst. Sci., vol. 12, pp. 198-221,
1976. ’

[7] 1. Simon, “Division is good,” Proc. 20th IEEE Symp. on Foun-
dations of Computer Science, pp. 411-420, 1979.

—103—

sn(0) sa(l) (0 a()) 2
. ' e et t frmseeene - —
21(0)
'
|
sp(1
(1) 2
- ! 2
yous
Ay S -
92" 2" 2"
N
Y
i
2,
2
Fig. :
ig.1 z,
Sn(0) Sa(1) Sa(0) Sa(1) Sk(0) -
+ + + t umekREELY : 2
4<T(n)+3> Fig.2
I [@<T+1>7
3
50 i i
<T(M+2>¢<T(n+1>
J<T(m)+2>
A<T(MF1>
>
dSTOES> s
d<T(n)+2> - (d<T(n)+2>)2
] d<T(n)+1>
Sa(1) .‘
4<T(n)+3>
d<T(n)+2> . <T(n)+1>
+<
N 4<T(n)42> g<hti>
4+ d<T(n)+1> " " g<h>
L d<T(n)+l>
*_
Fig.3 Fig-4
. 2T(n)+ A(n)~3 9T(n)+A(n)~2
PT(A(n) —.2)/ 2T(m)+A(m) =1 2T(n)4 A(n)
A<T(n)41> PTiAL) - 1) rraen f
s =)
‘ : A<T(R)+A(n)41>
— . A<T(n)F A(R)>
(a<T 2
(d<T(n)+2>) - d<T(n)+ A(n)+1> g<T(n)+A(n)>
E 4 L . I<T(AFA(R)> | J<T(m+A(n)—1>
4
‘-‘- a<T>
- (d<T(n)¥2>)2 -2
H d<T(n)+3> J<T(n)+1>
i @<y AST(RAIHI> <T(+A(D> G<T(aJ+A(n)-1>
1 . I<T(MFA(RI> g<T(RtA(m—1> g<T(r)+A(R)-2>
Fig.5
g Fig.6

—104—

BACEIRIFR

