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Instantaneous Message Passing
in Asynchronous Distributed Systems

Terunao SONEOKA

NTT Software Laboratories
Midori-cho 3-9-11, Musashino-shi, Tokyo 180, Japan

Abstract Asynchrony (unbounded message transmission delay) complicates the design of protocols for distributed
systems. For simplifying the design task, this paper proposes an interprocess communication mechanism for simulating
instantaneous message passing. This mechanism has the following properties. 1) It is applicable without deadlock
for the model where each process acts as both client and server. 2) It allows each sender to send a message without
coordinating with the receiver. 3) It requires only an ACK for each user message if there is no possibility of deadlock;
even if deadlock occurs, at worst k(k +1)/2 system messages are transmitted for & user messages in a deadlock cycle.
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1 Introduction

Distributed systems with no known bound on relative process
speeds or message transmission delays are called ‘asynéhronous.
Asynchrony makes coordination between processes difficult, and
complicates the design and verification of protocols for such sys-
tems. These difficulties can be reduced if one can assume that
every message passing is achieved instantaneously.

Typical coordination errors in asynchronous systems are illus-
trated as follows.

o An executive manager A first sends engineer C' a message
my “Please do a job X”, and in an hour sends message mgy
ordering a division head B to check C’s progress on the job
X. On receiving mq, B asks C’s progress by sending message
mg3. However, when C receives m3, C has not yet received
m;y and is confused about what B asks. This situation cor-
responds to the violation of causal ordering in [2, 9] (see Fig.

1 (a)).

A sends his girl friend B a message m; “I will pick you up at
your office at 5:00 PM”. Concurrently, B sends A a message
my “We will meet at the theater at 5:00 PM”. Thus, A goes
directly to the theater, but B keeps waiting for A at her
office. This situation corresponds to the process collision in
[6] (see Fig. 1(b)).

An executive manger A first sends division head B a mes-
sage m; “Sorry, I have changed my mind. We will have a
meeting at 1:00 PM”. Concurrently, B send engineer C' a
message ma “Today’s meeting is put off”. After sending m;,
A sends C a message my “I would like to hear your opinion
at today’s meeting”. However, C receives my before receiv-
ing m3. Thus, C misunderstands that the meeting is put off
(see Fig. 1(c)).
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Figure 1: Examples of coordination errors in asynchronous dis-
tributed systems

All of these errors can be easily removed if every message pass-
ing is achieved instantaneously. Unfortunately, one cannot im-
plement a system with instantaneous message passing. Along the
lines of the abstraction techniques simplifying the design task in
[8], this paper proposes a mechanism for simulating instantaneous
message passing in distributed systems. Here, simulating means
that each process in a system cannot distinguish whether or not
the system is using an ideal instantaneous message passing.

This paper first defines the concept of “indistinguishable”. This
concept gives a taxonomy of synchronous message passing mech-
anisms and clarifies that the proposed mechanism - which is in-
distinguishable from instantaneous message passing - achieves
higher synchrony than the causal ordering in [2, 9]. We then
proposes an algorithm for it. This algorithm is deadlock-free and
attains fairness. It also allows an n-process system to have n —1
concurrent messages. It requires only an acknowledgement mes-
sage for each user message if there is no possibility of deadlock.

When deadlock occurs with k& user messages in a deadlock cycle,
at worst k(k + 1)/2 system messages are transmitted; the order
of this number is equal to the best known message complexity of
deadlock detection algorithm[10]:

The related communication primitives are the remote proce-
dure call (RPC) and the synchronous message passing for the
generalized alternative command suggested in CSP[3] (referred
as rendezvous in [1]). Although the RPC is widely used for the
client/server model, it might bring about deadlocks in the part-
ner model, where each process acts as both client and server. The
proposed instantaneous message passing mechanism is applicable
without deadlock even for the partner model. In the rendezvous,
on the other hand, before executing a message passing, the sender
and receiver must both be ready. Thus, the concurrency of the al-
gorithms for rendezvous(cf. [1]) is low in the sense that at most &
processes can send messages concurrently in an n-process system.

The rest of the paper is organized as follows. Section 2 presents
the model of distributed systems and the related definitions. Sec-
tion 3 proposes a message passing mechanism indistinguishable
from instantaneous message passing and also clarifies its position
in a synchronous message passing taxonomy. Section 4 proposes
an algorithm for this mechanism and proves its correctness, fair-
ness, and freedom from deadlock. This section also evaluates the
complexity of this algorithm. Section 5 shows an application to
the resolution of process collision in communication protocols and
gives a preliminary analysis of the run-time overhead.

2 Model and definitions
2.1 Model

We consider an asynchronous distributed system of n processes
that communicate through message passing. For the sake of sim-
plicity, we assume that processes are fully connected. By asyn-
chronous, we mean that there is (1) no global clock, (2) no bound
on message transmission delay, and (3) no assumption about the
relative speed of processes. We assume that (1) processes and
channels ‘are reliable (every message transmitted is eventually re-
ceived), (2) channels are FIFO, and (3) each process has a distinct
ID. Let P = {1,...,n} be the set of process ID’s in the system.

The system consists of two parts: an application layer with user
processes, and a message-passing layer with control processes and
channels. For sending a message m to another user process g, user
process p issues sendf(m) (or, shortly, sendy(m)) to its control
process ¢,. Upon receiving it, ¢, transmits m to another control
process ¢, (denoted by transi(m) or, shortly, trans,(m)) if some
condition is satisfied. On receiving the message m (denoted by
recvb(m) or, shortly, recvy(m)), ¢q delivers m to its user process
g (denoted by delv?(m) or, shortly, delvy(m)) if some condition
is satisfied.

Besides send event and deliver event, user processes execute
internal event. Send event and internal event are the results of
actions autonomously taken by the process. Deliver event is not
explicitly controlled by the process. Let us assume that each
event takes exactly one local time unit to execute.

2.2 History

To define “simulate”, we prepare the following concepts. A spe-
cific execution of a system is described by a history. A his-
tory H consists of the following four history functions; H =<
C,Q,A,B >.

o The clock history function C maps from processes P and real
times R to clock times N; i.e., C : P x R — N. C(p,t) is
the time on p’s clock at real time ¢. Since a process’s clock



never decreases, clock history functions satisfy the following
condition:

CC :¥p € PVi1 13 € R [t <t = C(p,t1) < C(p,t2)].

The state history function @ maps from processes and clock
times to process states S; i.e.,, @ : P X N +— §. Process p is
in state Q(p,c) when its clock shows ¢. .

The event history function A maps from processes and clock
times to events E; i.e., A : P X N — FE. This is a partial
function, since processes do not have events at every instant
of clock time. Process p has event A(p,c) when its clock
shows c.

The channel history function B maps from pairs of processes
and real times to message sequences; i.e., B: PX PX R —
M?*, where M is the message set and s is the channel size.
Yor example, if B(p, q,t) = {m1, my}, then the channel from
¢ to p contains messages m; and mo.

Two histories Hy =< C1,Q1,41,B1 > and H; =<
C3,Q2, Az, B2 > are equivalent, denoted by Hy ~ Ha,if Q1 = Q2
and A; = Ag; otherwise, we denote Hy o Hy. Informally,
Hy; ~ H, if in both histories each process executes the same
events from the same states at the same local times. Since pro-
cesses can observe neither real time (they can only observe their
local clocks) nor the contents of channels, they cannot distinguish
H, from H,.

A distributed system is identified by the set of histories that
correspond to all executions of the system. Each process p runs
a local protocol, (8,,1I,). &, determines the next state of the
process based on its present state and the event executed; i.e.,
6y : S X E+— §. If pis in state s and event a occurs, then it
changes to state 6,(s,a). Given p’s clock and state, II, specifies
the next event candidates executed by p;i.e., I, : NX§ 2F If
pis in state s at local time ¢, then IL, specifies that it executes an
event in IT (¢, s). A set of local protocols, II = {(6,,1I,)|p € P},
is a protocol.

History H =< C,Q,A, B > is consistent with protacol II if

Vpe PNce N [ A(p,c) is defined = ‘
Qpic+1) = 6,(Q(p, ¢), Alp; )
AA(p, ) € Tiy(c, Q(p,¢))]

This definition leads to the following[8]:

Lemma 2.1 If Hy ~ Hy and Hy is consistent with protocol 1T,
then Hy is also.

A distributed system problem is specified by a predicate X on
histories. This predicate is the problem’s specification. Protocol
11 solves a problem with specification ¥ in system S if whenever
processes Tun II in §, the resulting history satisfies Z.

Many problems in distributed systems have specifications that
make no reference to real time. For example, one can specify
that transaction execution in a distributed database is serializable
without referring to real time. This notion is formalized with
internal specifications. A specification ¥ is internal if for any two
equivalent histories Hy ~ H,, Hy satisfies X if and only if Hy
does. A specification that does not refer to real time or to the
channel contents must be internal.

2.3 Relations between events and messages

The “happens-before” relation “—” is defined on the set of events
of a system by Lamport[5] as follows.

Definition 2.1 Event e; happens-before event ey, denoted by
e1 — eg, iff one of the following conditions is true.

1. ey and ey occur on the same process p, and ey précedes ey in
its local time (denoted by e; > e3).

2. ey is the sending of a message and ey is the delivery of that
message.

8. transitive closure of 1 and 2.

Note that e # e1 for any event ey (irrefleziveness).
Further, we define the “exists-before” relation “>” on the set
of messages in a system as follows.

Definition 2.2 -Message my exists-before message ma, de-
noted by my > maq, iff one of the following conditions is true.

1. my and mgy are sent by the same process p and sendp(my) EN
sendp(mg) (denoted by —my =, —m2 and called (—,—) re-
lation). '

2. my and my are respectively sent and delivered by the same
process p and sendp(my) B delvy(my) (denoted by —my »p
+m2 and called (—,+) relation).

3. my and mg are respectwely delivered and sent by the same
process p and delvy(my) B send,(ms) (denoted by +my >-p
—my and called (+,—) relation).

4. my and my are delivered by the same process p and
delvy(mi) B> delvp(mg) (denoted by +mq =p +m2 and called
(+,+) relation).

5. transitive closure of 1, 2, 3, and 4.
Especially, we denote m; >, m; iff one of the above conditions

1,2, 3, or 4 holds.

3 Taxonomy of synchronous
passing

message

This section proposes several categories of synchronous message
passing. We consider systems with different message passing:
S(M) denotes a system using a message passing M. To clarify
the relationship between a system S(M P;) using a message pass-
ing M P; and a system S(M P;) using a distinct message passing
MP;, we define the following terminology: S(MP1) is indistin-
guishable from S(M P,), denoted by S(MP;)< S(M Py), (or sim-
ply, M P; is indistinguishable from M Py) if

VH € S(MP)AH' € S(MPy)[H ~ H').

Clearly, S(MP)) Q S(MP,) if S(MP;) C S(MP,); that is,
H e S(MP) = H € S(MP,). It is said that S(MP1) is dis-
tinguishable from S(M P,), denoted by S(MP) A S(MP,), if
3H € S(MP)VH' € S(MP,)[H + H'].

We will consider the following ideal synchronous message pass-
ing categories I, I3, and Ia.

I;: A, g-consistency. For any channel from process p to pro-
cess g, the message transmission delay of that channel (ie.,
the time interval between send,(m) and delvy(m)) is always
equal to the same value A, (> 0).

I Ap-consistency. For any process p, the message transmis-
sion delay from p to any other process g is always equal to
the same value A, (> 0).



I3: Instantaneous Message Passing. For any message m,
its transmission delay is always equal to zero; that is, every
message is transmitted instantaneously.

Also, the following actual message-passing methods M P,
MP,, and MP, are considered. The algorithms for causal deliv-
ery (M P;) are proposed in [2, 9]. An algorithm for no message-
crossing (M P,) will be proposed in the following section.

MP,: FIFO. If sendl(m) LS sendd(m'), then delvf(m) 4
delvf(m').

MP,: Causal ordering. If sendy(m) — sendj(m’), then
delvp(m) = delvy(m').

MP.: No message-crossing. There is no pair of messages m
and m’ such that (m = m') A (m' > m).

The following relations are satisfied (see Fig. 2).

/7
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1 : Ap.q -consistency MP, :FIFO

I2 : Ap -consistency MP,: Causal ordering

15 Instantaneous Message Passing  MP; : No message-crossing

Figure 2: Relations among synchronous message-passing cate-
gories

Theorem 3.1 1. S(I1) C S(MP,). S(MPFP.) AS(h).
2. 5(I2) C S(MPB,). S(MPy) AS(LR).

. S(I2) € S(I1). S(I) AS(I2).

. S(MP) C S(MP,). S(MP,) AS(MP).

. S(L) AS(MPB,). S(MPy) AS8(L).

. S(Is) € S(I2)- S(I2) AS(I3)-

. S(Is) C S(MP.). S(MP;)d 5(I3).
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Proof:

1. Consider any history H € S(f1). Let m; and my be
any two messages from process p to process g such that
sendy(m1) B sendy(mz). Let A(p,c1) =" sendy(m1)”,
A(p,c3) =" sendy(my)", A(q, c3) =" delvg(m1)”, A(g,ca) ="
delvg(my)", and ¢; (i = 1,...,4) be the real time each event
occurs such that C(p,%;) = ¢; (i = 1,2) and C(g,%;) = &
(i = 8,4). From ¢; < ¢z and dlock condition CC, we get
11 < tg. Since H € S(Il), i3 =11+ Ap_q and £y = 12 + Ap'q.
Thus, t3 < t4. From clock condition CC and c3 # ca,
we get ¢z < c4; that is, delvy,(m1) 2 delvg(mg). There-
fore, H € S(MP,). On the other hand, let us consider

H! € 5(I) such that H] ~ Hy because we get Ay, > Ap,
from the relations among messages m;, my, and m3, and we
get the contradiction A, g > A, from the relations among
messages my, M5, and meg.

2. Similarly, it is easy to show that H € S(I3) = H € S(MPF;).
On the other hand, let us consider Hy € S(M P;) shown in
Fig. 3(b). For Ha, there is not an Hj € §(I3) such that
H} ~ H, because we get A, > Ay from the relations among
messages my, Mg, ma, and my, and we get Ay > A, from
the relations among messages ms, mg, My, and mg.

3, 4. Tt is clear that H € (L) == H € S(f1) and H €
S(MP;) = H € S(MP,). On the other hand, Hz € S(I1)
(or S(MP,)) shown in Fig. 3(c) is a counterexample of
S(I) 4 5(5) (S(MP,) A S(MPE)).

5. Hs € §(I) shown in Fig. 3(c) is also a counterexample of
S§(I1) 4 S(MP,). On the other hand, Hz € S(MFP) shown
in Fig. 3(b) is also a counterexample of S(MP,) 4 S(I1),
because we get Apr + Ars > Ap g+ Ag,s from the relations
among messages my, Mz ,M3, and my, and we get Ay .+ A5
< Apg + Ag,s from the relations among messages ms, M,
myz, and mg.

6. It is clear that H € S(I3) = H € S(3). On the other hand,
consider Hy € S(I2) shown in Fig. 3(d). For Hy, there is
not an Hj € S(I3) such that Hj ~ Hy.

7. Consider any H € S(I3). Every message in H can be partially
ordered according to the real time instant ¢ when its message
passing occurs. Thus, it is clear that there is no pair of
messages m and m' in H such that (m »= m/) A (m' > m).
On the other hand, consider any H' € S(M F.), where every
message can be partially ordered according to the relation
m > m'. Let us assign any real time ¢; € R to message m;
such that m; > m; = ¢; < ¢;. From this, it is clear that the
clock of any process p, C(p,t), satisfies the clock condition
CC; that is, t1 < 3 = C(p,t1) < C(p,t2). Thus, there
exists H" € S(I3) such that H' ~ H”.

m2

m3

(© H, @ H,

Figure 3: Counterexamples

Suppose that a protocol designer derives and proves a protocol

H, € S(MP,) shown in Fig. 3(a). For Hy, there is not an for a system with an ideal synchronous message passing I. That




is, the designer proves that all histories in S(I) consistent with
this protocol satisfy a given specification . If the protocol is run
in a different system that does not have the ideal message passing
1, then it might no longer satisfy . The following theorem shows
that if ¥ is internal and if a system uses the message passing M P
that is indistinguishable from I (i.e., system S(M P) such that
S(MP) < S(I) is used), then the protocol remains correct.

Theorem 3.2 Let & be an internal specification. Let II be a
protocol that satisfies ¥ when run in a system with an ideal syn-
chronous message passing I, S(I). Then II also satisfies . when
run in a system S(M P) that is indistinguishable from S(I).

Proof: By the assumption on II, any H' € S(I) that is consistent
with II satisfies . Consider an H € S(M P) consistent with II.
Since M P is indistinguishable from I, there is an H' € §(I) such
that H' ~ H. By Lemma 2.1, H' is also consistent with II. By
the assumption, H' satisfies . Since % is internal and H' ~ H,
H also satisfies I.

]

4 Algorithm simulating instantaneous

message passing

This section shows an algorithm with no message-crossing
S(MP,) for simulating instantaneous message passing S5(I3).
Here, the message-passing layer of a system is considered, and
control processes are simply called processes. On receiving
sendi(m) from a user process up, the control process p sets
willsendy(q; m) := true. .

4.1 Algorithm

Asin Fig. 1(a),(c), if a process can send messages m; and m; suc-
cessively, m3 might be received earlier than m; or later than my
because of unknown message transmission delays, which brings
about message-crossing. Our algorithm uses an acknowledgement
message A CK, which is similar to the RPC, to control the suc-
cessive sends. On sending a message m to process ¢, process p
changes its state from NORMAL to WAIT. It thereby becomes
unable to send any successive messages until receiving the ACK
of m, by which p changes its state back to NORMAL. On receiv-
ing a message m from p, process ¢ delivers it and transmits the
ACK to p if its state is NORMAL; otherwise, g waits to transmit
the ACK until its changes to NORMAL. When its state changes
to NORMAL by receiving the ACK from g, process p delivers
every message m' received during the WAIT state and transmits
the ACK of m’ to its sender.

If two processes p and ¢ send messages to each other concur-
rently, however, they have to wait forever before transmitting the
ACK; that is, deadlock occurs. To resolve this, we use a dead-
lock detection algorithm similar to that proposed by Mitchell and
Merritt[7]. The proposed algorithm is modified from theirs to sat-
isfy the following fairness condition without using an additional
phase.

Fajrness. If process p continually wishes to send a message to
. another process g, then p will eventually be able to send a
message to q.

In the deadlock detection algorithm, the system can be de-
scribed by the wait-for graph (WFG), a directed graph in which
each node represents a process and a directed edge (p, ¢) indicates
that g blocks p by receiving a message m from p while its state
is WAIT. Note that the maximum outdegree of the WFG is one,
since each process can send only one message before receiving its

ACK. A system is deadlocked when a cycle forms in its WFG. In
the proposed algorithm, probes are sent in the direction opposite
the edges in the WFG, where a PROBE contains a natural num-
ber unique to the nodes in the WFG. Simply, when the PROBE
comes back to its initiator, the initiator can declare the deadlock.
An important feature of this algorithm is that only one process in
a cycle will detect the deadlock, simplifying deadlock resolution.

FEach node is given two labels: a private label, which although
not constant is unique to the node at all times, and a public la-
bel, which can be sent to other processes and need not be unique.
A process is represented as (u/v) where » and v are respectively
the public and private labels. For each process, initial private
and public labels are identical. The WFG is maintained by the
four state-transitions shown in Fig. 4, where z = inc(u) and
function ine(u) yields a unique label greater than u. Labels not
explicitly mentioned remain unchanged. The modification point
from the algorithm in {7] is that the process’s private label is in-
cremented locally (without using the other process’s label) when
it is activated by receiving the ACK.

P q
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Figure 4: Deadlock detection algorithm

Transmit

o Block creates an edge in the WFG if process g receives a
message from p when its state is WAIT. Note that ¢ knows
the public label of p on receiving a message from p which
piggybacks it.

Activate means that a process in WAIT state receives the
ACK and changes its state to NORMAL. At that time, pro-
cess p increments its private label and also changes its pub-
lic label to this new value. The private label of each node
is always unique to that node and nondecreasing over time.
These two properties can be achieved by representing labels
as pairs of sequence numbers and process IDs, and < can be
chosen to, be lexicographical ordering.

¢ Transmit propagates larger labels in the direction opposite
the edges by transmitting a PROBE.

Detect means that the PROBE with the private label of
some process has made a whole round in a cycle, indicating a
deadlock. Since process ¢ knows the private label of p (which
is equal to its public label) on receiving a message from p, ¢
can detect the deadlock. On detecting it, ¢ transmits NACK
to p and also transmits ACK to every other process r in the
cycle.

Figure 5 describes the instantaneous message passing (IMP)
algorithm. Each process p has a queue @, for storing every mes-
sage m received during a WAIT state, as well as its sender’s ID



¢ and public label public,. Each element of @, is denoted as
(g : m,public,). For a queue @, a function eng(Q,z) adds an
element = to the end of @, a function deq(Q) returns the first
element of @ and removes it from @, and a function del(Q,q)
deletes the element with the sender’s ID of ¢. For an element
e = (g : m,publicy), a function mes(e) returns the message of
e, m, and the function ID(e) returns the sender’s ID of ¢, ¢. A
function chgl(Q, ¢, newpubd) changes the label of the element with
the sender’s ID of ¢ to newpub. The PROBE message carries the
plist, which collects the process IDs in the cycle from the first
receiver of the PROBE, and which will be used for transmitting
the ACKs when the deadlock is detected. plist[i] indicates the
ith process’s ID of the plist. For the plist L, a function add(L,z)
adds an element « to the end of L.

Further, the algorithm can be optimized for the deadlock cy-
cle with only two processes. On transmitting a message m to
process g, process p sets waitfor := ¢. On receiving another
message (m' : publicy) from ¢ during a WAIT state, process
p executes enq(Q,, (¢ : m/,publicy)). Then if waitfor = ¢
and public, > publicy, p cancels the last send,, delivers every
message in @, transmits (ACK*,p) to ¢ and (ACK,p) to the
other senders, and changes its state to NORMAL. On receiving
(ACK*,p), q delivers every message in @, except that from p.
This modification can reduce the number of system messages for
the deadlock cycle with two processes.

4.2 Correctness proof

First, we will prove that this algorithm prevents message-
crossing.

Theorem 4.1 If H is any history using the above algorithm for
message passing, then H € S(MP,): i.e., there is no pair of
messages m and m' in H such that (m = m') A (m' > m).

Proof: Let us assume that there is a pair of messages m and m/
in H such that (m > m') A (m' > m); i.e., there is a sequence
of messages MS : m = mg,my,ma,...,mp~y = m' such that
Vi€ {0,1,2,...,k — 1} : my 3p, Mgy (mod k)+

If every relation m; »p; mit1 in MS satisfies the (—,+) re-
lation of the exists-before relation (see Fig. 6 (a)), then there
is a process p; with the maximum private label among the pro-
cesses p; (j = 0,1,...,k — 1) in M S whose sending message m;
is cancelled by NACK.

If every relation m; >p; mit1 in MS is the (4,—) relation,
then —my — +mg — —My ~—> ... = ~Mp_1 — +Mk_1 — —Mo;
this contradicts the irreflexiveness of the — relation.

Otherwise, M P has a (+,+) relation +m; >, +mip1 (see
Fig. 6(b)). If you trace MP in its direction from mit1, you
will find the following two types of relations; (—,+) relation
(—mit1 Spiyy +miya) or (—,—) relation. Let mj >p; mjt1
be the first (—,—) relation (—m; >p; —m;11) found by tracing
from m;yi. By further tracing M P, you will find the following
two types of relations; (+,—) relation (+m;41 >p;y; =Mj42) OF
(+,+) relation. Let my >p, mgq1 be the first (+,+) relation
(+mg >p, +mp11) found by tracing from mj1. Since the algo-
rithm prevent process p; from sending m;4; before receiving an
ACK, which means p;’s knowledge of the delivery of mit1, we get
delvy,(miy1) — sendy;(mjs1) — delvy, (mgy1). Tracing further
from my41 and using similar discussions, we can get delvp, (met1)
— delup, (miy1). Thus, delvy,(mig1) — delvp,(miy1); a contra-
diction of the irreflexiveness of the — relation.

m]

In a similar way to that in [7], we prove that this algorithm is
free from deadlock. This proof is in Appendix A.

/* transmit message m to ¢*/
if ( state, = NORMAL A willsendy(g; m)) then
{ trans](m : publicy); state, :== WAIT; }

/* receive message m from ¢ */
On receiving message (m : public;) from ¢
if (state, = NORMAL) then
{ deliver,(m); trans{(ACK,®); }
if (state, = WAIT) then
{ enq(Qp, (g : m, public,));
if (public, > publicy) then
{ transd PROBE(public,,); chgl(Qp, ¢, publicy)); }
if (public, = publicy) then
{ del(Qyp, q); transi(N ACK, plist[1]);
for every process plist[i](# p)
transt M ACK, plist]s + 1)) ;
transb(ACK,0) ; }

/* receive ACK */
On receiving (ACK,plist[i])
while (@, # @)

{ e := deq(@y); ¢ == ID(e); delv,(mes(e));
if(q # plist[i]) then transi(ACK,0) ; }
state, := NORMAL; private, := inc(private,);

public, := privatey;

/* receive NACK */
On receiving (NACK, plist[1])
cancel the last send,;
while (@, # 0)
{ e := deq(Q,); ¢ := ID(e); delv,(mes(e));
if (¢ # plist[1]) then transi(ACK,0) ; }
state, ;== NORMAL;

/* receive PROBE for detecting deadlock */
On receiving PRO B E(publicy,plist) from ¢
public, = publicy; add(plist, p);
for every sender 7 of the element in @,
{ if (public, > public,) then
{ trans} PROBE(public, plist); chgl(Qp, r,publicy,); }
if (public, = public,) then
{ del(@,,7); transy(N ACK, plist[1]);
for every process plist[il(# p)
transt U (ACK, plist]i + 1]) ;
transf(ACK,0) ; }

Figure 5: IMP algorithm for control process p

Tigure 6: Cases of message-crossing




Theorem 4.2 If a cycle of k nodes forms and persists long
enough, ezactly one of these nodes will execute the Detect step
of the algorithm. This will happen after k — 1 consecutive Trans-
mit sleps.

Further, we can prove that only genuine deadlock is detected
in the same way as that in [4].

Theorem 4.3 If a deadlock is detected, a cycle of blocked nodes
exists.

Finally, we will prove that the algorithm satisfles the fairness
condition.

Theorem 4.4 The above algorithm satisfies the fairness condi-
tion.

Proof: If the edge from p to ¢ is in a deadlock cycle and private,
is the largest private label in it, then the send event of p to ¢ is
cancelled. On detecting the cycle, though the private label of p
remains the same value, those of the other processes r in the cycle
- including g - are increased by a function ine(r). Thus, even if
the further trials of send from p to ¢ make deadlock cycles, the
private label of p will eventually become smaller than that of ¢,
and p will be able to send a message to q.

m]

4.3 Complexity

We consider here the message complexity, time complexity, and
concurrency of the above algorithm.

o Message Complexity: As the message complexity Cpr(A)
of an algorithm A, we will use the maximum number of addi-
tional system messages transferred to send k user messages in
a deadlock cycle. Since at most k(k—1)/2 PROBE messages,
(k—1) ACK messages, and one NACK message are required,
the message complexity of the IMP algorithm, Car(IM P),
is k(k +1)/2.

e Time Complexity: As the time complezity Cr(A) of an
algorithm A, we will use the maximum interval of a WAIT
state (i.e., the maximal interval from a transmit event of user
message to the instance the successive transmit event can oc-
cur) when the upper bound on interprocess communication
delay can be assumed to be 7. The time complexity of the
IMP algorithm, Cr(IMP), is 2kT, where k is the number
of messages in a deadlock cycle. This is because the delay
between the first transmit event and the last receive event of
the k£ messages in the deadlock cycle is bounded by k7', the
delay between the last receive and Detect event is bounded
by (k—1)T, and the delay between the Detect event and the
receive event of NACK is bounded by T.

Concurrency: As the measurement of the concurrency
Cc(A) of an algorithm A, we will use the maximum number
of user messages concurrently transferred in an n-process sys-
tem. It is clear that the concurrency of the IMP algorithm,
Co(IMP), is equal to n—1. This is higher than that of every
algorithm for the rendezvous REN since Co(REN) = n/2

([1] etc.).

5 Application and Discussions

The instantaneous message passing is applicable as a mechanism
for resolving process collision[6] in communication protocols. A
major concern of this mechanism is its run-time overhead. In
this section, we use a simple example to demonstrate that some

overhead will be required no matter how asynchronism is resotved
in a protocol, and that the overhead of the IMP algorithm is
reasonable.

Traditionally, coordination errors in communication protocols
are resolved during the design phase. Figure 7(a), adapted from
[11], is the simplified connection management protocol specifica-
tion. Two processes p and- ¢ use messages EST and TRM for
requesting to establish and to terminate a connection. When
processes p and ¢ simultaneously send EST to each other, col-
lision occurs and both processes will receive an EST at state
S,. However, since the reception of EST is not specified at S,
this represents an error in this protocol (unspecified reception).
A modification, also from [11], is shown in Fig.7(b). In this mod-
ification, the unspecified reception error is resolved in favor of p
by adding extra states and transitions, which represent a form
of overhead. In this new specification, if a collision does not oc-
cur, an EST and an ACK will be sent in order to establish a
connection; otherwise, two EST messages and an ACK will be
exchanged.

In contrast, when the IMP algorithm is used, an EST and an
ACK will be transmitted if a collision does not occur; otherwise,
two EST messages, one PROBE message, and one NACK will be
exchanged (an ACK message from itself may be neglected). If the
algorithm is optimized for the deadlock cycle with two processes,
then two EST messages and an ACK will be transmitted; the
number of messages exchanged using the IMP mechanism is the
same as that using the traditional approach.

With the traditional approach, design modification is difficult,
and the modified design may be more complicated and difficult
to understand. It is also expected that in most cases only a
few process might constitute a deadlock cycle. Though cases
with three or more processes in a deadlock cycle must be further
studied, with these facts in mind, it seems that the run-time
overhead of the IMP mechanism is reasonable.

A similar approach has been proposed as a self-synchronizing
commaunication protocol (SSCP), which uses each specification
explicitly[6]. The IMP mechanism is superior to this approach
in the following points: (1) concurrency (in the case of deadlock,
at most one request message is selected and the others are can-
celled in SSCP), and (2) memory requirement (since SSCP needs
backtracking which cancels plural send events, each process needs
keep its trace in its memory).

p q
-q(EST) ; +q(EST) +p(EST) ; -B(EST)
+q(TRM) -p(TRM)

Figure 7: Counterexamples



6 Conclusions

This paper presents a mechanism for simulating instantaneous
message passing in asynchronous systems. Section 3 shows that
no message-crossing is indistinguishable from instantaneous mes-
sage passing, and clarifies that it achieves higher synchronization
than the causal ordering. This section also clarifies its useful-
ness for internal specifications. Section 4 shows an algorithm
to achieve no message-crossing. This algorithm allows an n-
process system to have n — 1 concurrent messages, and it satisfies
deadlock-freeness and fairness conditions. This algorithm also
requires only one ACK for each user message if there is no pos-
sibility of deadlock. When deadlock occurs with & user messages
in a deadlock cycle, k(k + 1)/2 additional messages are required
in the worst case; the order of this number is equal to the best
known message complexity of deadlock detection algorithm. Fur-
thermore, the maximal interval of a WAIT state is bounded by
2kT, where T is the assumed upper bound on interprocess com-
munication delay.

The implemental study of the instantaneous message passing,
which combines it with a time-out method by considering sta-
tistical data of message transmission delay and the number of

chained messages, remains for further study.
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A Proof of Theorem 4.2

Lemma A.1 If there is an edge from p to q in WFG as in
p(%) — () and u > w, then u = v.

Proof: The definitions of the Activate, Detect, and Block steps
guarantee that this will be true when an edge first forms. The
only way the label « will change during the lifetime of that edge
is if a Transmit step is executed, and that will not happen as long
as u > w and w is nondecreasing during the life time of that edge.
This is because that edge will have been killed by the Activate
step before the label w will be changed by the Activate step to

another edge incident from gq.
: a

Lemma A.2 The mazimum public label value in a cycle is equal
to the private label of one and only one node in that cycle.

Proof: Unless all the public labels have the maximum value
when the last receive event occurs to form a cycle, at least one
node with maximum public value must precede a node with a
lower public label. Thus by Lemma A.1, the private label of the
preceding node must be the same as the maximum public label
value. Since no Activate operation can be performed by nodes in
a cycle, this will remain true throughout its lifetime. Otherwise,
it is clear that the private label of the sender of the last receive
message is equal to the maximum public label. Private labels are
unique, so only one node can obey this condition.
a
Thus, the proof of Theorem 4.2 is clear. If a cycle forms, k¥ —1
Transmit steps will carry the largest public label value all the
way around the cycle. By Lemma A.2, this means one and only
one node will eventually execute the Detect step.
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