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Abstract: Though several approaches have already been proposed for the
semantics of concurrent logic programming languages, they mainly con-
cern for the flat subset of the languages, where only the system-defined
predicates appear in the guard part. This paper proposes an operational
semantics for full GHC. Our approach is based on the extended substi-
tution involving solved substitution and suspended substitution, and the .
extended unification algorithm. We introduce the concept of variant form
variables and define two operations of plus-operation and minus-operation.
Two important notions of solved substitution and suspended substitu-
tion are also defined. Then we describe an extended unification algorithm
which can deal with GHC head-unification, guard-unification and body-
unification in a uniform way. Based on these concept, operations, notions
and algorithm, we propose an operational semantics for full GHC.



1 Introduction

Various kinds of concurrent logic programming lan-
guages have been proposed so far[Shapiro 8§9]. PAR-
LOG [Clark 85], Concurrent Prolog [Shapiro 83] and
GHC [Ueda 85] are examples of such languages.
Though there are differences, these languages are very
similar to each other.. Horn clauses with guards are
used for defining predicates, goals can be executed
concurrently, and they have a synchronization mech-
anism between goals.

Logic programming is often claimed that it is well-
founded in semantics [Lloyd 84]. However, this was
not true for concurrent logic programming languages.
It seems that the language features, such as guard,
commit, suspension and concurrency, have prevented
the development of semantics as a natural extension
of Prolog semantics.

Though several approaches have already been
proposed[Ueda 90] [Levi 87] [Murakami 90a] [Gerth 88]
[Murakami 90b][Maher 87], they mainly concern for
the flat subset of the languages, where only the
system-defined predicates appear in guard part.

In this paper, we propose an operational seman-
tics for full GHC. Our approach is based on the ex-
. tended substitution (involving solved substitution and
suspended substituiion) and the extended unification
algorithm. In the following section, we introduce the
concept of variant form variables and extend the no-
tions of ierm, GHC clause, program and goal to in-
clude variant form wvariables. In Section 3, we de-
fine two operations, i.e., plus-operation and minus-
operation, on these extended structures. We also give
two important notions of solved substilution and sus-
pended substitution, then describe an extended unifica-
tion algorithm which can deal with head-unification,
guard-unification and body-unification in a uniform
way. In section 4, we propose an operational seman-
tics for full GHC, based on transition relation ol states
by using the extended unification algorithm. Finally,
we would like to state some concluding remarks.

The paper assumes a basic knowledge of concurrent
logic programming language GHC[Ueda 85] and some
semantics aspects of Prolog[Lloyd 84].

2 Preliminary Definitions

This section gives some preliminary terminologies
and definitions used in the whole paper.

We use VARS to denote a set of all the variables
appearing in a system.

In addition to the variables belonging to VARS, we
also introduce the concept of wvariant form variables,

which is related to our operational semantics for full
GHC defined later:

Definition 1 (Variant Form Variable)
Let X € VARS. The variant form variables of
are defined as follows:

e z* is a variant form variable of z;

o if y is a variant form variable of 2, then y* is also
a variani form variable of z, and y* is a variant
form variable of y. B

*

For example, assume a variable z € VARS, z*, z™*,
z*** are called the variant form variables of z, and
z*** can be called a variant form variable of z, 2" or
z**. So there exist many variant form variables corre-
sponding to a single variable or variant form variable.
A variant form variable may be both a variant form
variable of a variable z in VARS and several other
variant form variables of z.

e

Definition 2 (Original Form Variable)
z is said lo be an original form of y if z € VARS
and y is a variant form variable of 2. B

For example: Let 2 € VARS. 27, 2™, 2™, ..,
have the only one original form variable z.

Variant form variables and original form variables
are used in GHC operational semantics defined later.
With these concepts, we can easily extend unifica-
tion algorithm of pure logic programming into GHGC,
and can easily deal with head-unification, guard-
unification and body-unification in a uniform frame.
In a unification process or some phase of a compu-
tation process, a variant form variable is treated as
a constant. Number of * marked in an original form
variable records such a phase.

All the variant form variables with their original
form variables in VARS constitutes a set, here we use
VARS™ to denote it.

Furtherly, the predicate symbols occurring in a sys-
tem are partitioned into two sets:

e Pg, which contains all the system-defined predi-
cate symbols;

e Py, which contains all the user-defined predicate
symbols.

We stipulate PRED =4 Pg U Py, which contains all
the predicate symbols appearing in a system.

Next, We define the concept of Zerm which is the
same one as in pure logic programming except our
definition allows vartant form variables:



Definition .3 (Term)
A term is defined inductively as:

(a) a is a term, where a is a conslant;
(b) z is term, where z € (VARS UV ARS*);

(c) f(t1 ... ta) is a term, where f is an n-ary funclion
symbol and t; are terms (i =1,...,n). A

Furtherly, we denote the set. of all the terms con-
taining £ € VARS* by TERMS*, and the set of all
the terms containing no z € VARS* by TERMS.

For convenience, we use t to stand for an n-tuple of
terms 1y, ..., tn, and p(£) to stand for an n-ary literal,
where p € PRED and t is an n-tuple of terms. All
of the literals is denoted by LITERALS. Moreover,
t = s is assumed to express that term ¢ is syntactically
equal to term s.

Definition 4 (GHC clause)
Letp € Py, gi,75 € PRED, 1, &, § are tuples of
terms (i=1,...m, j=1,.,n).

p(&) — 1(f1)1 s g (G Ir1(81), s 7 (85)

is referred 10 as o user-defined GHC clause C. p(d)
is called the head of C, the conjunction of the literals
q1(11), <y gm(Zn ) is called the guard part of C, and the
| conjunction of the literals 71(81), ..., 7n(4,) is called the
body part of C. The operator “|” is called a commil-
ment operator. M

Definition 5 (Program)
A finite sel of GHC clauses is called a program. B

This paper assumes that variable sets occurring in
different GHC clauses are disjoint.

Finally, a goal in our scheme is defined as:
Definition 6 (Goal:)
= pl({l)y (XS pm({m)

, where p; € PRED, i are tuples of terms
Gi=1,..,m). M

The above notions of GHC clause, program and goal
“are almost the same as those defined in [Ueda 85],
lexcept that our notions allow variant form variables
‘to appear in a term.

3 An Extended Unification Algorithm
for Full GHC

We extend unification algorithm of pure logic pro-
gramming in order to deal with GHC head-unification,
guard-unification and body-unification in'a uniform
way.

In the previous section, the concept of variant form
variables is introduced to annotate variables which
can not be instantiated by unification in some phrase
of a computing process. In this section, we define
plus-operation and minus-operation which are used to
make some adjustments in a phrase of a computing
process (see the definition of operational semantics),
and then give two important notions of solved substi-
tution and suspended substilution. Based on them,
we give an extended unification algorithm applica-
ble for GHC head-unification, guard-unification and
body-unification.

First, we need some definitions of pair set, primi-
tive term-pair sel, solved substituiion and suspended
substitution:

Definition 7 (Pair Set)
A finile set of the following form:

S={<t,51> . <lm,Sm >}

is called a pair set, where t;,s; € (TERMS U
TERMS* U LITERALS) (i=1,..,m). B

Definition 8 (Primitive Term-Pair Set)
A finile setl of the following form:

S={<t, 21> . <im,Zm >}

is called a primitive term-pair set, where

z; € (VARS U VARS*), t; € (TERMS U
TL‘RMS‘) ¢ ti, = £ z; (1 # 7), (G =
l,ym, j=1,..,m). W

Definition 9 (Solved Substitution)

A primilive term-pair sel which furtherly snlzsfes
the following condition: z; € VARS (i=1,...,m) is
referred 1o as a solved substitution. H

Definition 10 (Suspended Substitution)
A primilive term-pair set is called a suspended sub-
stitution if 3z; € VARS® (1< <m). &

From the above definitions, it is clearly that a prim-
itive term-pair set is either a solved substitution or a
suspended substitution.

Solved substitutions are just what we try to ob-
tain in a computing process, while suspended ones
correspond to suspended actions, resulting from GIIC



head-unification or guard-unification in a direct or in-
direct way ( In our extended unification algorithm
shown later, a suspension happens when trying to in-
stantiate some variant form variables). This paper
uses § to denote a solved substitution and 6() to an-
notate a suspended substitution.

Next, we define two operations: plus-operation *
and minus-operation ~ to be used in the extended uni-
fication algorithm and commitment operation respec-
tively, which are related to our operational semantics.
The plus-operation is defined on a set of literals, and
the minus-operation is defined on a union set of con-
junctions of literals and primitive-term pair sets.

Definition 11 (plu's-operation +)
e *(c) =g ¢, where c is a constant;
o T(z) =y z*, where z € (VARSUVARS*);
o T(F(t1, o0 tn)) =¢ F(F(EL), T (E0)),

where f is an n-ary funcior symbol and
st; € (TERMS* UTERMS) (i = 1,...,n);

o Y@t . tm)) =g p(* (1) . T (tm)),
where p € PRED and
t; € (TERMS*UTERMS) (i=1,..,m). &

Définition 12 (minus-operation ~)

* ~(c) =4 ¢, where ¢ is a consiant;

o “(z*) =g z, where z € (VARUVARS*);

o ~(z) =g z, where z € VARS;
~(F(t1,rtn)) = FC (1), 7 (8)),
where f is an n-ary funclor symbol and

i € (TERMS* UTERMS) (i = 1,..,n);

(et - tm)) =g (" (E1) - T (tm)),
where p € PRED and
t; € (TERMS* UTERMS) (i =1,...,m);

. _(Ll, ~-'1Ln) = tij—(Ll)7 ey (Ln),
where L; € LITERALS (i = 1,...,n);

*

L]

. _({< t1,51> ... <tm,Sm >}) =
{<= (1), (51) > . <™ (tm),™ (5m) >},
where t;,5; € (TERMSUTERMS*)
(t=1,..,m). W

Other concepts such as most general unifier (mgu),
renaming equivalence and answer substitution are
very similar to those defined in pure logic program-
ming [Lloyd 84] [Lass 88], we omit their definitions in
this paper.

Based on the concept of variant form variables, the
plus-operation and the minus-operation, together with
the notions of solved substitution and suspended sub-
stitution, we can easily define an extended unification
algorithm for the computation of a most general uni-
fier of a given pair set in a uniform frame:

Extended Unification Algorithm

Let S be a pair set. Repeatedly choose a paii in S
of the following form and perform the corresponding
action until it terminates with failure or nothing can
be done for S furtherly.

1. < z,z > (or < ¢,¢ >), where z € (VARS U
VARS") (or c is a constant):
delete the pair from S;

2. < ¢y, >, where ¢y, ¢y are constants and ¢; % es:
terminate with failure;

3. < e,z >, where z € VAR* and cbl is a constant:
if exists < cg,2 >€ (S — {< ¢1,2 >}), ¢; # ca,
then terminate with failure;

4. < fuy oo um), 9(vy ... v4) >, where [ is a m-
ary function symbol and g is an n-ary function
symbol, and u;,v; € (TERMS"UTERMS) (i =
1,oam, 7=1,..,n):
if f = g and m = n then replace it by the pairs:

< U1, v > ey < Um,Um > else terminate with '
failure;
5. < p(uy ... um), Q(vl .. Up) >, where p,q € Py

and u;,v; € (TERMS" UTERMS)
(i=1,..,m, §=1,..,n):

if p = ¢ and m = n replace it by the pairs
< UYL D>y ey < Um, Um > else terminate with
failure;

6. <=z, 1>, where z € (VARS* UV ARS),
i € (TERMS*UTERMS) and t ¢ VARS, z ¢
VARS* ort ¢ VARS™:
substitute the pair by < ¢,z >

7. <t, x>, where 2 € VARS, Lt € (TERMS™ U
TERMS), z € (S —{<t,z>}):
if z € ¢ then terminate with failure else replace 2
in the other pairs of S by .

Finally, if there exists < t,2 >€ 0, where z € VARS™,
{ € (TERMS*UTERMS), then rename S by 0) (a
suspended substitution), else rename S by 0 (a solved
substitution). M

In this paper, the concept of variant form vari-
ables plays an important role in coping with the con-
straint upon GHC head-unification, guard-unification
and body-unification in a.uniform way. When trying
to unify a user-defined goal G with the head H of a



GHC clause, we first apply a plus-operation to G (ie.,
+(G)), and then apply the above extended unification
algorithm for the pair set {<* (G), H >}. Whenever
a variable in G (i.e., a variant form variable in +(G))
is attempted to be instantiated in a direct or indirect
way, our algorithm yields a suspended substitution.
A suspension can be explained as a correspondence to
suspension action in real GHC implementation. For a
pair set which may yield a suspension, our algorithm

makes the greatest efforts of trying to compute a near-

est result to the expected mgu.

It can be said that variables in a goal are fi-
nally instantiated only via system-defined predicate
« =/ or some system-defined computing predicates
like “sum’. Here we give the following main proce-
dure of computing unification for a goal. It is com-
posed of the following three parts:

Main Procedure of Unification

o For a user-defined goal G:
firstly apply the plus-operation on G, then make
a pair set S: {*(G), H} (here H is the head of
a GHC clause which is tried to be unified with
G). Turtherly, apply the extended unification al-
gorithm to the pair set S;

o For a goal of the form: G, = Ga:
Create a pair set S = {G1, G2}, and then apply
the above extended unification algorithm to it;

o+ For a system-defined computing goal G:
Simply compute G, and suppose a result, say
¢, is to be obtained, and then create a primi-
tive term-pair set < ¢,z > for G, here c is the
constant which is a computing result of z, where
z€(VARSUVARS*). W

Now, we give several simple examples to show how
our unification mechanism works:

First, we show an example for a goal corresponding
to system-defined computing predicate “sum':

Example 1
For a goal Gy: «— sum(2 3 v;)

sum(z y z) means to add z o y and sei the resull to
2z, so we can gel a solved substitution for Gy:

f = {< 5,1y >}
u

Then, we show a unification procedure correspond-
ing to the system defined predicate =:

Example 2

For a goal Ga: « va = [v1]

1, =ty means lo unify ) and ty in a similar way as
in pure logic programming, we can oblain the following
solved substitution for Ga:

0y = {< [1)1],1)'_7 >}
|

Following is an example corresponds to a user-
defined predicate:

Example 3
For a goal Ga: + append(vs {6] )
, here “append® is defined in a usual way:

Ci: append([z;|z2] x3 24) — true |
z4 = [z1|25), append(z2 23 z5)
Cy: append([] z¢ z7) — true | z6 = 27.

Apply the plus-operation 1o Ga, we gel:
Gy = *(append(vs [6) )) = append(v; [6] 2°)

Generaie a pair sei for G4 and the head of clause Ci,
we gel:

S, = {< G5, append(|z1]zs] z3 z4) >}

Apply the extended unification algorithm to i, we gel
the following suspended substitution:

gg“l) = {< ['7-'1|1'2],U5 >, < [6],1?3 >, < 1’..:7"4 >}

Similarly,
For the unification of G and the head of clause Ca,
we also gel a suspended substitulion:

05 = {< [),03 >, < [6],z6 >, < 27,27 >}

In our extended unification algorithm, the relation-
ship among the several occurrences of a variable in-
different arguments of a predicate can still be main-
tained without thé head unification constraint being
violated:

Example 4
C: p(z z) — trueltrue

and a goal G: — p(e y):
Using the extended unificalion algorithm Jor the pair
sel: S={<t (play)), plz z) >}, we gel:

0¢) = {<a,2>,<a,y" >}

, which is a suspended substitution. W



From the extended unification algorithm described
above, it holds that:

Proposition 1

For a given pair set S, the ezlended unification algo-
rithm can obtain a solved substitution which is a mgu
of S, a suspended substitution towards ¢ mgu of S, or
terminaies with failure in o finite time. W

Furtherly, it is quite easy to define a concatena-
tion rule with which concatenates two substitutions
resulted in a computing process. It is needed by our
operational semantics:

Definition 13 (Concatenation §; o, )

Let 8, be a solved substitution, 8, be a primilive
term-pair set. We use 6, 063 1o express the concate-
nation of 61 and 0s. It is computed by performing the
following actions:

o Firstly, for each < t,z >€ 04, where
z € VARS, t € (TERMS* UTERMS), repace
all the variant form variables of z in 0, by t;

e Then apply the exiended unification algorithm 1o
the set of 6, U6,. M

4 An Operational Semantics for GHC

In this section, we propose an operational seman-
tics for full GHC, by using transition relation of states
based on extended unification algorithm.

Now, we define the concept of transition relation of
states upon which our operational semantics is based.

First, we need to define the concept of substitution
restricted by goal.

Definition 14 (Restricted Substitution)

Let 0 be a primilive term-pair set, G be a goal, and
V(G) be the set of all the original form variables ap-
pearing in G. Resirict 0 by G is defined as:

Ol =¢ {<t,z>|<t,z>€0Az € V(G))
|

Thanks to the concept of variant form variable,
the plus-operation, the minus-operation and the ex-
tended unification algorithm, together with concate-
nation rule, the work of defining an operational seman-
tics for full GHC becomes quite simple and intuitive.

Let Goal represent a set of all the goals, and Sub
represent a set containing all the solved substitutions
and suspended substitutions. We express a state by
an element in Sta = Goal * Sub. :

Definition 15 (Transition Relation)

A transition relation (—,Sta, Sta) is a relation sal.
isfying the following conditions:

Let s;,5, € Sta , si =< Gi,0; > and S =<
G, 0 >, here 8; is a solved substituiion.

1. Gy is a single goal: ie., G; = q(d)

la. <—,si,5¢ > holds, where s, = s;;

1b. g is the system-defined predicate “ =", i.c.,

Gi: Gi = Gyar

if exisls a primilive term-pair sel o for the
pair sel: {< Gy, Giz >}, then <—, 55,5, >
holds, where s, =< [, 0;00 >;

Ic. q is a system-defined computing predicate:
if ezisls a primilive lerm-pair sel o corre-
sponding to the computing resull of G;1, then
<—, i, 5, > holds, where s;, =< [],0,00 >;

1d. q € Py (user-defined predicate):
if exisls a suspended substitution o for the
pair set: {<t(q), H >}, where H is the
head of a clause C: H «— Guard |Body, then
<—,8i, 5k > holds, where s, =< Gy, 0; o
o>
else if exists a solved substitution o for the
pair set: {<*(q), H >}, where H is the
head of a clause C: H «— Guard |Body, and
furtherly if < (Guard)o, 0 >— ... —
<[], ooy >, then <—,s;, s > holds, where
sk =<7 ((Body)(c07)), bioooy >.

2. G; is composed of several subgoals, i.c.,
G:=Gy,,....Gi:
if < Gy, 0; >—< Qi;) Si; > ( Si; are primitive
term-pair sets, j =1,..,m ), and exisls k such
that < Qi,,Si, >#< Gi,,0: > (1 < k < m),
then <—, s;, s, > holds, where .

8k =< (Qiyy o Qi )A(SiilG4, s s Sl ),
A(S,', |G.'1 oy S,‘m IG.',..) >.

A(SilG;, o Sinle:,) 15 a solved substitution
which is a resull of the AND-combinalion of
Siilei, s sSinlc, . The AND-combindlion oper-
ator A is defined as follows:

Let S; (i = 1,...,n) be primilive lerm-pair sels,
which correspond to subgoals Gy, ...,Gy, in a goal:
— G1,...,Gn. Initially, create a set: S =S, U
«.US,. The AND-combination A(Sy, ..., Sp) can
be obtained by repeatedly performing the following
aclions:

e Foreach <i,z>€ S (z € VARS,
t € (TERMS* UTERMS), replace all the
variani form variables of by i;

o Then apply the extended unification algo--
rithm for 5. B

Ithe element of ¢ has the form of <e¢z >,z € (VARU
VAR*), cis a constant




. The AND-combination Qpé};atdr\,ﬁ i used to com-
'bine several solved substitutions and possibly sus-
pended substitutions corresponding to concurrently
executed subgoals of a goal. The computation for A

not only embodies the consistency check but also mod-

els the synchronization ability of GHC as well.

Here we show a simple example of how to compute -

AND-combination:

Example 5
For a goal G:

— surﬁ(? 3 v1),’02 = ['Ul]y append(v2 {6] 1’)

Assume 01,032, eg‘l) 1o be the same as those in Example
1, Ezample 2 and Ezample 8 respectively, compule the
AND-combination of 01,02,0:(,’1) corresponding to the
concurrently ezeculed results of the subgoals of G.
First, creat a union set Sy:

S = {< 5,v1 >, < [v1],vg >, < [J:ﬂxg],vi >
< [6),2z3 >, <z za >}

then it is transformed into:

St = {< 5,v >,< [8],v2 >, < [z1]z2], (5] >
< [6],z5 >, < 2", 74 >},

Apply the extended unification algorithm 1o S{, we get:

Rl = {< 51”1 >1< [5111)2 >, < [5]111 >,
<[liza> < (6,23 >, <z, 24>}

Similarly, compule A(91,02,93,9gfz)), we gel:

Ry ={<5,u > < [8},v2 >, < [].[5] >,
< [6],z6 >, < 2%, 27 >} = failure B

By using AND-combination and our active strategy
for suspended substitutions, sometimes it is possible
to avoid some deadlock situation. For example: for a
goal: «— p(z),¢(z) with the definitions of its subgoals:
p(5) — trueftrue.  g(6) « truelirue.
two suspended substitutions 01,0, are generated for
the concurrently executions of p(z) and g(z):

08 = {< 5,2" >}; 6§ = {< 6,z* >},

and then A(a§’),e§’>) yields a failure (by action(3) of
the extended unification algorithm). So a deadlock is
avoided by our active computation for suspended sub-
stitution and AND-combination.

Obviously, AND-combination is associative, i.e.

Proposition 2
A(81,02,03) = A(A(61,02),63)) = A6y, A(02,03))

Definition 16 (Operational Semantics)

Let G,G; (i = 1,...,m) be goals, P be a program,
¢ be a null substitution, §; (i = 1,...,m) be primitive :
term-pair sels. We call < G,e >—< Gy, 6, >

. —+< G, 0m > an execution of G with the remain-
ing goal Gy and substitution 0m. Furtherly,

o If G = null, te.,
< G,e >=< Gy, 0y >— ... =< [0 > then
il is called a successful exzecution of G, and On, is
referred 1o as an answer substilution of G;

If Gm # null,

If O is a suspended substitution, then il is called
a suspended erecution. Furtherly, if all the eze-
cutions stariing from goal G are suspended evecu-
lions, we say the ezeculion of G yields ¢ deadlock;

else if there ezists no transition relation for the
state < Gm,0m > furtherly, then it is called a
failure ezecution. M

Notice that our operational semantics can also ex-
plain non-terminating programs by some meaninglul
executions of goals (see Example 8).

Now, we give several examples to show how our
operational semantics works for full GHC in various
cases:

Example 6

Clause Cv: p(y) — a(z ¥) | r{y 2).

Clause Ca: g(wy wa) «+ true |wy = a,
Wa = b.

Clause Cs: v(vy va) — true [vy = b.

and a goal G: «— p(2).
For G and the head of clause G}, we sel:

Sy = {<* (p(2)), p(y) >= {<p(z"), p(v) >}

Apply the extended unification algorithm to it, we gel:
01 = {< I‘xy >};

The clause C10; 1s:
p(z™) — q(z z%) | r(z* z).

Similarly, use the same eziended unification algo-
rithm for ils guard goal g(z 2*) and the head of
clause Cs, gel:

0, = {< 2", wy >, <z, w2 >);

The clause Ca04 1s commitled:
Cq(zm 2**) —true | 2" =a, 277 =D

So make minus-operation on the body part of Cola:
“(z"=a, ™" =), gel
the suspended substilulion corresponding to il is:
Og’) ={<a,z>,<bz2" >}

z

=a, 2" =b,




, here a suspension happens. M

Now let us see another example which does not gen-
erate suspension:

Example 7

Clause Cy: ply) «— 9(z ¥) | r(y 2).
Clause Cy: q(w1 wy) — true | wy = a.
Clause Cs: 7(vy vg) — true vy = b.

and a goal G: — p(z).

We obtain a solved substilution for the unification of
G and the head of clause C1: 61 = {< z*,y >};

The clause C1 8, is:
p(z*) « q(z %) | r(z" 2).
We get a solved substitution 6, for the unification of

¢(z =*) and the head of clause Cy:
={< ¥, w >, <z, w >};

The clause Cq82 is commiiled:
g(z* z**) —true | 2" =a

Make minus-operation on the body part of Cafy:
~(z* = a), we get: z = a. So the corresponding
solved substitution is: 03 = {< a,z >}.

The concatenation resull of 3 o 83 is:
f203 = {< a,w; >, <z, w2 >,<q,2 >}

The concatenation result of 0) and 8203 is:
010203 = )
{<z*,y>,<a,w > <z*w > <a,z>);
The clause Cy814203 is commitled:
p(z*) —g(e z*) | r(z" a).
" Make minus-operation on its body pari: ~(r(z* a)),
. we get: 7(z a)
Furtherly, we get 64 for the unification of 1'(zva) and
the head of C3: 04 = {< z*,v; >, < a,v2 >};

The clause C304 1s commilled:
r(z* a) — true |z* = b.

So make minus-operalion on the ils body pari:
~(z* = b), get: (z = b), and the corresponding
solved substitution is: 05 = {< b,z >};

The concaienalion of 04 and s is:
405 = {< b,v1 >,< a,v2 >, < b,z >};

So the concatenation resull of 14903 and 0405 1s:

R = 0102030405 =
{<by>,<aw > <bw > <a,z>,
<b,v; >,<a,v2 >, < bz >}

The answer substituiion for the goal G is:
Rle = {< b,z >}.

Different from the above ezamy
yield a suspended substitution.
Co is used only to iniliale the va
initiate the variable y, so doesn’t

Unlike pure logic programming onl c’onk:élniruI
about success and failure, our opemtmnal sernan-
tics for full GHC can also characterize some non-
terminating program. Below is a demand-driven ex-
ample of computing Fibonacci number, we show a
meaningful execution by our operational semantics
with some detailed transition relations omitted.

Example 8

C,: initialgoal — irue|
fiboinitial(DF's),
driver(DFs DOs).

Cy: fiboinitial(Ns) « true|
fibonacci(0 1 Ns). o

Cs: fibonacci(Ny Ny [N|Nsi]) « true|
N = Ny, N3 = Ny + N,
fibonacci(No N3 Nsy).

Cy: driver(Fs I0s) « true|
10s = [read(X)|10s],
check(Fs I0s; X).

Cs: check(Fso I0so more) «— true| '
Fso = [N|Fsi],

I10so = [write(N)|10s:],
driver(Fsy 10s3).

Although the program starting from inilialgoal will
never terminate, it can resull in meaningful resulls
from its ezecutions. Here we simply show a ‘meaning-
ful execution using transition relalion of siales.

< initialgoal,e >, where € is a null substitution.

—< fiboinitial( DFs), driver(DFs DOs), € >

—< fibonacci(0 1 DFs),driver(DFs DOs), 01 >

—< fibonacci(0 1 DFs),check(DFs I0sy X}, 02 >

Assume end-user send an insiruction of *more’, then:

—< fibonacci(0 1 [N|Fsy)), driver(Fsy I0s2), 03>

—< fibonacci(l 1 Fsi]),driver(Fs, I0s3), 0a >,

where

0y ={<0,N; > <1,Na><1,N3><1,N>,

< Fs;,Ns; >, < [1{F$1} DFs >, < [1|F~5’1] Fso>,
< [1|Fs1], Ns >, < [1|Fs1], Fs >, < [read(more)

write(1)|10s,], I0s >, < [read(more) wrzie(1)|

I0s,], DOs >, < [write(1)|10s3], [0s1 >,

< [wnte(l)]lOSo] 10sg >, < more, X >}

This is a meaningful execution. W

1ns and Final Remarks

ral preliminary definitions'together

with the co of variant form variables, we have




defined the plus-operation and the minus-operation,
and also given two important notions of solved sub-
stitution and suspended substitution. Then we have
described an extended unification algorithm which
deals with GHC head-unification, guard-unification
and body-unification in a uniform frame. We have
proposed an operational semantics by using the tran-
sition relation of states in GHC based on extended
lunification algorithm.

There remains much work to be done, which is re-

lated to the semantics of meta and reflective concur-
rent logic programming languages[Suga 90)
[Tanaka 88][Tanaka 90]. We would try to characterize
some issues about the semantics for meta and reflec-
tive GHC. And prove some correctness of practical
systems by using the proposed semantics.
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